KR20060018936A - Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method - Google Patents

Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method Download PDF

Info

Publication number
KR20060018936A
KR20060018936A KR1020040067323A KR20040067323A KR20060018936A KR 20060018936 A KR20060018936 A KR 20060018936A KR 1020040067323 A KR1020040067323 A KR 1020040067323A KR 20040067323 A KR20040067323 A KR 20040067323A KR 20060018936 A KR20060018936 A KR 20060018936A
Authority
KR
South Korea
Prior art keywords
emulsion
ultrasonic
prepared
silica
solution
Prior art date
Application number
KR1020040067323A
Other languages
Korean (ko)
Inventor
박홍채
Original Assignee
백종화
박홍채
윤석영
강영수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 백종화, 박홍채, 윤석영, 강영수 filed Critical 백종화
Priority to KR1020040067323A priority Critical patent/KR20060018936A/en
Publication of KR20060018936A publication Critical patent/KR20060018936A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicon Compounds (AREA)

Abstract

초음파-에멀젼방법을 이용한 단분산 실리카 나노분말 제조법에 관한 것으로, 특히 초음파장치를 이용한 입자의 파쇄 분산을 동시에 이루는 반응방법으로 단분산 실리카 나노분말 제조법에 관한 것이다.

본 발명은 초음파 발생장치인 봉상형 Ultrasonic disruptor를 이용하여 출력을 35 W로 고정하고 연속상에 분산상을 천천히 적하시켜 에멀젼으로 제조하는데, 이 때 초음파가 용액 전체에 영향을 미치도록 자기교반기 위에 마그네틱 막대로 회전시키면서 제조하였다. 제조된 에멀젼을 탄화수소 암모늄 수용액에 적하시켜 용액의 색깔이 흰색이 될 때 까지 약 30분간 반응시켜 Na+ 이온을 제거하고, 에멀젼 파괴를 위하여 질산으로 pH를 3으로 조절한 후 다시 중성화시키기 위하여 암모니아수로 pH를 6으로 조절하였다. 이렇게 제조된 실리카 분말을 여과장치를 사용하여 여과 세척을 거쳐 100℃에서 1~24시간 건조함으로써 이루어지는 단분산 실리카 나노분말 제조방법을 제공함에 있다.

Figure 112004038244111-PAT00001

초음파, 에멀젼, 나노실리카

The present invention relates to a monodisperse silica nanopowder manufacturing method using an ultrasonic-emulsion method, and more particularly, to a monodisperse silica nanopowder manufacturing method as a reaction method of simultaneously crushing and dispersing particles using an ultrasonic device.

The present invention uses an ultrasonic generator, a rod-shaped Ultrasonic disruptor, to fix the output at 35 W and slowly drop the dispersed phase into a continuous phase to prepare an emulsion. At this time, a magnetic rod is placed on a magnetic stirrer so that ultrasonic waves affect the entire solution. It was prepared while rotating. The prepared emulsion was added dropwise to an aqueous solution of ammonium hydrocarbon and reacted for about 30 minutes until the color of the solution became white. The Na + ions were removed, and the pH was adjusted to 3 with nitric acid to destroy the emulsion. pH was adjusted to 6. It is to provide a mono-dispersed silica nanopowder manufacturing method made by drying the silica powder prepared in this way by filtration and washing at 100 ℃ for 1 to 24 hours.

Figure 112004038244111-PAT00001

Ultrasonic, Emulsion, Nanosilica

Description

초음파-에멀젼방법을 이용한 단분산 실리카 나노분말 제조법{Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method}Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method

도 1은 본 발명에서 사용한 봉상형 Ultrasonic disruptor에 대한 개략도.1 is a schematic diagram of a rod-shaped Ultrasonic disruptor used in the present invention.

도 2는 본 발명에서 초음파 장치를 사용하여 제조하는 SiO2 분말 flow chart.Figure 2 is a SiO 2 powder flow chart prepared using the ultrasonic device in the present invention.

도 3은 발명조건 B-3(emulsifier amount : 3 vol%)에 의해서 제조된 실리카의 SEM(scanning electron microscope)사진.Figure 3 is a scanning electron microscope (SEM) photograph of silica prepared by the invention condition B-3 (emulsifier amount: 3 vol%).

도 4는 발명조건 B-3에 의해서 제조된 SiO2 particles의 입자분포도.4 is a particle distribution diagram of SiO 2 particles prepared by the inventive condition B-3.

도 5는 본 발명에 의해 합성된 SiO2 particles TEM(transmission electron microscope)사진.5 is a transmission electron microscope (TEM) SiO 2 particles synthesized by the present invention.

<도면의 주요 부문에 대한 부호의 설명><Description of the codes for the main parts of the drawing>

1. controllor 2. water bath 3. cooling water 4. stirrer 5. tip 6. sample 7. magnetic bar1.controllor 2.water bath 3.cooling water 4.stirrer 5.tip 6.sample 7.magnetic bar

본 발명은 초음파-에멀젼방법을 이용한 단분산 실리카 나노분말 제조법에 관한 것으로, 더욱 상세하게는 초음파 발생장치인 봉상형 Ultrasonic disruptor를 이용하여 입자의 파쇄 분산을 동시에 이루면서 반응시키기 위하여 출력을 35 W로 고정하고 연속상에 분산상을 천천히 적하시켜 에멀젼을 제조하는데, 이 때 초음파가 용액 전체에 영향을 미치도록 자기교반기 위에 마그네틱 막대로 회전시키면서 제조하였다. 제조된 에멀젼을 탄화수소 암모늄 수용액에 적하시켜 용액의 색깔이 흰색이 될 때 까지 약 30분간 반응시켜 Na+ 이온을 제거하고, 에멀젼 파괴를 위하여 질산으로 pH를 3으로 조절한 후 다시 중성화시키기 위하여 암모니아수로 pH를 6으로 조절하였다. 이렇게 제조된 실리카 분말을 여과장치를 사용하여 여과 세척을 거쳐 100℃에서 1~24시간 건조함으로써 이루어지는 단분산 실리카 나노분말 제조방법에 관한 것이다.The present invention relates to a monodisperse silica nanopowder manufacturing method using an ultrasonic-emulsion method, and more particularly, the output is fixed to 35 W in order to react simultaneously to achieve the crush dispersion of particles using a rod-shaped Ultrasonic disruptor, an ultrasonic generator The emulsion was prepared by slowly dropping the dispersed phase in a continuous phase, in which ultrasonic waves were rotated with a magnetic rod on a magnetic stirrer to affect the entire solution. The prepared emulsion was added dropwise to an aqueous solution of ammonium hydrocarbon and reacted for about 30 minutes until the color of the solution became white. The Na + ions were removed, and the pH was adjusted to 3 with nitric acid to destroy the emulsion. pH was adjusted to 6. The present invention relates to a method for producing monodisperse silica nanopowder, which is obtained by filtering the silica powder using a filtration apparatus and drying it at 100 ° C. for 1 to 24 hours.

미립의 실리카 분말은 높은 기공율, 저밀도, 높은 비표면적, 낮은 열전도도, 저 유전상수의 특성을 가지며, 단열재 및 촉매담체 등의 주요 원료로서 뿐만 아니라 페인트, 고무, 화장품, 식품공업에서 첨가제로 사용되는 등 다양한 분야에서 응용이 되고 있다. 천연광물로부터 얻을 수 있는 실리카 분말은 불순물을 많이 함유하고 있으므로 순도를 높이기 위한 일련의 여러 조작에도 불구하고 고순도의 물질을 얻기가 매우 어려우며 또한 경제성이 결여되어 있을 뿐만 아니라, 실리카의 경도가 매우 크므로 기계적 분쇄에 의하여 sub-micron이하의 초미립자를 만들기 위해서는 해결해야할 많은 문제점들이 있어 새로운 제조방법의 개발이 요구되고 있다. Fine silica powder has high porosity, low density, high specific surface area, low thermal conductivity, low dielectric constant, and is used as an additive in paint, rubber, cosmetics, food industry as well as main raw materials such as insulation and catalyst carrier. It is applied in various fields. Silica powders that can be obtained from natural minerals contain a lot of impurities, so it is very difficult to obtain high-purity materials and a lack of economics, despite the series of various operations to increase the purity. In order to make sub-micron sub-micron particles by mechanical grinding, there are many problems to be solved. Therefore, the development of a new manufacturing method is required.                         

한편, 종래의 실리카 미립자의 제조방법에는 CVD(chemical vapor deposition), 졸-겔(sol-gel), emulsion 등이 있다.On the other hand, conventional methods for producing fine particles of silica include CVD (chemical vapor deposition), sol-gel (sol-gel), emulsion and the like.

CVD는 주로 염화물을 출발원료로 하여 고온 기상반응에 의하여 분말을 제조하는 방법으로 분산성이 양호하고 평균 입경이 수백 Å의 고순도 초미립자를 제조 할 수 있는 방법이며, 졸-겔법에서는 출발물질로 TEOS(tetraethoxysilane)를 주로 사용하여 가수분해와 축합반응을 통하여 실리카를 얻는 제조법이다.CVD is a method of producing powder by high temperature gas phase reaction mainly using chloride as a starting material. It is a method of producing high-purity ultrafine particles having good dispersibility and an average particle diameter of several hundreds of Å. Tetraethoxysilane is mainly used to obtain silica through hydrolysis and condensation.

그리고 비교적 균일한 입도분포를 갖는 구상의 실리카 분말을 제조할 수 있고 아울러 대용량 및 소용량의 생산이 가능한 공정으로 에멀젼 제조법이 있다. 5 ~ 50 μm와 10 ~ 40 μm의 입자크기를 가지는 구상의 실리카가 각각 TEOS-CH3COOH-H2O계와 TEOS-H2O-Decane계에서 얻어졌으며 또한 계면활성제의 Hydrophile-Lipophile Balance Value(이하, HLB수이라고 명명함), 반응온도, 교반속도를 조절함으로써 TEOS-H2O-CH3OH-DMF계에서 5 ~ 40 μm의 크기분포를 갖는 실리카 입자를 얻는 제조법이 있다.In addition, there is an emulsion production method that can produce spherical silica powder having a relatively uniform particle size distribution and can produce a large volume and a small volume. Spherical silicas with particle sizes of 5 to 50 μm and 10 to 40 μm were obtained from TEOS-CH 3 COOH-H 2 O and TEOS-H 2 O-Decane systems, respectively. Hydrophile-Lipophile of surfactant There is a manufacturing method for obtaining silica particles having a size distribution of 5 to 40 μm in TEOS-H 2 O-CH 3 OH-DMF system by adjusting the balance value (hereinafter referred to as HLB number), reaction temperature, and stirring speed. .

그러나 상기 열거된 제조법은 실질적인 채용에는 많은 문제점이 있다.However, the above listed manufacturing methods have many problems in practical adoption.

CVD에 의한 나노 실리카 분말을 제조하기 위한 일반적인 방법은 반응물질로서 사염화규소를 사용하여 산소 혹은 수증기와 반응시키는 것이다. 그러나 CVD법은 생산선이 낮고 제조비용이 고가라는 문제점을 지니고 있다.A general method for preparing nano silica powder by CVD is to react with oxygen or water vapor using silicon tetrachloride as a reactant. However, the CVD method has a problem of low production line and high manufacturing cost.

졸-겔법은 비교적 낮은 온도에서 고순도의 세라믹 분말을 제조할 수 있고, 입자크기가 균일하며 좁은 미세기공분포를 가지므로, 이로부터 각종 필터의 제조가 용이 하다는 것인데, 이 방법 역시 고가의 출발물질에 따른 원가상승과 장시간의 반응 및 공정변수가 많다는 문제점을 지닌다.The sol-gel method can produce high purity ceramic powder at a relatively low temperature, and has a uniform particle size and a narrow micropore distribution, thereby making it easy to prepare various filters. There is a problem that there are many costs and long-term reactions and process variables.

그리고 에멀젼법을 이용하여 Osseo-Asare와 Igepal-ammonium hydroxide-cyclohexane계와 음이온 계면활성제 sodium 1, 2 bis(2-ethylhexycarbonyl)-1-ethanesulfonate (AOT)와 ammonium hydroxide-decane계에서 TEOS의 가수분해에 의해서 50 ~ 70 nm의 실리카 입자를 제조하였다. 또한, 30 nm의 콜로이드 실리카가 Triton X100-hexanol-cyclohexane-water의 마이크로 에멀젼에서 aqueous sodium metasilicate의 축합반응으로부터 얻어진다고 보고하였으나, 이 제조법 또한 고가의 출발물질에 따른 원가상승을 유발을 통하여 경제성이 결여되어 있다.And hydrolysis of TEOS in Osseo-Asare and Igepal-ammonium hydroxide-cyclohexane and anionic surfactant sodium 1, 2 bis (2-ethylhexycarbonyl) -1-ethanesulfonate (AOT) and ammonium hydroxide-decane 50 to 70 nm of silica particles were prepared. In addition, it was reported that 30 nm colloidal silica was obtained from the condensation reaction of aqueous sodium metasilicate in a microemulsion of Triton X100-hexanol-cyclohexane-water, but this manufacturing method also lacks economic feasibility by causing a cost increase due to expensive starting materials. It is.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 초음파-에멀젼법을 이용하여 저가의 물유리를 출발물질로 사용하여, 새로운 나노실리카의 제조방법을 개발하였다.The present invention has been made in order to solve the above problems, using a low-cost water glass as a starting material using the ultrasonic-emulsion method, a new method for producing a nano silica.

따라서 저가 출발원료를 사용하여 제조코자 하는 불말의 입자크기 및 형상 등을 제어할 수 있는 초음파-에멀젼장치와 합성조건을 도출, 나노실리카 제조법을 제공함에 본 발명의 목적이 있다.Therefore, it is an object of the present invention to provide a nano-silica manufacturing method by deriving an ultrasonic-emulsion apparatus and synthetic conditions capable of controlling the particle size and shape of the powder to be prepared using a low-cost starting material.

이하, 본 발명의 바람직한 실시 예를 살펴본다.Below, it looks at a preferred embodiment of the present invention.

본 발명에서 사용한 초음파장치를 Branso사 (모델 Sonifier 450)의 봉상형 Ultrasonic disruptor (도 1)이며, 이 장치를 이용하여 응집입자의 파쇄 및 분산이 가능하다. 수직 방향으로 초음파를 방사하기 때문에 시료전체가 에멀젼화 되도록 하기 위하여 교반기 위에 magnetic bar를 회전시키면서 반응을 진행하였다.The ultrasonic apparatus used in the present invention is a rod-shaped Ultrasonic disruptor (Branso, Inc.) (model Sonifier 450) (FIG. 1), and it is possible to crush and disperse aggregated particles using this apparatus. The reaction proceeded while rotating the magnetic bar on the stirrer in order to emulsify the whole sample because it radiates ultrasonic waves in the vertical direction.

초음파 분산시 발생하는 급격한 온도의 상승으로 에멀젼의 안정화를 기대하기 어렵기 때문에, 본 발명에서는 원하는 온도를 유지시키기 위하여 [도 1](2-water bath)에서와 같이 항온조를 사용하였다.Since it is difficult to expect stabilization of the emulsion due to the rapid rise of temperature generated during ultrasonic dispersion, in the present invention, a thermostat was used as in FIG. 1 (2-water bath) to maintain a desired temperature.

따라서 본 발명에서는 물유리(sodium silicate)를 출발물질로 사용하여 초음파-에멀젼법에 의해서 실리카 미립자를 합성하였다.Therefore, in the present invention, the silica fine particles were synthesized by the ultrasonic-emulsion method using water glass (sodium silicate) as a starting material.

본발명에서 사용된 물유리는 (주)일신화학에서 생상하고 있는 한국공업규격 물유리 3종을 출발원료로 사용하였다. 이에 대하여 (주)일신화학에서 생산하고 있는 다른 규격의 제품특성과 비교하여 [표 1]에 나타내었다.The water glass used in the present invention used three kinds of Korean industrial standard water glass produced by Ilshin Chemical Co., Ltd. as starting materials. This is shown in [Table 1] in comparison with the product characteristics of other standards produced by Ilshin Chemical.

SiO2/Na2O의 비율이 0.5일 때를 orthosilicate, 1일 때를 metrasilicate, 2일 때를 disilicate라고 하며, SiO2/Na2O의 비율이 작아질수록 수분함유량이 많아져 물에 녹는 속도가 빨라진다. 침강성 실리카 졸 및 겔의 제조 시 SiO2/Na2O 몰비가 약 3.2-3.3인 제품을 사용하였다. 이를 통하여 실리카의 중화를 위한 산의 첨가량이 적으며 아울러 단시간 내에 많은 양을 생산할 수 있으므로 획기적으로 제조 가격을 낮출 수 있었다.When the ratio of SiO 2 / Na 2 O is 0.5 orthosilicate, when 1 is metrasilicate, and when 2 is disilicate, the smaller the ratio of SiO 2 / Na 2 O is, the more water is contained and the rate of melting in water Is faster. In preparing precipitated silica sol and gel, a product having a SiO 2 / Na 2 O molar ratio of about 3.2-3.3 was used. Through this, the amount of acid added for the neutralization of silica is small, and a large amount can be produced within a short time, thereby significantly lowering the manufacturing price.

1종Type 1 2종2 types 3종3 types 4종4 types 비중(20℃)Specific gravity (20 ℃) ≥1.69≥1.69 ≥1.59≥1.59 ≥1.38≥1.38 ≥1.26≥1.26 물불용분Water insoluble ≤0.2≤0.2 ≤0.2≤0.2 ≤0.2≤0.2 ≤0.2≤0.2 Na2O(%)Na2O (%) 17-1817-18 14-1514-15 9-109-10 6-76-7 SiO2(%)SiO2 (%) 36-3836-38 34-3634-36 28-3028-30 23-2523-25 몰비Molar ratio 2.2 ± 0.12.2 ± 0.1 2.45 ± 0.12.45 ± 0.1 3.2 ± 0.13.2 ± 0.1 3.4 ± 0.13.4 ± 0.1

물유리가 실리카로 되는 반응은 식 (1)과 같다.The reaction in which the water glass turns to silica is shown in Formula (1).

Na 2 O · 3SiO 2 + NH 4 HCO 3 → 3SiO 2 + Na 2 CO 3 + NH 4 OH (1) Na 2 O3SiO 2 + NH 4 HCO 3 → 3SiO 2 + Na 2 CO 3 + NH 4 OH (1)

에멀젼을 통하여 만들어진 액적을 NH4HCO3수용액 속에 적하시키면서 교반하여 반응시킨다. 상기의 반응식 (1)과 같이 Na+가 NH4HCO3의 CO3와 반응하여 Na2CO 3를 생성시키고 이 물질은 물속에 용해되어 NH4OH와 함께 수세 시 제거되어진다.The droplets made through the emulsion are reacted by stirring while dropping into aqueous NH 4 HCO 3 solution. As in Scheme (1) above, Na + reacts with CO 3 of NH 4 HCO 3 to form Na 2 CO 3 , which is dissolved in water and removed upon washing with NH 4 OH.

초음파를 이용한 경우의 개발 흐름도와 적용된 반응조건을 [도 2]와 [표 2]에 각각 나타내었다. 분산상은 Homonixer를 이용하여 에멀젼을 제조하였을 때 가장 최적의 조건으로 판면된 sodium silicate와 증류수의 부피 비인 1:1로 고정하고, 연속상은 계면활성제(W/O(물(water)이 분산상이고 기름(oil)이 연속상으로 물의 기름에 분산되어 있는 형태를 말함)에멀전을 만들기 위해 그 범위가 3~6, kerosene-water계에서 가장 널리 쓰이는 HLB값이 4.7인 span80 (Junsei Chemical Co.,을 계면활성제로 사용하였다.)의 량을 1~3 vol%로 변화시키면서 계면활성제의 첨가량에 따른 입자 크기를 조절하였다. 분산상과 연속상의 부피 비를 1:3이 되도록 혼합하였고 봉상형 Ultrasonic disruptor를 이용하여 출력을 35W로 고정하고 연속상에 분산상을 천천히 적하시켜 에멀젼을 제조하였다. 이 때 초음파가 용액 전체에 영향을 줄 수 있도 록 자기교반기 위에 마그네틱 막대로 회전시키면서 혼합하였다. 혼합시간을 20~60분으로 변화시키면서 제조된 에멀젼을 탄화수소 암모늄 수용액(sodium silicate에서의 Na+제거 반응을 위해 (주)대흥케미컬의 공업용 NH4HCO3를 사용하였다.)에 적하시켜 용액의 색깔이 흰색이 될 때 까지 약 30분간 반응시켜 Na+ 이온을 제거하고, 에멀젼 파괴를 위하여 질산으로 pH를 3으로 조절한 후 다시 중성화시키기 위하여 암모니아수 pH를 3으로 조절한 후 다시 중성화시키기 위하여 암모니아수로 pH를 6으로 조절하였다. 상기와 같은 제조공정으로 제조된 실리카 분말을 여과한 후, 잔여물을 제거하기 위하여 물과 알코올로 수차례 세척하였으며, 세척된 분말을 100℃에서 1~24시간 건조함으로써 나노 실리카 분말을 얻었다. The development flow chart and the applied reaction conditions in the case of using ultrasonic waves are shown in [Fig. 2] and [Table 2], respectively. The dispersed phase is fixed at 1: 1 by volume ratio of the plated sodium silicate and distilled water at the optimum conditions when the emulsion is prepared using Homonixer, and the continuous phase is a surfactant (W / O (water is a dispersed phase and oil) In order to make an emulsion), span80 (Junsei Chemical Co., which has a HLB value of 4.7, which is the most widely used in kerosene-water system, is used to make an emulsion). The particle size was adjusted according to the amount of surfactant added while varying the amount of surfactant to 1 to 3 vol%, and the volume ratio of the dispersed phase and the continuous phase was mixed to be 1: 3 and output using a rod-shaped Ultrasonic disruptor. Was fixed at 35 W and the dispersed phase was slowly added dropwise to prepare an emulsion, which was mixed while rotating with a magnetic rod on a magnetic stirrer so that ultrasonic waves could affect the entire solution. The emulsion was prepared by changing the mixing time from 20 to 60 minutes and added dropwise to an aqueous solution of ammonium hydrocarbon solution (Industrial NH 4 HCO 3 from Daeheung Chemical Co., Ltd. was used for Na + removal from sodium silicate.) It is reacted for about 30 minutes until it becomes white, removes Na + ions, adjusts the pH to 3 with nitric acid to destroy the emulsion, and then adjusts the pH of ammonia to 3 to neutralize it again, and then to pH to neutralize again. Was adjusted to 6. After filtering the silica powder prepared by the above-described manufacturing process, and washed several times with water and alcohol to remove the residue, the washed powder was dried at 100 ℃ for 1 to 24 hours to nano Silica powder was obtained.

Sample No.Sample No. Disperse phase (volume ratio)Disperse phase (volume ratio) Emusifier/Oil phase (vol%)Emusifier / Oil phase (vol%) Mixing time(min)Mixing time (min) Sodium silicateSodium silicate Distilled waterDistilled water B-1B-1 1One 1One 1One 2020 B-2B-2 1One 1One 22 2020 B-3B-3 1One 1One 33 2020 B-3-1B-3-1 1One 1One 33 4040 B-3-2B-3-2 1One 1One 33 6060

이하, 상기와 같은 본 발명의 작용을 살펴보면 본 발명에 의한 가장 최적의 조건을 나타내는 발명조건 B-3(emulsifier amount : 3 vol%)의 조건에서 에멀젼의 교반시간만을 40분 (시료 B-3-1)과 60분 (B-3-2)으로 달리하여 제조하였다. 교반시간이 40분에서 60분으로 증가함에 따라서 생성된 실리카의 입자크기는 50~200 nm에서 30~70 nm로 감소하였다. 20분간 교반으로 생성된 입자는 0.1~1 μm 범위의 입자크 기분포를 나타낸 반면에 교반시간이 40분, 60분으로 증가하면서 <0.1 μm 크기를 갖는 미세입자가 생성되었다. 생성입자의 평균입경은 교반시간의 증가와 더불어 250 nm (20분)에서 50nm (60분)으로 현저히 감소하였다. 이에 관한 결과인 실리카의 SEM사진과 입자크기분포를 [도 3]과 [도 4]에 각각 나타내었다.Hereinafter, looking at the operation of the present invention as described above 40 minutes of the stirring time of the emulsion under the conditions of the invention condition B-3 (emulsifier amount: 3 vol%) showing the most optimal conditions according to the present invention (sample B-3- Prepared in 1) and 60 minutes (B-3-2). As the stirring time increased from 40 minutes to 60 minutes, the particle size of the produced silica decreased from 50-200 nm to 30-70 nm. The particles produced by agitation for 20 minutes showed a particle sized atmosphere in the range of 0.1-1 μm, while the microparticles having a size of <0.1 μm were produced as the stirring time increased to 40 minutes and 60 minutes. The average particle diameter of the produced particles decreased markedly from 250 nm (20 minutes) to 50 nm (60 minutes) with increasing stirring time. The SEM photograph and particle size distribution of the silica, which is a result of this, are shown in FIGS. 3 and 4, respectively.

따라서 최적의 합성조건이라 생각되는 시료 B-3-2 (Table 3)로부터 제조된 실리카 입자의 TEM사진을 [도 5]에 나타내었다. 30~70 nm 크기의 입자로 구성된 구형에 가까운 형상의 나노분말이 제조됨을 확인할 수 있었다.Therefore, TEM images of silica particles prepared from Sample B-3-2 (Table 3), which are considered to be optimal synthesis conditions, are shown in FIG. 5. It was confirmed that the nanopowder of the shape close to the sphere consisting of particles of 30 ~ 70 nm size is prepared.

그리고, 상기에서 본 발명의 특정한 실시 및 적용 예가 설명 및 도시되었는지만 본 발명이 당업자에 의해 다양하게 변형되어 실시될 가능성이 있는 것은 자명한 일이다.And while the specific embodiments and applications of the present invention have been described and illustrated above, it is obvious that the present invention may be variously modified and implemented by those skilled in the art.

이와 같은 변형된 예들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안되며, 본 발명의 첨부된 특허청구범위 안에 속한다 해야 할 것이다.Such modified examples should not be individually understood from the technical spirit or the prospect of the present invention, but should fall within the appended claims of the present invention.

이와 같이 본 발명의 ultrasonic disruptor를 사용한 경우, 입자크기 30~70 nm의 단분산 나노 실리카분말을 얻을 수 있었다. 이와 같이 제조된 실리카는 응용분야가 다양하다. 특히, 보강제, 레올로지 성질 개선제, 담체, 페인트의 표면성질 개선제, 흡착제 등 다양한 응용분야에 적용되는 기능성 제품이다.Thus, when the ultrasonic disruptor of the present invention was used, monodisperse nano silica powder having a particle size of 30 to 70 nm could be obtained. The silica prepared as described above has various applications. In particular, it is a functional product applied to a variety of applications such as reinforcing agents, rheological properties improvers, carriers, surface properties improvers of paints, adsorbents.

Claims (1)

Utrasonic disruptor를 사용하여 sodium silicate와 증류수의 부피 비인 1:1로 고정하고, 연속상은 계면활성제의 량을 1~3 vol%로 변화시키면서 혼합시간을 20~60분으로 변화시키면서 제조된 에멀젼을 탄화수소 암모늄 수용액에 적하시켜 용액의 색깔이 흰색이 될 때 까지 약 30분간 반응시켜 Na+ 이온을 제거하고, 에멀젼 파괴를 위하여 질산으로 pH를 3으로 조절한 수 다시 중성화시키기 위하여 암모니아수로 pH 6으로 조절하였다. 상기와 같은 제조공정으로 제조된 실리카 분말을 여과한 후, 잔여물을 제거하기 위하여 물과 알코올로 수차례 세척하였으며, 세척된 분말을 100℃에서 1~24시간 건조하여 입자크기 30~70 nm의 단분산 실리카 나노입자 제조법.The emulsion prepared by changing the mixing time to 20 to 60 minutes while changing the amount of surfactant to 1 to 3 vol% with a volume ratio of sodium silicate and distilled water using a Utrasonic disruptor in a 1: 1 ratio. The solution was added dropwise to the solution and reacted for about 30 minutes until the color of the solution became white. The Na + ions were removed, and the pH was adjusted to 3 using nitric acid to adjust the pH to pH 6 to neutralize the water again. After filtering the silica powder prepared by the above manufacturing process, and washed several times with water and alcohol to remove the residue, the washed powder was dried for 1 to 24 hours at 100 ℃ to have a particle size of 30 ~ 70 nm Monodisperse Silica Nanoparticle Preparation.
KR1020040067323A 2004-08-26 2004-08-26 Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method KR20060018936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040067323A KR20060018936A (en) 2004-08-26 2004-08-26 Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040067323A KR20060018936A (en) 2004-08-26 2004-08-26 Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method

Publications (1)

Publication Number Publication Date
KR20060018936A true KR20060018936A (en) 2006-03-03

Family

ID=37126401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040067323A KR20060018936A (en) 2004-08-26 2004-08-26 Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method

Country Status (1)

Country Link
KR (1) KR20060018936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136452A1 (en) * 2010-04-30 2011-11-03 Korea Institute Of Science And Technology A method for reducing defects in spherical oxide particle alignment
KR101132410B1 (en) * 2009-11-05 2012-04-03 정지우 Manufacturing method of nano silica using slag

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132410B1 (en) * 2009-11-05 2012-04-03 정지우 Manufacturing method of nano silica using slag
WO2011136452A1 (en) * 2010-04-30 2011-11-03 Korea Institute Of Science And Technology A method for reducing defects in spherical oxide particle alignment

Similar Documents

Publication Publication Date Title
Tabatabaei et al. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method
JP5477192B2 (en) Method for producing silica particles
KR101417004B1 (en) Production and use of polysilicate particulate materials
CN100443414C (en) Production of nanometer copper oxide with controllable microstructure
Luo et al. Preparation of silica nanoparticles using silicon tetrachloride for reinforcement of PU
JPS6374911A (en) Production of fine spherical silica
CN101559952A (en) Preparation method of nano-scale mesoporous silica spheres
KR950001660B1 (en) Method for production of inorganic oxide particles
CN101346304A (en) Methods for production of metal oxide nano particles with controlled properties, and nano particles and preparationsproduced thereby
CN114956101B (en) High-dispersion micron-size silicon dioxide microsphere and preparation method thereof
Dong et al. Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt
CN103896289A (en) Method for preparing silica sol with large grain size
CN104439276A (en) Method for fast preparing hollow porous silicon dioxide/silver nanoparticle composite and product
Asadi et al. Optimization of colloidal nanosilica production from expanded perlite using Taguchi design of experiments
Howard et al. Spray synthesis of monodisperse sub-micron spherical silica particles
CN114195158A (en) Preparation method of high-purity monodisperse nano spherical silicon dioxide powder
CN114032034A (en) CeO for chemical mechanical polishing2Method for producing abrasive particles and use thereof
CN111302347B (en) Preparation method of high-purity large-particle-size silica sol
CN104609431A (en) Synthetic method and particle size control synthetic method for SiO2 nano particles smaller than 50 nm
Jesionowski Preparation of spherical silica in emulsion systems using the co-precipitation technique
KR20060018936A (en) Manufacturing process of nano monodispersed silica powder by ultrasonic waves-emulsion method
SADEGH et al. Facile and economic method for preparation of nano-colloidal Silica with controlled size and stability
Tsai et al. Aluminum modified colloidal silica via sodium silicate
Nishikawa et al. Preparation of monodispersed spherical silica-alumina particles by hydrolysis of mixed alkoxides
CN1194044C (en) Preparation of silica white from silicon sol

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination