KR20060017862A - Glass fibres for reinforcing organic and/or inorganic materials, composites enclosing said fibres and used compounds - Google Patents
Glass fibres for reinforcing organic and/or inorganic materials, composites enclosing said fibres and used compounds Download PDFInfo
- Publication number
- KR20060017862A KR20060017862A KR1020057023679A KR20057023679A KR20060017862A KR 20060017862 A KR20060017862 A KR 20060017862A KR 1020057023679 A KR1020057023679 A KR 1020057023679A KR 20057023679 A KR20057023679 A KR 20057023679A KR 20060017862 A KR20060017862 A KR 20060017862A
- Authority
- KR
- South Korea
- Prior art keywords
- glass
- weight
- mgo
- cao
- less
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/22—Glass ; Devitrified glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Glass Compositions (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
본 발명은 유리 "강화" 사(yarn)(또는 "섬유"), 즉 유기 및/또는 무기 물질의 강화에 적합하고 직물사로 사용할 수 있는 사에 관한 것이며, 이들 사는, 부싱(bushing)의 바닥부에 위치하고 일반적으로 저항 가열에 의해 가열되는 오리피스로부터 유동하는 용융된 유리의 스트림을 기계적으로 연신시키는 단계로 이루어진 공정으로 수득할 수 있다.FIELD OF THE INVENTION The present invention relates to glass "reinforced" yarns (or "fibers"), i.e. yarns suitable for reinforcement of organic and / or inorganic materials and which can be used as woven yarns, these yarns being the bottom of a bushing. Obtained by a process consisting of mechanically drawing a stream of molten glass located in and flowing from an orifice which is generally heated by resistance heating.
보다 정확하게, 본 발명의 목적은 비탄성 계수(Specific Young's Modulus)가 높고 SiO2-Al2O3-CaO-MgO 유형의 특히 유리한 4급 조성물을 갖는 유리사를 수득하는 것이다.More precisely, it is an object of the present invention to obtain glass yarns having high specific Young's Modulus and having particularly advantageous quaternary compositions of the SiO 2 -Al 2 O 3 -CaO-MgO type.
유리 강화사 분야는 유리 공업의 매우 특별한 분야이다. 이들 사는 특정한 유리 조성물로부터 제조되며, 사용되는 유리는 위에서 언급한 공정을 사용하여 직경이 수 마이크론인 필라멘트 형태로 연신될 수 있어야 하며, 강화 역할을 충족시킬 수 있는 연속 사가 형성될 수 있어야 한다.The field of glass reinforcement yarn is a very special field of the glass industry. These yarns are made from specific glass compositions, and the glass used must be able to be drawn in the form of filaments of several microns in diameter using the process mentioned above, and a continuous yarn can be formed that can fulfill the reinforcing role.
특정한 용도, 특히 항공학 분야에 있어서, 본 발명의 목적은 동력학적 조건하에서의 조작에 적합하여 그 결과 높은 기계적 응력을 견딜 수 있는 거대 부품을 수득하는 것이다. 이들 부품은 일반적으로 유기 및/또는 무기 물질 및, 예를 들면, 일반적으로 50용적% 이상을 차지하는 유리사 형태의 보강재를 기본으로 하고 있다.In certain applications, in particular in the field of aeronautics, it is an object of the present invention to obtain large parts which are suitable for operation under kinetic conditions and as a result can withstand high mechanical stresses. These parts are generally based on organic and / or inorganic materials and, for example, glass yarn-shaped reinforcements which generally comprise at least 50% by volume.
이들 부품의 수율 및 기계적 특성의 향상은 보강재의 기계적 성능, 특히 일정하거나 보다 낮은 비탄성 계수(E/ρ)를 증가시키는 보강재 밀도 ρ의 향상에 의해 달성된다.The improvement of the yield and mechanical properties of these parts is achieved by the improvement of the reinforcement density p which increases the mechanical performance of the reinforcement, in particular the constant or lower inelastic coefficient (E / p).
유리 강화사의 경우, 보강재의 특성은 제조되는 유리의 조성물에 의해 주로 좌우된다. 유기 및/또는 무기 물질 강화용의 일반적인 유리사는 대부분 E-유리 및 R-유리로 제조된다.In the case of glass reinforcing yarns, the properties of the reinforcing materials depend mainly on the composition of the glass being produced. Common glass yarns for strengthening organic and / or inorganic materials are mostly made of E-glass and R-glass.
E-유리사는 보강재 형태 또는 직물 형태로 널리 사용된다. E-유리가 섬유화될 수 있는 조건이 상당히 유리하며, 유리의 점도가 1000poise에 근접할 때의 온도에 상응하는 작업 온도는 약 1200℃로 비교적 낮고 액상 온도는 작업 온도보다 약 120℃ 낮으며 이의 탈유리화 속도는 낮다.E-glass yarns are widely used in the form of reinforcement or textiles. The conditions under which E-glass can be fibrous are quite favorable, the working temperature corresponding to the temperature when the viscosity of the glass approaches 1000 poise is relatively low, about 1200 ° C., and the liquidus temperature is about 120 ° C. below the working temperature The vitrification rate is low.
전자 공학 및 항공학 분야에 적용하기 위한, ASTM D578-98 표준에 준거한 E-유리 조성물은 SiO2 52 내지 56중량%, Al2O3 12 내지 16중량%, CaO 16 내지 25중량%, B2O3 5 내지 10중량%, MgO 0 내지 5중량%, Na2O + K2O 0 내지 2중량%, TiO2 0 내지 0.8중량%, Fe2O3 0.05 내지 0.4중량% 및 F2 0 내지 1중량%를 포함한다.E-glass compositions in accordance with ASTM D578-98 standard for applications in the electronics and aeronautics fields include 52 to 56 weight percent SiO 2 , 12 to 16 weight percent Al 2 O 3 , 16 to 25 weight percent CaO, B 2 5 to 10 weight percent O 3 , 0 to 5 weight percent MgO, 0 to 2 weight percent Na 2 O + K 2 O, 0 to 0.8 weight percent TiO 2 , 0.05 to 0.4 weight percent Fe 2 O 3 and F 2 0 to Contains 1% by weight.
그러나, E-유리의 비탄성 계수는 약 33MPaㆍkg-1m3으로, 의도하는 용도에 적합하지 않다.However, the inelastic coefficient of E-glass is about 33 MPa · kg −1 m 3 , which is not suitable for the intended use.
붕소를 임의로 함유하지 않는 다른 E-유리 강화사가 ASTM D 578-98 표준에 기재되어 있다. 이들 사의 조성물은 SiO2 52 내지 62중량%, Al2O3 12 내지 16중량%, CaO 16 내지 25중량%, B2O3 0 내지 10중량%, MgO 0 내지 5중량%, Na2O + K2O 0 내지 2중량%, TiO2 0 내지 1.5중량%, Fe2O3 0.05 내지 0.8중량% 및 F2 0 내지 1중량%를 포함한다.Other E-glass reinforcements that do not optionally contain boron are described in the ASTM D 578-98 standard. The composition of these yarns is 52 to 62% by weight SiO 2 , 12 to 16% by weight Al 2 O 3 , 16 to 25% by weight CaO, 0 to 10% by weight B 2 O 3 , 0 to 5% by weight MgO, Na 2 O + K 2 O 0-2 weight percent, TiO 2 0-1.5 weight percent, Fe 2 O 3 0.05-0.8 weight percent and F 2 0-1 weight percent.
붕소를 함유하지 않는 E-유리의 섬유화 조건은 붕소를 함유한 E-유리의 섬유화 조건보다 덜 유리하지만, 붕소를 함유하지 않는 E-유리의 섬유화 조건은 경제적으로 허용된다. 비탄성 계수는 성능 수준(performance level)이 E-유리의 성능 수준과 동등하다.Although the fiberization conditions of the boron-containing E-glass are less favorable than the fiberization conditions of the boron-containing E-glass, the fiberization conditions of the boron-containing E-glass are economically acceptable. The inelastic coefficient has a performance level equivalent to that of E-glass.
또한, 인장 강도가 향상된, 붕소 및 불소를 함유하지 않는 E-유리가 미국 특허공보 제4,199,364호에 의해 알려져 있다. 당해 유리는 특히 산화리튬을 함유한다.In addition, boron and fluorine-free E-glass with improved tensile strength is known from US Pat. No. 4,199,364. The glass contains lithium oxide in particular.
R-유리는 기계적 특성이 높고 비탄성 계수가 약 35.9MPaㆍkg-1m3인 것으로 알려져 있다. 그러나, 용융 및 섬유화 조건이 언급된 E-형 유리보다 더욱 한정되어, 이의 최종 비용은 더욱 높다.R-glass is known to have high mechanical properties and an inelastic coefficient of about 35.9 MPa · kg −1 m 3 . However, melting and fibrosis conditions are more limited than the mentioned E-type glass, so that the final cost thereof is higher.
R-유리의 조성물은 프랑스 공개특허공보 제1,435,073호에 기재되어 있다. 당해 조성물은 SiO2 50 내지 65중량%, Al2O3 20 내지 30중량%, CaO 2 내지 10중량% 및 MgO 5 내지 20중량%를 포함하며, CaO + MgO는 15 내지 25중량%이고 SiO2/Al2O3는 2 내지 2.8이며 MgO/SiO2는 0.3 미만이다.Compositions of R-glass are described in French Patent Publication No. 1,435,073. The composition comprises 50 to 65% SiO 2 , 20 to 30% Al 2 O 3 , CaO 2 to 10% and MgO 5 to 20%, CaO + MgO is 15 to 25% by weight and SiO 2 / Al 2 O 3 is 2 to 2.8 and MgO / SiO 2 is less than 0.3.
유리사의 기계적 강도를 증가시키기 위한 다른 시도가 수행되었으나, 일반적으로 당해 유리사의 섬유화를 결정하기 위해, 가공은 더욱 어려워지거나 변형시켜야 하는 섬유화 플랜트의 존재가 필요했다Other attempts have been made to increase the mechanical strength of glass sand, but in general, to determine the fiberization of the glass sand, processing required the presence of a fiberizing plant that had to be made more difficult or deformable.
따라서, E-유리의 비용에 되도록 근접한 비용이 필요하고 성능 수준 측면에서 R-유리와 거의 동등한 기계적 특성을 나타내는 유리 강화사가 존재한다.Thus, there is a glass reinforcement that requires a cost as close as possible to the cost of E-glass and exhibits almost the same mechanical properties as R-glass in terms of performance level.
본 발명의 한 가지 목적은, 강화사를 경제적으로 수득하기 위해, 만족할 만한 용융 및 섬유화 특성을 가지면서, 특히 비탄성 계수 측면에서, 기계적 특성을 R-유리와 동일한 크기의 정도로 갖는 연속 유리 강화사를 제공하는 것이다.One object of the present invention is to provide a continuous glass reinforcement yarn which has satisfactory melting and fibrosis properties, in particular in terms of inelastic modulus, to the same size as R-glass, in order to economically obtain the reinforcement yarn. To provide.
본 발명의 또 다른 목적은 산화리튬을 함유하지 않은 비싸지 않은 유리사를 제공하는 것이다.Another object of the present invention is to provide an inexpensive glass yarn containing no lithium oxide.
이들 목적은 SiO2 50 내지 65중량%, Al2O3 12 내지 20중량%, CaO 13 내지 16중량%, MgO 6 내지 12중량%, B2O3 0 내지 3중량%, TiO2 0 내지 3중량%, Na2O + K2O 2중량% 미만, F2 0 내지 1중량% 및 Fe2O3 1중량% 미만을 필수적으로 포함하는 유리사에 의해 달성된다.These objectives are 50 to 65% by weight of SiO 2 , 12 to 20% by weight of Al 2 O 3 , 13 to 16% by weight of CaO, 6 to 12% by weight of MgO, 0 to 3% by weight of B 2 O 3 , TiO 2 to 3 A glass yarn consisting essentially of less than 2 % by weight, 2 % by weight of Na 2 O + K 2 O, 0-1% by weight of F 2 and 1% by weight of Fe 2 O 3 is achieved.
실리카(SiO2)는 본 발명에 따르는 유리로 이루어진 네트워크를 형성하며 당해 네트워크의 안정성에 필수적인 역할을 담당하는 산화물 중의 하나이다. 본 발명의 요지내에서, 실리카 함량이 50중량% 미만인 경우, 유리의 점도는 지나치게 낮아져서, 섬유화 동안 탈유리화될 위험성이 증가한다. 실리카 함량이 65%를 초과하 는 경우, 유리의 점도는 매우 높아지고 용해되기 어려워진다. 바람직하게는, 실리카 함량은 56 내지 61%이다.Silica (SiO 2 ) is one of the oxides which forms a network of glass according to the invention and plays an essential role in the stability of the network. Within the gist of the present invention, when the silica content is less than 50% by weight, the viscosity of the glass becomes too low, increasing the risk of devitrification during fiberization. If the silica content exceeds 65%, the viscosity of the glass becomes very high and difficult to dissolve. Preferably, the silica content is 56 to 61%.
또한, 알루미나(Al2O3)는 본 발명에 따르는 유리를 위한 네트워크 형성제를 구성하며, 실리카와 합하여, 모듈러스에 관하여 필수적인 역할을 담당한다. 본 발명에 따라 정의된 한계의 요지내에서, 알루미나의 함량이 12중량% 미만으로 감소하는 경우 액상 온도가 올라가는 반면, 알루미나의 함량이 약 20중량%를 초과할 정도로 과다하게 증가하는 경우 탈유리화될 위험성이 있으며 정도가 증가한다. 바람직하게는, 선택된 조성물의 알루미나의 함량은 14 내지 18중량%이다. 유리하게는, 실리카 + 알루미나의 함량은 70중량% 이상이며, 그 결과 비탄성 계수를 유용한 값으로 수득할 수 있다.In addition, alumina (Al 2 O 3 ) constitutes a network former for the glass according to the invention and, in combination with silica, plays an essential role in terms of modulus. Within the gist of the limits defined in accordance with the present invention, if the alumina content is reduced to less than 12% by weight, the liquidus temperature rises, while if the content of the alumina is excessively increased to more than about 20% by weight, it will be devitrified It is dangerous and increases in degree. Preferably, the content of alumina in the selected composition is 14-18 weight percent. Advantageously, the content of silica + alumina is at least 70% by weight, as a result of which the inelastic coefficient can be obtained at useful values.
석회(CaO)는 유리의 탈유리화를 제어하고 점도를 조절하는 데 사용된다. CaO 함량은 바람직하게는 13 내지 16중량%이다. Lime (CaO) is used to control the devitrification of the glass and to adjust its viscosity. CaO content is preferably 13 to 16% by weight.
CaO와 마찬가지로, 마그네시아(MgO) 또한 점도 감소제로서 작용하며, 비탄성 계수에 유리한 영향을 미친다. MgO 함량은 6 내지 12중량%, 바람직하게는 8 내지 10중량%이다. CaO/MgO 중량비는 바람직하게는 1.40 이상이고, 유리하게는 1.8 이하이다. Like CaO, magnesia (MgO) also acts as a viscosity reducing agent and has a beneficial effect on the inelastic modulus. The MgO content is 6 to 12% by weight, preferably 8 to 10% by weight. The CaO / MgO weight ratio is preferably 1.40 or more, advantageously 1.8 or less.
또한, 바람직하게는, Al2O3와 MgO 함량은 24중량% 이상이며, 이로써 매우 만족스러운 비탄성 계수와 우수한 섬유화 상태를 수득할 수 있다. Also preferably, the Al 2 O 3 and MgO content is at least 24% by weight, thereby obtaining a very satisfactory inelastic modulus and a good fiberization state.
산화붕소(B2O3)가 점도 감소제로서 작용한다. 본 발명에 따르는 유리 조성 물 중의 이의 함량은, 휘발 및 오염물질 방출 문제를 피하기 위해, 3중량%, 바람직하게는 2중량%로 제한된다. Boron oxide (B 2 O 3 ) acts as a viscosity reducing agent. Its content in the glass composition according to the invention is limited to 3% by weight, preferably 2% by weight, in order to avoid volatilization and pollutant release problems.
산화티탄이 점도 감소제로서 작용하여 비탄성 계수를 증가시키는 데 도움을 준다. 이는 불순물로서 존재하거나(이때 조성물 중의 함량은 0 내지 0.6중량%이다), 의도적으로 첨가될 수 있다. 후자의 경우에는 비표준 배치 물질을 사용하는 것이 필요한데, 이로 인해 조성물의 비용이 증가한다. 본 발명의 맥락에서는, TiO2를 의도적으로 첨가하는 것이 유리하며, 이때 함량은 3중량% 미만, 바람직하게는 2중량% 미만으로 한다. Titanium oxide acts as a viscosity reducer to help increase the inelastic coefficient. It may be present as an impurity (the content in the composition then 0 to 0.6% by weight) or may be added intentionally. In the latter case it is necessary to use non-standard batch materials, which increases the cost of the composition. In the context of the present invention, it is advantageous to intentionally add TiO 2 , where the content is less than 3% by weight, preferably less than 2% by weight.
유리화를 제한하고, 가능하게는 유리의 점도를 감소시키는 것을 돕기 위해 본 발명에 따르는 조성물에 Na2O 및 K2O를 도입할 수 있다. 그러나, 유리의 내가수분해성의 불리한 감소를 피하기 위해서는 Na2O 및 K2O 함량을 2중량% 이내로 해야 한다. 바람직하게는, 조성물은 이러한 두 가지 산화물을 0.8중량% 미만으로 함유한다. Na 2 O and K 2 O can be introduced into the compositions according to the invention in order to limit the vitrification and possibly to reduce the viscosity of the glass. However, the Na 2 O and K 2 O content should be within 2% by weight in order to avoid an unfavorable decrease in the hydrolysis resistance of the glass. Preferably, the composition contains less than 0.8% by weight of these two oxides.
유리의 용융 및 섬유화를 돕기 위해 불소(F2)가 조성물에 존재할 수 있다. 그러나, 이의 함량은 1%로 제한되는데, 그 이유는 이러한 제한치를 초과하는 경우에는 오염물질이 방출되고 노(furnace) 내화 벽돌이 부식될 위험이 있을 수 있기 때문이다. Fluorine (F 2 ) may be present in the composition to assist in melting and fiberizing the glass. However, its content is limited to 1% because, if this limit is exceeded, there may be a risk of contaminants being released and the furnace refractory bricks corrosive.
산화철(Fe2O3의 형태로 표현됨)은 일반적으로 본 발명에 따르는 조성물 중에 불순물로서 존재한다. Fe2O3 함량은, 사의 색상 및 섬유화 플랜트의 작업, 특히 노에서의 열 전달을 허용되지 않을 정도로 손상하지 않기 위해, 1중량% 미만, 바람직하게는 0.8중량% 미만이어야 한다. Iron oxide (expressed in the form of Fe 2 O 3 ) is generally present as an impurity in the composition according to the invention. The Fe 2 O 3 content should be less than 1% by weight, preferably less than 0.8% by weight, in order not to unacceptably impair the color of the yarn and the work of the fiberizing plant, especially heat transfer in the furnace.
본 발명에 따르는 유리사는 산화리튬을 함유하지 않는다. 이러한 산화물은, 높은 가격 이외에도, 유리의 내가수분해성에 부정적인 영향을 미친다. The glass sand according to the present invention does not contain lithium oxide. These oxides, in addition to high prices, negatively affect the hydrolysis resistance of the glass.
바람직하게는, 유리사는 SiO2 56 내지 61중량%, Al2O3 14 내지 18중량%, CaO 13 내지 16중량%, MgO 8 내지 10중량%, B2O3 0 내지 2중량%, TiO2 0 내지 2중량%, Na2O + K2O 0.8중량% 미만, F2 0 내지 1중량% 및 Fe2O3 0.8중량% 미만을 필수적으로 갖는다.Preferably, glass yarn 56 to 61% by weight of SiO 2 , 14 to 18% by weight of Al 2 O 3 , 13 to 16% by weight of CaO, 8 to 10% by weight of MgO, 0 to 2% by weight of B 2 O 3 , TiO 2 Essentially 0 to 2 % by weight, less than 0.8% Na 2 O + K 2 O, 0 to 1% F 2 and less than 0.8% Fe 2 O 3 by weight.
조성물의 Al2O3/(Al2O3 + CaO + MgO) 중량비는 0.4 내지 0.44로 가변적이며, 바람직하게는 0.42 미만인 것이 특히 유리하며, 이로써 액상 온도가 1250℃ 이하인 유리를 수득할 수 있다.The Al 2 O 3 / (Al 2 O 3 + CaO + MgO) weight ratio of the composition is variable from 0.4 to 0.44, with particular preference being preferably less than 0.42, whereby a glass having a liquidus temperature of 1250 ° C. or less can be obtained.
본 발명에 따르는 유리사는 다음의 공정을 사용하여 상기한 조성을 갖는 유리로부터 수득된다. 하나 이상의 부싱의 기저에 위치한 다수의 오리피스로부터 유출되는 다수의 용융 유리 스트림을 하나 이상의 연속 사 다발의 형태로 연신한 다음 필라멘트를 하나 이상의 사로 조합하여 이동 지지체에 수집한다. 이는, 사가 패키지 형태로 수집될 경우에는 회전 지지체일 수 있고, 또는 사가 이들을 연신시키는 역할도 하는 장치에 의해 촙 스트랜드(chopped strand)로 만들어지는 경우나 스트랜드가 매트를 형성하도록 이들을 연신시키는 역할을 하는 장치에 의해 분무되 는 경우에는 평행 이동하는 지지체일 수 있다. Glass yarns according to the invention are obtained from glass having the above composition using the following process. A plurality of molten glass streams exiting a plurality of orifices located at the base of one or more bushings are drawn in the form of one or more continuous yarn bundles and then the filaments are combined into one or more yarns and collected on a moving support. This may be a rotating support when the yarns are collected in package form, or when the yarns are made of chopped strands by a device that also serves to stretch them or serve to stretch them to form a mat. When sprayed by the device, it may be a parallel moving support.
따라서, 수득된 사는, 임의로 기타의 변환 작업후에, 연속사, 촙 스트랜드, 편조물, 테이프 또는 매트와 같은 다양한 형태를 취할 수 있으며, 이러한 사는 직경이 대략 5 내지 30㎛일 수 있는 필라멘트로 이루어진다. Thus, the yarns obtained may take various forms such as continuous yarns, chopped strands, braids, tapes or mats, optionally after other conversion operations, which yarns consist of filaments with a diameter of approximately 5-30 μm.
부싱에 공급되는 용융 유리는 순수한 배치 물질로부터 수득되거나, 보다 통상적으로는 천연 배치 물질(즉, 가능하게는 미량의 불순물을 함유하는 것)로부터 수득되며, 이들 배치 물질은 용융하기 전에 적당량으로 혼합한다. 용융 유리의 온도는 섬유화를 가능케 하고 탈유리화 문제를 피할 수 있도록 조절하는 것이 통상적이다. 필라멘트를 사 형태로 조합하기 전에, 일반적으로 필라멘트가 마모되는 것을 방지하고 이후에 보강시키고자 하는 물질로 필라멘트가 보다 용이하게 도입되도록 하기 위해 호제 조성물로 필라멘트를 피복시킨다.The molten glass supplied to the bushing is obtained from a pure batch material, or more commonly from a natural batch material (ie possibly containing trace amounts of impurities), which batch materials are mixed in an appropriate amount before melting. . The temperature of the molten glass is conventionally adjusted to enable fiberization and to avoid de-vitrification problems. Prior to combining the filaments into yarn form, the filaments are generally coated with a foil composition to prevent filament wear and to allow for easier introduction of the filaments into the material to be reinforced later.
본 발명에 따르는 사로부터 수득된 복합재는 하나 이상의 유기 물질 및/또는 하나 이상의 무기 물질 및 유리사를 포함하며, 사의 적어도 일부는 본 발명에 따르는 사이다. The composite obtained from the yarn according to the invention comprises at least one organic material and / or at least one inorganic material and glass yarn, at least part of which is according to the invention.
다음의 실시예는 본 발명을 제한하지 않으면서 이를 예시하기 위한 것이다. The following examples are intended to illustrate this without limiting the invention.
표 1에 제시된 조성(중량%로 나타냄)을 갖는 용융 유리를 연신시켜 직경이 17㎛인 유리 필라멘트로 이루어진 유리사는 수득하였다. The molten glass having the composition shown in Table 1 (expressed in weight percent) was stretched to obtain a glass yarn made of glass filament having a diameter of 17 μm.
유리의 점도가 103P(dPa.sec)로 되는 온도를 Tlogη=3으로 표시한다. The temperature at which the viscosity of the glass becomes 10 3 P (dPa.sec) is represented by T log eta = 3 .
유리의 액상 온도는 T액상으로 표시하며, 이는 유리 중에서 탈유리화될 수 있 는 가장 내연성 상의 성장률이 0으로 되는 온도에 상응하며, 따라서 이러한 탈유리화된 상의 융점에 상응한다. The liquidus temperature of the glass is denoted by the T liquidus , which corresponds to the temperature at which the growth rate of the most flame retardant phase that can be devitrified in the glass is zero, and thus corresponds to the melting point of this devitrified phase.
표에는 측정에 사용된 유리 표면의 밀도에 대한 탄성 계수(ASTM C 1259-01 표준을 사용하여 측정함)의 비에 상응하는 비탄성 계수 값이 제시되어 있다. The table shows the inelastic coefficient values corresponding to the ratio of the elastic modulus (measured using the ASTM C 1259-01 standard) to the density of the glass surface used in the measurement.
E-유리 및 R-유리에 대한 측정은 비교 실시예로서 제시되어 있다. Measurements for E-glass and R-glass are shown as comparative examples.
이는 본 발명에 따르는 실시예에서는 용융 및 섬유화 특성과 기계적 특성 간의 탁월한 절충을 나타냄을 보여준다. 이러한 섬유화 특성은 특히 액상 온도가 R-유리의 액상 온도보다 낮은, 적어도 1280℃ 이상인 경우에 특히 유리하다. 섬유화 범위는 특히 Tlogη=3과 T액상간의 차이가 약 10 내지 50℃인 경우에 현저하다.This shows that the examples according to the invention show an excellent compromise between the melting and fibrosis properties and the mechanical properties. This fiberizing property is particularly advantageous when the liquidus temperature is at least 1280 ° C. or higher, lower than the liquidus temperature of the R-glass. The fiberization range is particularly pronounced when the difference between T logη = 3 and the T liquid phase is about 10 to 50 ° C.
본 발명에 따르는 조성물의 비탄성 계수의 크기 차수는 R-유리와 동일하며 E-유리보다 사실상 높다.The magnitude order of the inelastic coefficient of the composition according to the invention is the same as that of R-glass and is substantially higher than that of E-glass.
따라서, 본 발명에 따르는 유리를 사용하면 R-유리에 대해서와 동일한 수준의 기계적 특성이 달성되는 반면, E-유리에 대해 수득한 수준에 접근하도록 섬유처리 온도를 사실상 낮추는 것이 특기할 만하다.Thus, using the glass according to the invention achieves the same level of mechanical properties as for R-glass, while it is worth noting that the fiber treatment temperature is substantially lowered to approach the level obtained for E-glass.
본 발명에 따르는 유리사는 유리하게는 특정한 용도, 특히 항공 용도, 헬리콥터 날개의 강화용 또는 광케이블용으로 대체될 수 있는 R-유리사보다 저렴하다.Glass yarns according to the invention are advantageously cheaper than R-glass yarns which can be replaced for certain applications, in particular for aviation applications, for reinforcing helicopter wings or for optical cables.
Claims (8)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR03/06981 | 2003-06-11 | ||
FR0306981A FR2856055B1 (en) | 2003-06-11 | 2003-06-11 | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, COMPOSITES COMPRISING SAME AND COMPOSITION USED THEREFOR |
PCT/FR2004/001431 WO2004110944A1 (en) | 2003-06-11 | 2004-06-09 | Glass fibres for reinforcing organic and/or inorganic materials, composites enclosing said fibres and used compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060017862A true KR20060017862A (en) | 2006-02-27 |
KR101114274B1 KR101114274B1 (en) | 2012-03-05 |
Family
ID=33484327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057023679A KR101114274B1 (en) | 2003-06-11 | 2004-06-09 | Glass fibres for reinforcing organic and/or inorganic materials, composites enclosing said fibres and used compounds |
Country Status (15)
Country | Link |
---|---|
US (2) | US20070087139A1 (en) |
EP (1) | EP1641717B1 (en) |
JP (1) | JP4945711B2 (en) |
KR (1) | KR101114274B1 (en) |
CN (1) | CN100564299C (en) |
AT (1) | ATE383321T1 (en) |
BR (1) | BRPI0411336B1 (en) |
CA (1) | CA2528923C (en) |
DE (1) | DE602004011226T2 (en) |
ES (1) | ES2299864T3 (en) |
FR (1) | FR2856055B1 (en) |
MX (1) | MXPA05013323A (en) |
NO (1) | NO339681B1 (en) |
RU (1) | RU2370463C2 (en) |
WO (1) | WO2004110944A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012087313A1 (en) * | 2010-12-22 | 2012-06-28 | Agy Holding Corporation | High strength glass composition and fibers |
KR20140074336A (en) * | 2011-09-09 | 2014-06-17 | 피피지 인더스트리즈 오하이오 인코포레이티드 | Glass compositions and fibers made therefrom |
US9783454B2 (en) | 2010-12-22 | 2017-10-10 | Agy Holding Corp. | High strength glass composition and fibers |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2867775B1 (en) | 2004-03-17 | 2006-05-26 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
US7823417B2 (en) | 2005-11-04 | 2010-11-02 | Ocv Intellectual Capital, Llc | Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby |
US9656903B2 (en) | 2005-11-04 | 2017-05-23 | Ocv Intellectual Capital, Llc | Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from |
US8338319B2 (en) | 2008-12-22 | 2012-12-25 | Ocv Intellectual Capital, Llc | Composition for high performance glass fibers and fibers formed therewith |
US8586491B2 (en) | 2005-11-04 | 2013-11-19 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
US7799713B2 (en) * | 2005-11-04 | 2010-09-21 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
US9187361B2 (en) | 2005-11-04 | 2015-11-17 | Ocv Intellectual Capital, Llc | Method of manufacturing S-glass fibers in a direct melt operation and products formed there from |
FR2918053B1 (en) * | 2007-06-27 | 2011-04-22 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS. |
FR2930543B1 (en) * | 2008-04-23 | 2010-11-19 | Saint Gobain Technical Fabrics | GLASS YARNS AND COMPOSITES WITH ORGANIC AND / OR INORGANIC MATRIX CONTAINING THESE YARNS |
US8252707B2 (en) | 2008-12-24 | 2012-08-28 | Ocv Intellectual Capital, Llc | Composition for high performance glass fibers and fibers formed therewith |
CN101597140B (en) * | 2009-07-02 | 2011-01-05 | 重庆国际复合材料有限公司 | High-strength high-modulus glass fiber |
US9446983B2 (en) | 2009-08-03 | 2016-09-20 | Ppg Industries Ohio, Inc. | Glass compositions and fibers made therefrom |
US9593038B2 (en) | 2009-08-03 | 2017-03-14 | Ppg Industries Ohio, Inc. | Glass compositions and fibers made therefrom |
US9556059B2 (en) | 2009-08-03 | 2017-01-31 | Hong Li | Glass compositions and fibers made therefrom |
PL2462069T3 (en) * | 2009-08-04 | 2020-12-28 | Ocv Intellectual Capital, Llc | Improved modulus, lithium free glass |
EP2354106A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
EP2354105A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
EP2354104A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
WO2011113302A1 (en) * | 2010-03-18 | 2011-09-22 | Yang Dening | Plate glass and manufacturing process thereof |
US20150299027A1 (en) * | 2010-03-18 | 2015-10-22 | Dening Yang | Energy-saving and environment protective method for preparing glass with high intensity |
CN102557459A (en) * | 2010-03-18 | 2012-07-11 | 杨德宁 | Glass fiber with high strength and energy-saving, emission-reducing, environment-friendly and low-viscosity characteristics, preparation method for glass fiber, and glass fiber composite material |
CN101838110B (en) | 2010-05-19 | 2014-02-26 | 巨石集团有限公司 | Composition for preparing high-performance glass fiber by tank furnace production |
US9650282B2 (en) | 2011-02-23 | 2017-05-16 | Dening Yang | Glass fiber with properties of high strength, energy saving, environment protecting and low viscosity, production method thereof and composite material containing the same |
JP5935471B2 (en) * | 2011-04-25 | 2016-06-15 | 日本電気硝子株式会社 | LCD lens |
US9499432B2 (en) * | 2012-04-18 | 2016-11-22 | 3B-Fibreglass Sprl | Glass fibre composition and composite material reinforced therewith |
CN103601371B (en) * | 2013-08-22 | 2016-05-18 | 江苏九鼎新材料股份有限公司 | A kind of production technology of high-modulus alkali-free glass fibre |
CN104743887B (en) | 2014-09-22 | 2016-03-23 | 巨石集团有限公司 | A kind of glass fiber compound and glass fibre thereof and matrix material |
CN104743888B (en) | 2014-09-22 | 2016-03-23 | 巨石集团有限公司 | A kind of glass fiber compound and glass fibre thereof and matrix material |
WO2017033246A1 (en) * | 2015-08-21 | 2017-03-02 | 日東紡績株式会社 | Glass composition for glass fibers |
JP6642579B2 (en) * | 2015-08-21 | 2020-02-05 | 日東紡績株式会社 | Glass fiber manufacturing method |
KR102038087B1 (en) | 2015-10-15 | 2019-10-29 | 주시 그룹 코., 엘티디. | High Performance Glass Fiber Compositions and Their Glass Fibers and Composites |
CN105731813B (en) | 2016-02-29 | 2018-07-31 | 巨石集团有限公司 | A kind of high-modulus glass fiber composition and its glass fibre and composite material |
JP6972548B2 (en) * | 2016-12-28 | 2021-11-24 | 日本電気硝子株式会社 | Compositions for glass fibers and glass fibers, glass fiber-containing composite materials containing glass fibers, and methods for producing glass fibers. |
MX2020006064A (en) | 2017-12-19 | 2020-08-24 | Ocv Intellectual Capital Llc | High performance fiberglass composition. |
CN108675643B (en) * | 2018-07-03 | 2022-01-11 | 泰山玻璃纤维有限公司 | High modulus glass fiber composition based on ferro-manganese-titanium |
FR3127491A1 (en) | 2021-09-28 | 2023-03-31 | Saint-Gobain Adfors | METHOD FOR MANUFACTURING E-GLASS FIBERS FROM BLAST-FURNACE Slag |
Family Cites Families (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3044088A (en) * | 1960-07-13 | 1962-07-17 | Clifford C Anderson | Rotating tire cleaner |
US3220915A (en) * | 1960-08-05 | 1965-11-30 | Owens Corning Fiberglass Corp | Structures comprising vitrified and devitrified mineral fibers |
BE639230A (en) * | 1962-05-11 | |||
US3402055A (en) * | 1962-05-25 | 1968-09-17 | Owens Corning Fiberglass Corp | Glass composition |
US3524738A (en) * | 1965-12-07 | 1970-08-18 | Owens Illinois Inc | Surface stressed mineral formed glass and method |
US3901720A (en) * | 1966-07-11 | 1975-08-26 | Nat Res Dev | Glass fibres and compositions containing glass fibres |
GB1209244A (en) * | 1967-04-05 | 1970-10-21 | Owens Corning Fiberglass Corp | Glass composition |
US3709705A (en) * | 1967-07-14 | 1973-01-09 | Owens Illinois Inc | Opalizable alkaline earth alumino silicate glass compositions |
US3498805A (en) * | 1968-06-05 | 1970-03-03 | Owens Corning Fiberglass Corp | Opalescent glass fibers |
US3804646A (en) * | 1969-06-11 | 1974-04-16 | Corning Glass Works | Very high elastic moduli glasses |
GB1290528A (en) * | 1969-07-28 | 1972-09-27 | ||
US3902881A (en) * | 1971-06-04 | 1975-09-02 | Owens Illinois Inc | Method of forming an opalescent article having a colored bulk and at least one surface strata of a different color than the bulk |
US3833388A (en) * | 1972-07-26 | 1974-09-03 | Ppg Industries Inc | Method of manufacturing sheet and float glass at high production rates |
US3876481A (en) * | 1972-10-18 | 1975-04-08 | Owens Corning Fiberglass Corp | Glass compositions, fibers and methods of making same |
US3904423A (en) * | 1973-04-16 | 1975-09-09 | Evans Prod Co | Alkali resistant glass |
US3892581A (en) * | 1973-09-10 | 1975-07-01 | Ppg Industries Inc | Glass fiber compositions |
US3945838A (en) * | 1974-08-12 | 1976-03-23 | Owens-Corning Fiberglas Corporation | Glass compositions and their fibers |
US4325724A (en) * | 1974-11-25 | 1982-04-20 | Owens-Corning Fiberglas Corporation | Method for making glass |
US4002482A (en) * | 1975-02-14 | 1977-01-11 | Jenaer Glaswerk Schott & Gen. | Glass compositions suitable for incorporation into concrete |
US4046948A (en) * | 1975-04-09 | 1977-09-06 | Ppg Industries, Inc. | Acid resistant glass fibers |
US4012131A (en) * | 1975-08-20 | 1977-03-15 | American Optical Corporation | High strength ophthalmic lens |
US4090802A (en) * | 1976-12-27 | 1978-05-23 | Otto Bilz Werkzeugfabrik | Radio detector for detecting dull and broken tools |
US4199364A (en) * | 1978-11-06 | 1980-04-22 | Ppg Industries, Inc. | Glass composition |
CH640664A5 (en) * | 1979-11-05 | 1984-01-13 | Sprecher & Schuh Ag | MECHANICAL STRENGTHENED GLASS FIBER REINFORCED PLASTIC INSULATING PART. |
US4386164A (en) * | 1981-12-14 | 1983-05-31 | Owens-Illinois, Inc. | Barium-free Type I, Class B laboratory soda-alumina-borosilicate glass |
SE445942B (en) * | 1982-04-06 | 1986-07-28 | Volvo Ab | Muffler AND METHOD AND DEVICE FOR MANUFACTURING THIS |
US4491951A (en) * | 1983-07-11 | 1985-01-01 | Owens-Corning Fiberglas Corporation | Electric glass melting furnace |
US4582748A (en) * | 1984-01-26 | 1986-04-15 | Owens-Corning Fiberglas Corporation | Glass compositions having low expansion and dielectric constants |
US4764487A (en) * | 1985-08-05 | 1988-08-16 | Glass Incorporated International | High iron glass composition |
US5332699A (en) * | 1986-02-20 | 1994-07-26 | Manville Corp | Inorganic fiber composition |
JPS62226839A (en) * | 1986-03-27 | 1987-10-05 | Nippon Sheet Glass Co Ltd | Glass fiber having low dielectric constant |
US4857485A (en) * | 1987-10-14 | 1989-08-15 | United Technologies Corporation | Oxidation resistant fiber reinforced composite article |
ATE78225T1 (en) * | 1987-12-31 | 1992-08-15 | Structural Laminates Co | COMPOSITE LAMINATE OF METAL LAYERS AND PLASTIC LAYERS REINFORCED WITH CONTINUOUS THREADS. |
US4892846A (en) * | 1988-11-17 | 1990-01-09 | National Research Development Corporation | Reinforceable sintered glass-ceramics |
US5212121A (en) * | 1990-06-13 | 1993-05-18 | Mitsui Mining Company, Limited | Raw batches for ceramic substrates, substrates produced from the raw batches, and production process of the substrates |
EP0510653B1 (en) * | 1991-04-24 | 1995-12-06 | Asahi Glass Company Ltd. | Highly heat resistant glass fiber and process for its production |
HU218828B (en) * | 1992-01-17 | 2000-12-28 | The Morgan Crucible Co. Plc. | Saline soluble inorganic fibres |
GB2264296B (en) * | 1992-02-07 | 1995-06-28 | Zortech Int | Microporous thermal insulation material |
IT1256359B (en) * | 1992-09-01 | 1995-12-01 | Enichem Spa | PROCEDURE FOR THE PREPARATION OF OPTICAL COMPONENTS AND DEVICES FINAL OR ALMOST FINAL DIMENSIONS, AND PRODUCTS SO OBTAINED |
CA2123591C (en) * | 1992-09-14 | 1999-11-09 | Donald Ellsworth Shamp | Method and apparatus for melting and refining glass in a furnace using oxygen firing |
EP0790962B1 (en) * | 1994-11-08 | 1998-11-25 | Rockwool International A/S | Man-made vitreous fibres |
US6169047B1 (en) * | 1994-11-30 | 2001-01-02 | Asahi Glass Company Ltd. | Alkali-free glass and flat panel display |
CN1186539A (en) * | 1995-04-06 | 1998-07-01 | 戴亚·R·塞纳纳亚科 | Power production plant and method of making such a plant |
EP0832046B1 (en) * | 1995-06-06 | 2000-04-05 | Owens Corning | Boron-free glass fibers |
US5719092A (en) * | 1996-05-31 | 1998-02-17 | Eastman Kodak Company | Fiber/polymer composite for use as a photographic support |
US6214429B1 (en) * | 1996-09-04 | 2001-04-10 | Hoya Corporation | Disc substrates for information recording discs and magnetic discs |
JP3989988B2 (en) * | 1996-09-04 | 2007-10-10 | Hoya株式会社 | Information recording medium substrate, magnetic disk, and manufacturing method thereof |
US6044667A (en) * | 1997-08-25 | 2000-04-04 | Guardian Fiberglass, Inc. | Glass melting apparatus and method |
FR2768144B1 (en) * | 1997-09-10 | 1999-10-01 | Vetrotex France Sa | GLASS YARNS SUITABLE FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
CA2275240A1 (en) * | 1997-10-16 | 1999-04-29 | Jeneric Pentron Incorporated | Dental composites comprising ground, densified, embrittled glass fiber filler |
US6069100A (en) * | 1997-10-27 | 2000-05-30 | Schott Glas | Glass for lamb bulbs capable of withstanding high temperatures |
US6237369B1 (en) * | 1997-12-17 | 2001-05-29 | Owens Corning Fiberglas Technology, Inc. | Roof-mounted oxygen-fuel burner for a glass melting furnace and process of using the oxygen-fuel burner |
GB9804743D0 (en) * | 1998-03-06 | 1998-04-29 | Horsell Graphic Ind Ltd | Printing |
US6376403B1 (en) * | 1998-04-17 | 2002-04-23 | Nippon Sheet Glass Co., Ltd. | Glass composition and process for producing the same |
US6399527B1 (en) * | 1998-09-22 | 2002-06-04 | Nippon Sheet Glass Co., Ltd. | Glass composition and substrate for information recording medium |
DE69915428T2 (en) * | 1998-10-27 | 2005-02-17 | Corning Inc. | Glass ceramics with low expansion |
JP4547093B2 (en) * | 1998-11-30 | 2010-09-22 | コーニング インコーポレイテッド | Glass for flat panel display |
US6358871B1 (en) * | 1999-03-23 | 2002-03-19 | Evanite Fiber Corporation | Low-boron glass fibers and glass compositions for making the same |
US6686304B1 (en) * | 1999-05-28 | 2004-02-03 | Ppg Industries Ohio, Inc. | Glass fiber composition |
US6962886B2 (en) * | 1999-05-28 | 2005-11-08 | Ppg Industries Ohio, Inc. | Glass Fiber forming compositions |
EP1065177A1 (en) * | 1999-07-02 | 2001-01-03 | Corning Incorporated | Glass for tungsten-halogen lamp envelope |
US6422041B1 (en) * | 1999-08-16 | 2002-07-23 | The Boc Group, Inc. | Method of boosting a glass melting furnace using a roof mounted oxygen-fuel burner |
JP4518291B2 (en) * | 1999-10-19 | 2010-08-04 | Hoya株式会社 | Glass composition and substrate for information recording medium, information recording medium and information recording apparatus using the same |
AU2263101A (en) * | 1999-12-15 | 2001-06-25 | Hollingsworth And Vose Company | Low boron containing microfiberglass filtration media |
DE10000837C1 (en) * | 2000-01-12 | 2001-05-31 | Schott Glas | Alkali-free alumino-borosilicate glass used as substrate glass in thin film transistor displays and thin layer solar cells contains oxides of silicon, boron, aluminum, magnesium, strontium, and barium |
JP3584966B2 (en) * | 2000-01-21 | 2004-11-04 | 日東紡績株式会社 | Heat resistant glass fiber and method for producing the same |
JP4126151B2 (en) * | 2000-08-28 | 2008-07-30 | ニチアス株式会社 | Inorganic fiber and method for producing the same |
US6540508B1 (en) * | 2000-09-18 | 2003-04-01 | The Boc Group, Inc. | Process of installing roof mounted oxygen-fuel burners in a glass melting furnace |
FR2825084B1 (en) * | 2001-05-23 | 2003-07-18 | Saint Gobain Vetrotex | GLASS YARNS CAPABLE OF REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, PROCESS FOR PRODUCING GLASS YARNS, COMPOSITION USED |
US6772299B2 (en) * | 2001-07-16 | 2004-08-03 | Sun Microsystems, Inc. | Method and apparatus for caching with variable size locking regions |
JP4041298B2 (en) * | 2001-10-05 | 2008-01-30 | 日本板硝子株式会社 | Glass processing method by laser light irradiation |
DE10161791A1 (en) * | 2001-12-07 | 2003-06-26 | Dbw Fiber Neuhaus Gmbh | Continuous glass fiber with improved thermal resistance |
CN100347114C (en) * | 2001-12-12 | 2007-11-07 | 罗克伍尔国际公司 | Fibres and their production |
AU2003214045A1 (en) * | 2002-01-24 | 2003-09-02 | Schott Glas | Antimicrobial, water-insoluble silicate glass powder and mixture of glass powders |
US20030166446A1 (en) * | 2002-03-04 | 2003-09-04 | Albert Lewis | High temperature glass fiber insulation |
US6998361B2 (en) * | 2002-03-04 | 2006-02-14 | Glass Incorporated | High temperature glass fiber insulation |
US7509819B2 (en) * | 2002-04-04 | 2009-03-31 | Ocv Intellectual Capital, Llc | Oxygen-fired front end for glass forming operation |
US7309671B2 (en) * | 2002-05-24 | 2007-12-18 | Nippon Sheet Glass Co., Ltd. | Glass composition, glass article, glass substrate for magnetic recording media, and method for producing the same |
AU2003273027A1 (en) * | 2002-12-25 | 2004-07-22 | Yasushi Fujimoto | Glass composition fluorescent in infrared wavelength region |
CN1764610A (en) * | 2003-03-31 | 2006-04-26 | 旭硝子株式会社 | Alkali free glass |
US7022634B2 (en) * | 2003-07-07 | 2006-04-04 | Johns Manville | Low boron E-glass composition |
US7449419B2 (en) * | 2003-09-09 | 2008-11-11 | Ppg Industries Ohio, Inc. | Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions |
US7727917B2 (en) * | 2003-10-24 | 2010-06-01 | Schott Ag | Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass |
FR2867775B1 (en) * | 2004-03-17 | 2006-05-26 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
US7189671B1 (en) * | 2005-10-27 | 2007-03-13 | Glass Incorporated | Glass compositions |
US8402652B2 (en) * | 2005-10-28 | 2013-03-26 | General Electric Company | Methods of making wind turbine rotor blades |
US9187361B2 (en) * | 2005-11-04 | 2015-11-17 | Ocv Intellectual Capital, Llc | Method of manufacturing S-glass fibers in a direct melt operation and products formed there from |
US8338319B2 (en) * | 2008-12-22 | 2012-12-25 | Ocv Intellectual Capital, Llc | Composition for high performance glass fibers and fibers formed therewith |
US7823417B2 (en) * | 2005-11-04 | 2010-11-02 | Ocv Intellectual Capital, Llc | Method of manufacturing high performance glass fibers in a refractory lined melter and fiber formed thereby |
US9656903B2 (en) * | 2005-11-04 | 2017-05-23 | Ocv Intellectual Capital, Llc | Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from |
US7799713B2 (en) * | 2005-11-04 | 2010-09-21 | Ocv Intellectual Capital, Llc | Composition for high performance glass, high performance glass fibers and articles therefrom |
US8113018B2 (en) * | 2006-12-14 | 2012-02-14 | Ocv Intellectual Capital, Llc | Apparatuses for controlling the temperature of glass forming materials in forehearths |
FR2910462B1 (en) * | 2006-12-22 | 2010-04-23 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
FR2916438B1 (en) * | 2007-05-23 | 2010-08-20 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
FR2930543B1 (en) * | 2008-04-23 | 2010-11-19 | Saint Gobain Technical Fabrics | GLASS YARNS AND COMPOSITES WITH ORGANIC AND / OR INORGANIC MATRIX CONTAINING THESE YARNS |
US8252707B2 (en) * | 2008-12-24 | 2012-08-28 | Ocv Intellectual Capital, Llc | Composition for high performance glass fibers and fibers formed therewith |
-
2003
- 2003-06-11 FR FR0306981A patent/FR2856055B1/en not_active Expired - Lifetime
-
2004
- 2004-06-09 DE DE602004011226T patent/DE602004011226T2/en not_active Expired - Lifetime
- 2004-06-09 EP EP04767297A patent/EP1641717B1/en not_active Expired - Lifetime
- 2004-06-09 CN CNB2004800159864A patent/CN100564299C/en not_active Expired - Lifetime
- 2004-06-09 KR KR1020057023679A patent/KR101114274B1/en active IP Right Grant
- 2004-06-09 ES ES04767297T patent/ES2299864T3/en not_active Expired - Lifetime
- 2004-06-09 CA CA2528923A patent/CA2528923C/en not_active Expired - Lifetime
- 2004-06-09 BR BRPI0411336-5A patent/BRPI0411336B1/en active IP Right Grant
- 2004-06-09 JP JP2006516274A patent/JP4945711B2/en not_active Expired - Lifetime
- 2004-06-09 US US10/560,068 patent/US20070087139A1/en not_active Abandoned
- 2004-06-09 AT AT04767297T patent/ATE383321T1/en not_active IP Right Cessation
- 2004-06-09 MX MXPA05013323A patent/MXPA05013323A/en active IP Right Grant
- 2004-06-09 WO PCT/FR2004/001431 patent/WO2004110944A1/en active IP Right Grant
- 2004-06-09 RU RU2006100296/03A patent/RU2370463C2/en active
-
2005
- 2005-12-29 NO NO20056224A patent/NO339681B1/en unknown
-
2016
- 2016-11-17 US US15/353,859 patent/US20170066683A1/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012087313A1 (en) * | 2010-12-22 | 2012-06-28 | Agy Holding Corporation | High strength glass composition and fibers |
US9783454B2 (en) | 2010-12-22 | 2017-10-10 | Agy Holding Corp. | High strength glass composition and fibers |
KR20140074336A (en) * | 2011-09-09 | 2014-06-17 | 피피지 인더스트리즈 오하이오 인코포레이티드 | Glass compositions and fibers made therefrom |
Also Published As
Publication number | Publication date |
---|---|
FR2856055A1 (en) | 2004-12-17 |
BRPI0411336A (en) | 2006-07-25 |
EP1641717B1 (en) | 2008-01-09 |
CA2528923C (en) | 2013-01-29 |
JP2006527158A (en) | 2006-11-30 |
CN1802327A (en) | 2006-07-12 |
BRPI0411336B1 (en) | 2014-04-08 |
US20170066683A1 (en) | 2017-03-09 |
ES2299864T3 (en) | 2008-06-01 |
CA2528923A1 (en) | 2004-12-23 |
ATE383321T1 (en) | 2008-01-15 |
NO339681B1 (en) | 2017-01-23 |
NO20056224L (en) | 2005-12-29 |
RU2006100296A (en) | 2006-06-27 |
JP4945711B2 (en) | 2012-06-06 |
EP1641717A1 (en) | 2006-04-05 |
DE602004011226D1 (en) | 2008-02-21 |
WO2004110944A1 (en) | 2004-12-23 |
MXPA05013323A (en) | 2006-03-17 |
RU2370463C2 (en) | 2009-10-20 |
CN100564299C (en) | 2009-12-02 |
KR101114274B1 (en) | 2012-03-05 |
FR2856055B1 (en) | 2007-06-08 |
US20070087139A1 (en) | 2007-04-19 |
DE602004011226T2 (en) | 2009-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101114274B1 (en) | Glass fibres for reinforcing organic and/or inorganic materials, composites enclosing said fibres and used compounds | |
JP5006207B2 (en) | Glass strands that can reinforce organic and / or inorganic materials | |
AU747760B2 (en) | Glass fibres for reinforcing organic and/or inorganic materials | |
US8476175B2 (en) | Glass strands and composites having an organic and/or inorganic matrix containing said strands | |
US8173560B2 (en) | Glass yarns capable of reinforcing organic and/or inorganic materials | |
CA2824644C (en) | High strength glass composition and fibers | |
WO2014062715A1 (en) | High modulus glass fibers | |
KR102668384B1 (en) | High performance fiberglass compositions | |
KR20210096138A (en) | High-performance fiber glass composition with improved specific modulus | |
EP2630093A2 (en) | High refractive index glass composition | |
DK2630095T3 (en) | Glass composition for the production of high strength and high modulus fibers | |
EP2462069A1 (en) | Improved modulus, lithium free glass | |
KR20210096140A (en) | High Performance Fiber Glass Composition with Improved Modulus of Elasticity | |
US8367571B2 (en) | Glass strands with low alumina content capable of reinforcing organic and/or inorganic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150126 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160122 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170125 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180125 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190123 Year of fee payment: 8 |