KR20060013302A - Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products - Google Patents
Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products Download PDFInfo
- Publication number
- KR20060013302A KR20060013302A KR1020040062207A KR20040062207A KR20060013302A KR 20060013302 A KR20060013302 A KR 20060013302A KR 1020040062207 A KR1020040062207 A KR 1020040062207A KR 20040062207 A KR20040062207 A KR 20040062207A KR 20060013302 A KR20060013302 A KR 20060013302A
- Authority
- KR
- South Korea
- Prior art keywords
- porous concrete
- sound absorbing
- fiber
- absorbing panel
- cement
- Prior art date
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 36
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 239000000835 fiber Substances 0.000 title claims description 29
- 238000013329 compounding Methods 0.000 title claims description 3
- 238000010521 absorption reaction Methods 0.000 title abstract description 6
- 238000000034 method Methods 0.000 title abstract description 4
- 239000004568 cement Substances 0.000 claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 238000005452 bending Methods 0.000 claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 17
- 239000010959 steel Substances 0.000 claims description 17
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000011398 Portland cement Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000004570 mortar (masonry) Substances 0.000 claims description 7
- 229910001341 Crude steel Inorganic materials 0.000 claims description 5
- 229920000609 methyl cellulose Polymers 0.000 claims description 5
- 239000001923 methylcellulose Substances 0.000 claims description 5
- 235000010981 methylcellulose Nutrition 0.000 claims description 5
- 239000002562 thickening agent Substances 0.000 claims description 5
- 239000004576 sand Substances 0.000 claims description 4
- 239000010882 bottom ash Substances 0.000 claims description 3
- 239000003638 chemical reducing agent Substances 0.000 claims description 3
- 239000010881 fly ash Substances 0.000 claims description 3
- 239000000049 pigment Substances 0.000 claims description 3
- 239000002893 slag Substances 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000011800 void material Substances 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims 1
- 239000011150 reinforced concrete Substances 0.000 abstract description 9
- 238000005336 cracking Methods 0.000 abstract description 5
- 238000005482 strain hardening Methods 0.000 abstract description 4
- 230000000536 complexating effect Effects 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 description 10
- 238000009434 installation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/38—Fibrous materials; Whiskers
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/82—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
- E04B1/84—Sound-absorbing elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Acoustics & Sound (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 휨모멘트 및 인장력 작용하에 있어서 초기균열이 발생한 이후에도 응력의 저하없이 변형의 증가와 함께 응력이 다시 증가하는 변형경화거동(Strain hardening behavior)(제1도)과 이 과정에서 다수의 미세균열인 멀티플크랙(Multiple carck)특성(제2도)에 의해 변형능력이 크게 향상된 박판의 고인성 시멘트 복합체와 내부에 15∼30%의 다량의 연속공극을 함유하고 있어 높은 흡음능력을 가진 포러스콘크리트와의 복합화에 의한 흡음패널(제8도)의 제조방법 및 이를 활용한 제품에 관한 것이다.According to the present invention, a strain hardening behavior (FIG. 1) and a plurality of microcracks in which the stress increases again with the increase of the strain without deterioration of the stress even after the initial crack occurs under the bending moment and the tensile force are applied. The high toughness cement composite of the thin plate which has greatly improved the deformability due to the multiple carck characteristic (Figure 2), and the porous concrete with high sound absorption ability because it contains a large amount of continuous pores of 15-30%. The present invention relates to a method for manufacturing a sound absorbing panel (FIG. 8) by complexing and a product using the same.
본 발명의 흡음패널은 변형경화거동 및 멀티플크랙 특성과 높은 휨인장력을 가진 고인성 시멘트 복합체와 흡음능력을 가진 포러스콘크리트를 복합하여 제조됨으로서, 기존의 포러스콘크리트에 의한 흡음패널에 비해 운반 ·시공시의 박리 ·파손을 대폭적으로 저감시킬 수 있을 뿐만 아니라 구조적 안전성 및 내구성을 극대화시킬 수 있으며, 또한 포러스콘크리트와 철근콘크리트(RC)를 복합한 기존의 흡음패널에 비해 경량화를 도모할 수 있어 운반 ·시공이 용이하다.The sound absorbing panel of the present invention is manufactured by combining a high-strength cement composite material having deformation hardening behavior and multiple cracking properties with high flexural tensile strength and a porous concrete having sound absorbing ability, when transporting and constructing the conventional sound absorbing panel by using a porous concrete. Not only can greatly reduce peeling and damage, but also maximize structural safety and durability, and can be lighter than conventional sound-absorbing panels incorporating porous concrete and reinforced concrete (RC). This is easy.
흡음성능, 고인성 시멘트 복합체, 포러스콘크리트, 복합화, 변형경화거동, 멀티플크랙, 경량화, 흡음패널, 인공경량골재, EPSSound Absorption Performance, High Toughness Cement Composite, Porous Concrete, Composite, Strain Hardening Behavior, Multiple Cracks, Lightweight, Sound Absorbing Panel, Artificial Lightweight Aggregate, EPS
Description
제1도는 고인성 시멘트 복합체의 휨 및 인장하중하에서의 응력-변형곡선의 개념과 변형경화거동 및 멀티플크랙의 메커니즘Figure 1 shows the concept of stress-strain curves under flexural and tensile loads and the mechanisms of strain hardening and multiple cracks in high toughness cement composites.
제2도는 고인성 시멘트 복합체에 발생된 멀티플크랙의 일례2 is an example of multiple cracks generated in a high toughness cement composite.
제3도는 폴리비닐알콜(PVA)섬유의 일례3 is an example of polyvinyl alcohol (PVA) fibers
제4도는 스틸코드(SC)의 일례4 is an example of the steel cord (SC)
제5도는 고인성 시멘트 복합체의 제조 플로우 일례5 is an example of a manufacturing flow of high toughness cement composite
제6도는 휨하중 작용하에서 측정된 고인성 시멘트 복합체의 응력-변형 곡선의 일례6 is an example of stress-strain curves of high toughness cement composites measured under flexural loading.
제7도는 5.0-8.0mm 부순자갈을 사용한 포러스콘크리트 시험체의 단면 일례7 is a cross-sectional example of a porous concrete specimen using 5.0-8.0 mm crushed gravel
제8도는 2.5-8.0mm의 골재를 사용한 포러스콘크리트 흡음판의 일례8 is an example of a porous concrete sound absorbing plate using the aggregate of 2.5-8.0mm
제9도는 포러스콘크리트와 고인성 시멘트 복합체를 일체화 한 흡음판의 측면사진9 is a side view of the sound absorbing plate integrating the porous concrete and the high toughness cement composite
제10도는 포러스콘크리트와 고인성 시멘트 복합체를 일체화 한 흡음판의 파 단면 사진10 is a wave cross-sectional photograph of a sound absorbing plate incorporating porous concrete and high toughness cement composite
제11도는 철근콘크리트 벽면에 흡음패널을 설치한 경우의 단면 일례11 is an example of a cross section in the case where a sound absorbing panel is installed on the reinforced concrete wall
제12도는 철근콘크리트 벽면에 흡음패널을 설치한 경우의 입면 일례FIG. 12 is an example of elevation when a sound absorbing panel is installed on a reinforced concrete wall
제13도는 철골부재에 의해 지지된 흡음패널의 단면 일례13 is a cross-sectional example of a sound absorbing panel supported by a steel frame member
제14도는 철골부재에 의해 지지된 흡음패널의 입면 일례14 is an example of the elevation of the sound absorbing panel supported by the steel frame member
본 발명은 휨모멘트 및 인장력 작용하에 있어서 초기균열이 발생한 이후에도 응력의 저하없이 변형의 증가와 함께 응력이 다시 증가하는 변형경화거동(제1도)과 이 과정에서 다수의 미세균열인 멀티플크랙(제2도)이 발생하여 휨 및 인장응력하에서 변형능력이 대폭적으로 향상된 박판의 고인성 시멘트 복합체와 내부에 다량의 연속공극을 함유하고 있어 높은 흡음능력을 가진 포러스콘크리트(제7도)를 복합화한 흡음패널(제8도)에 관한 것이다.According to the present invention, the deformation hardening behavior (FIG. 1) in which the stress increases again with the increase of the deformation without the decrease of the stress even after the initial crack occurs under the bending moment and the tensile force, and the multiple cracks (the multiple cracks in the process) 2)) is a high-strength cement composite of thin plate which greatly improves the deformation capacity under bending and tensile stress, and a large amount of continuous voids are contained inside, so that the sound absorption composites the porous concrete (figure 7) with high sound absorption capacity. It is about a panel (FIG. 8).
최근 15∼30%의 다량의 연속공극을 내부에 인위적으로 형성시킨 포러스콘크리트를 흡음패널로 활용하는 기술이 개발되었으며(특허 제10-0438l39, 특허 제10-0334l4l), 이러한 포러스콘크리트 흡음패널의 흡음성능은 이미 다수의 연구보고에 의해 확인되었다. 그러나 기존의 포러스콘크리트를 활용한 흡음패널의 경우 포러스콘크리트 자체만으로 구성되어 있거나 포러스콘크리트에 단순히 강섬유 및 폴리프로필렌 단섬유를 혼합한 형태이며, 이러한 포러스콘크리트 흡음패널은 자체의 휨 및 인장강도가 낮아 운반 ·설치시 충격에 의해 파손될 우려가 있을 뿐만 아니라 설치후에도 구조적으로 불안전한 경우가 대부분이다.Recently, a technology has been developed that utilizes porous concrete, which has artificially formed a large amount of continuous voids of 15 to 30%, as a sound absorbing panel (Patent 10-0438l39, Patent 10-0334l4l). Performance has already been confirmed by a number of studies. However, the existing sound-absorbing panel utilizing the porous concrete is composed of the porous concrete itself, or simply mixed with steel fiber and polypropylene short fiber to the porous concrete, and the porous concrete sound-absorbing panel has low bending strength and tensile strength. · In addition to the possibility of damage due to impact during installation, in most cases it is structurally unstable after installation.
한편, 이러한 문제를 해결하기 위해 포러스콘크리트와 철근을 보강한 콘크리트 패널(RC조)을 일체화하여 복합한 흡음패널이 개발되었다. 그러나 이러한 흡음패널의 경우 강도 등의 구조적 안전성을 확보하기 위해 사용되는 철근콘크리트조 패널부의 두께가 비교적 두꺼워 흡음패널 자체의 무게가 대폭 증가되며, 이로 인해 흡음패널의 쌓기 높이가 제한되고 과다한 보강재가 요구되는 등의 문제점이 지적되고 있다.On the other hand, in order to solve this problem, a composite sound absorbing panel was developed by integrating the concrete panel (RC-like) reinforced with reinforced concrete and reinforcing bars. However, in the case of such a sound absorbing panel, the thickness of the reinforced concrete panel part used to secure structural safety such as strength is relatively thick, which greatly increases the weight of the sound absorbing panel itself, which limits the stacking height of the sound absorbing panel and requires excessive reinforcement. Problems such as being pointed out are pointed out.
기존의 포러스콘크리트 또는 포러스콘크리트와 철근콘크리트조를 복합한 흡음패널의 경우 전술한 바와 같이 낮은 강도로 인한 구조적인 불안전성, 운반 ·설치시 충격에 의한 파손, 보강재로 사용되는 두꺼운 철근콘크리트조 패널부의 중량으로 인한 운반 ·설치작업의 곤란함과 시공완료 후 구조적 불안감 등이 대표적인 문제점으로 지적되고 있다.In the case of a sound absorbing panel that is a composite of existing concrete or porous concrete and reinforced concrete, as described above, structural instability due to low strength, breakage caused by impact during transportation and installation, and weight of thick reinforced concrete-like panel used as reinforcement materials Difficulties in transport and installation work and structural instability after construction are pointed out as the major problems.
본 발명에서는 이러한 문제점을 개선하여 구조적으로 안전하고 중량을 경감시킬 수 있을 뿐만 아니라 내구성을 대폭적으로 향상시킨 포러스콘크리트 흡음패널을 제조하기 위해 내부에 다량의 연속공극을 함유한 포러스콘크리트와 높은 휨, 인장강도 및 인성능력을 가진 박판의 고인성 시멘트 복합체를 일체화하여 복합한 흡음패널의 제조기술을 개발한 것이다.In the present invention, to improve this problem structurally safe and light weight, as well as to increase the durability of the porous concrete sound-absorbing panel with a large amount of porous concrete and high bending, tensile containing the continuous voids therein It was developed the manufacturing technology of composite sound absorbing panel by integrating high toughness cement composite of thin plate with strength and toughness.
또한, 본 발명의 포러스콘크리트 흡음패널에 보강재로서 사용되는 고인성 시 멘트 복합체는 파괴인성 및 강성이 적절히 조절된 시멘트페이스트(또는 모르터) 매트릭스에 마이크로역학 및 안정상태균열이론을 이용한 적정량의 단섬유를 혼입함으로서 휨 및 인장력 작용하에 있어서 초기균열이 발생한 후에도 응력의 저하없이 변형의 증가와 함께 응력이 다시 증가하는 변형경화거동(제1도)을 나타내며, 이러한 과정에서 미세한 균열이 시험체 전체에 걸쳐 일정한 간격으로 다수 발생하는 멀티플크랙(제2도) 특성을 나타내어 변형능력이 기존의 콘크리트에 비하여 매우 크다.In addition, the high toughness cement composites used as reinforcing materials in the porous concrete sound absorbing panel of the present invention is a suitable amount of short fibers using micromechanics and steady state cracking theories in a cement paste (or mortar) matrix having adequate fracture toughness and rigidity. Incorporation shows deformation hardening behavior (FIG. 1) where stress increases again without increase of stress even after initial cracking under bending and tensile force. In this process, fine cracks are uniformly spaced throughout the specimen. As a result of the multiple cracks (figure 2) which occurs a lot, the deformation capacity is much higher than that of conventional concrete.
이러한 특성을 지닌 박판의 고인성 시멘트 복합체와 포러스콘크리트를 일체화되도록 제조함으로서 포러스콘크리트 자체만으로 구성된 흡음패널에 비하여 휨 및 인장강도, 운반 ·설치시 충격에 대한 저항성이 대폭적으로 향상되며, 포러스콘크리트와 철근콘크리트의 복합패널에 비하여 동등 이상의 구조적 안전성을 확보하면서 균열에 대한 저항성 향상 및 경량화가 가능하게 된다.By manufacturing the high toughness cement composite of the thin plate with these characteristics and the porous concrete, the resistance to bending, tensile strength and impact during transportation and installation is greatly improved, compared to the sound absorbing panel composed of the porous concrete itself. Compared to the composite panel of concrete, it is possible to improve the resistance to cracking and to reduce the weight while securing structural stability equal to or higher than that of concrete.
본 발명의 고인성 시멘트 복합체는 결합재의 경우 결합재 100wt.%에 대하여 0∼50wt.%의 플라이애시(Fly-ash) 또는 0∼70wt.%의 고로슬래그미분말(Blast furnace slag) 또는 0∼50wt.%의 평균직경 50∼100㎛인 바텀애시(Bottom ash)와 1종 보통포틀랜드시멘트 또는 조강포틀랜드시멘트로 구성되고, 더욱이 결합재 100wt.%에 대하여 30∼50wt.%의 물과 0∼2.5wt.%의 고성능감수제, 단위수량 100wt.%에 대하여 0.0∼1.0wt.%의 메틸셀룰로스계 중점제로 구성되며, 모르타르 100vol.%에 대하여 0∼40vol.%의 잔골재로 구성된 모르타르에 단섬유인 폴리비닐알콜(PVA ; Polyvinyl alcohol)섬유나 이에 강섬유(SF ; Steel fiber) 또는 스틸코 드(SC ; Steel cord)를 혼합한 혼합섬유가 모르타르 100vol.%에 대하여 1.5∼2.5vol.% 첨가되는 것을 특징으로 한다.The high toughness cement composite of the present invention is a fly ash of 0 to 50 wt.% Or a blast furnace slag of 0 to 70 wt.% Or 0 to 50 wt. Bottom ash having an average diameter of 50% to 100µm and one ordinary portland cement or a crude steel portland cement, further comprising 30 to 50 wt.% Water and 0 to 2.5 wt.% With respect to 100 wt.% Of the binder. Polyvinyl alcohol which is a short fiber in mortar composed of 0.0 to 1.0 wt.% Methylcellulose based middle agent with respect to 100 wt.% Of the unit quantity and 0 to 40 vol.% Of fine aggregates with respect to 100 vol.% Of mortar. Polyvinyl alcohol (PVA) fibers or mixed fibers in which steel fibers (SF) or steel cords (SC) are mixed are added at 1.5 to 2.5 vol.% Based on 100 vol.% Of mortar.
이러한 특징을 가진 고인성 시멘트 복합체의 사용재료특성, 배합 및 제조특성을 상세히 서술하면 다음과 같다.Detailed description of the material properties, compounding and manufacturing characteristics of the highly tough cement composite having these characteristics is as follows.
즉, 고인성 시멘트 복합체에 사용되는 결합재 중 시멘트로는 KS규격의 보통 포틀랜드시멘트, 조강포틀랜드시멘트 및 초조강포틀랜드시멘트가 사용되고, 매트릭스의 점성 및 경제성 향상과 친환경성을 부여하기 위해 플라이애시나 고로슬래그미분말 또는 바텀애시가 사용되며, 이들은 각각 결합재 100wt.%에 대하여 0∼50wt.%, 0∼70wt.%, 0∼50wt.%가 사용되고, 양호하게는 10∼25wt.%, 30∼50wt.%, 10∼20wt.%가 바람직하다.In other words, the cement used in high toughness cement composites is KS-standard ordinary portland cement, crude steel portland cement and crude steel portland cement, and fly ash or blast furnace slag to improve the viscosity, economic efficiency and eco-friendliness of the matrix. Fine powders or bottom ashes are used, these are 0 to 50 wt.%, 0 to 70 wt.%, And 0 to 50 wt.%, Preferably 10 to 25 wt.% And 30 to 50 wt.%, Based on 100 wt.% Of the binder. , 10 to 20 wt.% Is preferred.
또한, 물은 결합재 100wt.%에 대하여 30∼50wt.%가 사용되며, 양호하게는 폴리비닐알콜섬유만을 사용할 경우 40∼50wt.%, 폴리비닐알콜섬유와 강섬유 또는 스틸코드를 혼합 사용할 경우 35∼45wt.%가 바람직하다. 한편, 물/결합재비가 30∼45wt.%인 경우 매트릭스의 유동성을 확보하기 위해 결합재 100wt.%에 대하여 고성능감수제 2.5wt.% 이하, 양호하게는 0.5∼1.5wt.%가 첨가되며, 물/결합재비가 40∼50wt.%인 경우에는 매트릭스의 점성을 확보하기 위해 사용수량 100wt.%에 대하여 메틸셀룰로스계 증점제 0∼1.0wt.%, 양호하게는 0.25∼0.75wt.%가 첨가된다.In addition, water is used in an amount of 30 to 50 wt.% With respect to 100 wt.% Of the binder, preferably 40 to 50 wt.% When using only polyvinyl alcohol fibers, and 35 to when using a mixture of polyvinyl alcohol fibers and steel fibers or steel cords. 45 wt.% Is preferred. On the other hand, when the water / binder ratio is 30 to 45 wt.%, In order to secure the fluidity of the matrix, 2.5 wt.% Or less of a high performance water reducing agent is added to the binder 100 wt.%, Preferably 0.5 to 1.5 wt.%, And the water / binder is added. When the ratio is 40 to 50 wt.%, In order to secure the viscosity of the matrix, 0 to 1.0 wt.%, Preferably 0.25 to 0.75 wt.%, Of methyl cellulose thickener is added to 100 wt.% Of the water used.
잔골재는 7호 또는 8호의 규사나 2.5mm 이하의 천연잔골재(해사 또는 강모래)가 사용되며, 매트릭스(페이스트 또는 모르타르) 100vol.%에 대하여 0∼40vol. %, 양호하게는 15∼25vol.%가 사용된다. 또한, 잔골재로서 천연잔골재를 사용할 경우 2.5mm 이하의 것을 사용하며, 양호하게는 1.2mm 이하의 것을 사용하는 것이 바람직하다.As the fine aggregate, silica sand of No. 7 or No. 8 or natural fine aggregate (sea sand or steel sand) of 2.5 mm or less is used, and 0-40 vol. To 100 vol.% Of matrix (paste or mortar). %, Preferably 15-25 vol.% Is used. In addition, when using a natural fine aggregate as a fine aggregate, 2.5 mm or less is used, and preferably 1.2 mm or less is used.
섬유로서 폴리비닐알콜섬유(제3도)는 직경 39∼100㎛, 길이 8∼12mm, 강섬유는 직경 100∼700㎛, 길이 25∼35mm, 스틸코드(제4도)는 직경 100∼500㎛, 길이 20∼35mm인 것이 사용된다. 섬유의 혼입율은 매트릭스 100vol.%에 대하여 1.5∼2.5vol.%가 첨가되며, 양호하게는 폴리비닐알콜섬유만을 사용할 경우 1.75∼2.1vol.%, 폴리비닐알콜섬유와 강섬유 또는 스틸코드를 혼합 사용한 경우 1.75∼2.5vol.%가 바람직하다.As the fiber, polyvinyl alcohol fiber (FIG. 3) has a diameter of 39 to 100 µm, a length of 8 to 12 mm, a steel fiber having a diameter of 100 to 700 µm, a length of 25 to 35 mm, a steel cord (FIG. 4) a diameter of 100 to 500 µm, 20-35 mm in length is used. The mixing rate of the fiber is 1.5 to 2.5 vol.% Is added to 100 vol.% Of the matrix, preferably 1.75 to 2.1 vol.% When only the polyvinyl alcohol fiber is used, and the polyvinyl alcohol fiber and the steel fiber or steel cord are mixed. 1.75-2.5 vol.% Is preferable.
또한, 고인성 시멘트 복합체의 제조는 현재 콘크리트용 믹서로 사용되는 것이면 모두 사용할 수 있으며, 팬타입(Pan Type)믹서 또는 옴니(Omni)믹서의 사용이 바람직하다. 일반적인 제조순서는 제5도에 나타낸 바와 같이 매트릭스의 균질성 확보 및 섬유의 균등한 분산을 위해 시멘트, 혼화재 및 잔골재(30초 이내) →물 및 고성능감수제 또는 증점제(60초 이내) →마이크로 섬유(90초 이내) →매크로 섬유(30초 이내)의 순서로 비빔을 실시하며, 경우에 따라서는 마이크로 및 매크로 섬유를 일괄적으로 투입할 수도 있다.In addition, the production of a high toughness cement composite can be used as long as it is currently used as a mixer for concrete, it is preferable to use a pan type mixer (Omni) mixer. The general manufacturing procedure is as shown in FIG. 5, in order to ensure homogeneity of the matrix and even dispersion of the fibers, cement, admixture and fine aggregate (within 30 seconds) → water and high-performance sensitizer or thickener (within 60 seconds) → micro fiber (90 Within seconds) → Macrofibers (within 30 seconds) are bibeamed, and in some cases, micro and macro fibers may be added at once.
이상과 같이 강성 및 파괴인성이 적절히 조절된 매트릭스에 마이크로역학 및 안전상태균열이론에 근거한 섬유의 종류 및 혼입율을 선정하여 혼합함으로서 휨 및 인장력 작용하에 있어서 매트릭스에 초기균열이 발생한 이후에도 섬유의 가교작용(Bridging action)에 의하여 초기균열부의 개구를 방지할 뿐만 아니라 지 속적으로 추가적인 미세균열을 주변의 매트릭스에 전달시킴으로서 변형경화거동(제6도) 및 멀티플크랙이 발휘되며, 이때 발생된 미세균열은 균열폭이 대략 100㎛ 이하로 제어되어 외부열화인자에 대한 저항성을 크게 향상시킬 수 있다. 또한, 이러한 특성을 지닌 박판의 고인성 시멘트 복합체와 포러스콘크리트를 일체화되도록 제조함으로서 흡음패널의 구조성능을 대폭적으로 향상시킬 수 있으며, 보강재의 두께가 박판이므로 흡음패널의 경량화가 가능하다.As described above, by selecting and mixing the fiber type and the mixing ratio based on the micromechanics and the safe state cracking theory to the matrix with the stiffness and fracture toughness properly adjusted, the crosslinking action of the fiber even after the initial crack occurs in the matrix under the bending and tensile action ( The bridging action prevents the opening of the initial crack and continuously transmits additional microcracks to the surrounding matrix, thereby demonstrating strain hardening behavior (figure 6) and multiple cracks. It can be controlled to approximately 100㎛ or less can greatly improve the resistance to external deterioration factors. In addition, it is possible to significantly improve the structural performance of the sound absorbing panel by manufacturing the high toughness cement composite and the porous concrete of the thin plate having such a characteristic, and the thickness of the reinforcing material is thin, it is possible to reduce the weight of the sound absorbing panel.
한편, 흡음성능을 발휘하는 포러스콘크리트는 물/시멘트비가 20∼30wt.%이고, 골재 1㎥당 시멘트 280∼360kg/㎥, 물 56∼108kg/㎥, 고성능감수제 0∼3.0kg/㎥, 안료 0∼10kg/㎥, 메틸셀룰로스계 증점제 0∼2.0kg/㎥로 구성되며, 골재로서는 2.5∼5.0mm, 2.5∼8.0mm, 5.0∼8.0mm의 단입도 천연골재 및 인공경량골재 또는 폐스티로플을 용융하여 제조한 EPS를 사용하며, 이와 같이 구성된 재료에 의해 경화 후 15∼30vol.%의 연속공극을 함유하는 것(제7도 및 제8도)을 특징으로 한다. On the other hand, the porous concrete exhibiting sound absorption performance has a water / cement ratio of 20 to 30 wt.%, Cement 280 to 360 kg / m3, water 56 to 108 kg / m3, high performance
시멘트로서는 1종보통포틀랜드시멘트나 조강포틀랜드시멘트가 사용되며, 안료로서는 산화철을 주원료로 한 제품의 사용이 바람직하다. 또한, 골재로서는 일반적으로 2.5∼5.0mm, 2.5∼8.0mm, 5.0∼8.0mm인 단입도 부순자갈이 사용되며, 포러스콘크리트의 경량화를 도모하기 위해 2.5∼5.0mm, 2.5∼8.0mm, 5.0∼8.0mm인 인공경량골재를 사용하고, 더욱 경량화 하기 위해 폐스티로플의 재활용 제품인 EPS가 사용된다.As cement, one kind of ordinary portland cement or a crude steel portland cement is used. As the pigment, it is preferable to use a product mainly composed of iron oxide. In addition, as aggregate, single-grained crushed gravel, which is generally 2.5 to 5.0 mm, 2.5 to 8.0 mm, and 5.0 to 8.0 mm, is used. In order to reduce the weight of the porous concrete, 2.5 to 5.0 mm, 2.5 to 8.0 mm, 5.0 to 8.0 Artificial lightweight aggregates in mm are used and EPS, a recycled product of waste styrople, is used to further reduce the weight.
본 발명의 고인성 시멘트 복합체와 포러스콘크리트를 복합화 하여 흡음패널 을 제조(제9도 및 제10도)함으로서 기존의 포러스콘크리트 자체만으로 구성된 흡음패널에 비하여 운반 ·설치시 충격에 의한 파손을 방지할 수 있을 뿐만 아니라 자체의 휨 ·인장강도를 향상시켜 흡음패널의 구조적 안전성을 대폭적으로 향상시킬 수 있고, 흡음패널의 대형화가 가능하게 된다. 한편, 포러스콘크리트와 철근콘크리트를 복합한 흡음패널에 비하여 동등 이상의 구조성능을 발휘하면서 보강부분을 박판으로 함으로서 흡음패널의 경량화를 도모할 수 있으며, 이에 의해 운반 ·설치작업의 용이함과 노동력의 절감을 도모할 수 있다. 이상과 같은 기능성 및 구조성능을 가진 흡음패널은 고속도로, 차량통행이 많은 시내간선도로, 주택가, 터널, 지하차도, 옹벽, 공장의 벽면 등 다양한 개소에 활용이 가능하다.By manufacturing the sound absorbing panel by complexing the high toughness cement composite of the present invention and the porous concrete (FIGS. 9 and 10), it is possible to prevent damage due to impact during transportation and installation as compared to the sound absorbing panel composed of the existing porous concrete itself. In addition, the structural safety of the sound absorbing panel can be significantly improved by improving its bending and tensile strength, and the size of the sound absorbing panel can be increased. On the other hand, compared to the sound absorbing panel of the composite of reinforced concrete and reinforced concrete, the sound absorbing panel can be reduced in weight by making the reinforcing part thin while exhibiting structural performance equal to or higher than that. We can plan. The sound absorbing panel having the above functional and structural performance can be utilized in various places such as highways, city highways with lots of traffic, residential areas, tunnels, underground roads, retaining walls, and walls of factories.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040062207A KR20060013302A (en) | 2004-08-06 | 2004-08-06 | Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040062207A KR20060013302A (en) | 2004-08-06 | 2004-08-06 | Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060013302A true KR20060013302A (en) | 2006-02-09 |
Family
ID=37122738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040062207A KR20060013302A (en) | 2004-08-06 | 2004-08-06 | Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20060013302A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100829219B1 (en) * | 2006-10-11 | 2008-05-14 | 주식회사 금륜 | High compressive strength waterproof mortar composite using bottom ashes |
KR101134459B1 (en) * | 2009-12-10 | 2012-04-13 | 한국건설기술연구원 | Cement concrete making method using micro and macro fiber and the cement concrete, the paving method therewith |
EP2639030A1 (en) | 2012-03-14 | 2013-09-18 | Cementos Portland Valderribas, S.A. | Improved system for manufacturing, manipulating and laying up concrete |
KR20160114758A (en) * | 2015-03-24 | 2016-10-06 | 최광호 | High ductility engineered cementitious composite reinforced with pva fiber and amorphous steel fiber |
-
2004
- 2004-08-06 KR KR1020040062207A patent/KR20060013302A/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100829219B1 (en) * | 2006-10-11 | 2008-05-14 | 주식회사 금륜 | High compressive strength waterproof mortar composite using bottom ashes |
KR101134459B1 (en) * | 2009-12-10 | 2012-04-13 | 한국건설기술연구원 | Cement concrete making method using micro and macro fiber and the cement concrete, the paving method therewith |
EP2639030A1 (en) | 2012-03-14 | 2013-09-18 | Cementos Portland Valderribas, S.A. | Improved system for manufacturing, manipulating and laying up concrete |
KR20160114758A (en) * | 2015-03-24 | 2016-10-06 | 최광호 | High ductility engineered cementitious composite reinforced with pva fiber and amorphous steel fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Dynamic compressive behavior of a novel ultra-lightweight cement composite incorporated with rubber powder | |
Ahmad et al. | Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres | |
Yoo et al. | High-performance strain-hardening cementitious composites with tensile strain capacity exceeding 4%: A review | |
Ismail et al. | An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres | |
Choi et al. | Development of recycled strain-hardening cement-based composite (SHCC) for sustainable infrastructures | |
Rasheed et al. | Mechanical behavior of sustainable hybrid-synthetic fiber reinforced cellular light weight concrete for structural applications of masonry | |
Wang et al. | Ultra-lightweight engineered cementitious composite using waste recycled hollow glass microspheres | |
Heidarnezhad et al. | Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete | |
CN111268969A (en) | Hybrid fiber concrete prefabricated laminated slab and preparation method thereof | |
CN103964795A (en) | Reinforced cement based composite material with fiber woven mesh and preparation method of reinforced cement based composite material | |
AbdelAleem et al. | Structural Behavior of Rubberized Engineered Cementitious Composite Beam-Column Joints under Cyclic Loading. | |
Mohamed et al. | Exploring the performance of steel fiber reinforced lightweight concrete: A case study review | |
Mousavi et al. | Influence of mixture composition on the structural behaviour of reinforced concrete beam-column joints: A review | |
CN108409243A (en) | Constraint pipe perfusion pile and preparation method thereof for underground sulfate corrosion environment | |
Gholizadeh et al. | The study of mechanical properties of high strength concrete containing steel and polypropylene fibers | |
CN106278051A (en) | A kind of shock resistance composite board and preparation method thereof | |
KR20060013302A (en) | Manufactuering methods of sound absorption panel compounding ductile fiber reinforced cementitious composites and porous concrete, and its products | |
Qasim | Perlite powder and steel fiber effects on properties of light weight concrete | |
Amed et al. | Glass fibre reinforced precast concrete containing high content pozzolanic materials | |
Dinh et al. | Experimental investigation on flexural and direct shear behaviors of specimens made of lightweight carbon textile‐reinforced cementitious composites | |
CN102910872B (en) | High-ductility fiber reinforced concrete low-rise shear wall | |
CN113582627A (en) | Nano-alumina modified ultra-light cement-based composite material and preparation method and application thereof | |
Marke et al. | Comparative evaluation of the flexural strength of concrete and colcrete | |
CN112960951A (en) | Precast structure combined by concrete and fiber composite bars and concrete preparation method | |
Sammak et al. | An experimental study on the effect of thickness and connection type of precast ultra-high-performance fiber-reinforced geopolymer concrete plates on the load–deflection capacity of one-way concrete slabs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |