KR20060000413A - Synthesis of surface controlled nickel-diamond composite powders by electroless plating method - Google Patents

Synthesis of surface controlled nickel-diamond composite powders by electroless plating method Download PDF

Info

Publication number
KR20060000413A
KR20060000413A KR1020040049268A KR20040049268A KR20060000413A KR 20060000413 A KR20060000413 A KR 20060000413A KR 1020040049268 A KR1020040049268 A KR 1020040049268A KR 20040049268 A KR20040049268 A KR 20040049268A KR 20060000413 A KR20060000413 A KR 20060000413A
Authority
KR
South Korea
Prior art keywords
nickel
diamond
composite powder
plating method
diamond composite
Prior art date
Application number
KR1020040049268A
Other languages
Korean (ko)
Other versions
KR100602482B1 (en
Inventor
김동진
안종관
이재령
정헌생
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020040049268A priority Critical patent/KR100602482B1/en
Publication of KR20060000413A publication Critical patent/KR20060000413A/en
Application granted granted Critical
Publication of KR100602482B1 publication Critical patent/KR100602482B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Abstract

본 발명은 무전해도금법에 의한 니켈-다이아몬드 복합분말의 표면형상 제어 방법에 관한 것으로서, 그 목적은 다이아몬드 표면에 연속적인 침상의 형상과 균일하며 밀착성이 뛰어난 코팅층을 갖는 니켈-다이아몬드 복합분말 제조기술을 확립하기 위한 무전해 니켈도금법을 제공하는데 있다.The present invention relates to a method for controlling the surface shape of a nickel-diamond composite powder by an electroless plating method. The object of the present invention is to provide a nickel-diamond composite powder manufacturing technique having a continuous needle shape on the diamond surface and a coating layer having excellent uniformity and adhesion. To provide an electroless nickel plating method to establish.

본 발명의 구성은 합성다이아몬드 입자 표면에 니켈이 코팅된 복합분말을 제조하는 방법에 있어서, 전처리된 다이아몬드를 NiSO4 ·6H2O, Na acetate 및 Acetic acid가 용해된 황산니켈염 코팅용액이 장입된 항온반응조에 첨가한 후 pH를 염산으로 조절하여 교반시키며 가열하는 단계와, 설정한 반응온도에 도달하면 Sodium hypophosphate와 Citric acid를 함유한 환원용액을 주기적으로 변화시키면서 일정속도로 주입하면서 반응시키는 환원반응단계로 이루어진 것을 특징으로 한다.The composition of the present invention is a method for producing a nickel-coated composite powder on the surface of the synthetic diamond particles, the nickel sulfate salt coating solution containing NiSO 4 · 6H 2 O, Na acetate and Acetic acid is charged After adding to the incubator, adjusting the pH with hydrochloric acid, stirring and heating, and reducing the reaction by injecting at a constant rate while periodically reducing the reducing solution containing sodium hypophosphate and citric acid. Characterized in consisting of steps.

복합분말, 합성 다이아몬드, 전처리, 무전해 니켈도금법, 차아인산Composite powder, synthetic diamond, pretreatment, electroless nickel plating method, hypophosphorous acid

Description

무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법{Synthesis of surface controlled nickel-diamond composite powders by electroless plating method} Synthesis of surface controlled nickel-diamond composite powders by electroless plating method by electroless nickel plating method             

도 1은 본 발명의 실시예 1을 주사전자현미경으로 본 확대사진이고,1 is an enlarged photograph of Example 1 of the present invention seen with a scanning electron microscope,

도 2는 본 발명의 실시예 2를 주사전자현미경으로 본 확대사진이고,2 is an enlarged photograph of Example 2 of the present invention with a scanning electron microscope;

도 3은 본 발명의 실시예 3을 주사전자현미경으로 본 확대사진이고,Figure 3 is an enlarged photograph of Example 3 of the present invention with a scanning electron microscope,

도 4는 본 발명의 실시예 4를 주사전자현미경으로 본 확대사진이고,Figure 4 is an enlarged photograph of Example 4 of the present invention with a scanning electron microscope,

도 5는 코팅을 하지 않은 다이아몬드 분말 사진이다. 5 is a photograph of diamond powder without coating.

본 발명은 니켈-다이아몬드 복합분말 제조방법에 관한 것으로서, 더욱 상세하게는 무전해도금법을 이용하여 반회분식(semi-batch)법에 의해 환원제를 주기적으로 변화시키면서 일정속도로 공급하여 연속적인 침상의 형상을 갖는 니켈이 다이아몬드 입자 표면에 코팅된 복합분말을 제조하는 방법에 관한 것이다. The present invention relates to a nickel-diamond composite powder manufacturing method, and more particularly, to a continuous needle shape by supplying at a constant speed while periodically changing the reducing agent by a semi-batch method using an electroless plating method The present invention relates to a method for producing a composite powder having nickel having a coating on a diamond particle surface.

니켈-다이아몬드 복합분말은 레진본드와 혼합한 다음 절단용 힐에 부착하여 석재를 절단하거나 연마 시에 사용된다. 다이아몬드입자에 니켈층을 도포하는 이유는 연마가공시 발생된 열에 의해 휠의 기지조직으로부터 다이아몬드가 쉽게 탈착되는 것을 방지하고, 니켈표면층이 다이아몬드에 비해 비표면적이 커서 휠의 기지조직과 부착력이 증가하기 때문이다. Nickel-diamond composite powder is mixed with resin bond and attached to the cutting heel to be used for cutting or polishing stone. The reason why the nickel layer is applied to the diamond particles is to prevent the diamond from being easily detached from the base structure of the wheel by the heat generated during the polishing process, and the nickel surface layer has a larger specific surface area than the diamond to increase the base structure and adhesion of the wheel. Because.

이러한 복합분말 제조법에는 무전해 도금법, 수소환원법, 전해법 등이 있으나, 상기 전해법에 의해 니켈-다이아몬드 복합분말 제조시에는 분말이 응집 및 도금전극에 부착하여 분말의 회수율이 떨어지며 분말을 분산시키기 어렵고, 코팅층의 두께 제어가 까다롭다는 단점이 있고,Such composite powder production methods include electroless plating, hydrogen reduction, and electrolytic methods.However, when the nickel-diamond composite powder is prepared by the electrolytic method, the powder adheres to the agglomeration and plating electrodes, so that the recovery rate of the powder decreases and it is difficult to disperse the powder. The disadvantage is that the thickness control of the coating layer is difficult,

상기 수소(가압수소)환원법에 의한 니켈-다이아몬드 복합분말 제조시에는 100℃ 이상의 반응온도와 같은 고온고압이 요구되므로 오토클레이브(Autoclave)와 같은 특수한 장치가 필요하며 조업조건이 매우 까다롭고 다이아몬드와 코팅층의 밀착성이 떨어진다는 단점이 있다.In the production of nickel-diamond composite powder by the hydrogen (pressurized hydrogen) reduction method, a high temperature and high pressure such as a reaction temperature of 100 ° C. or higher is required. Therefore, a special device such as an autoclave is required, and operating conditions are very demanding and diamond and coating layers There is a disadvantage of poor adhesion.

또한 기존의 무전해 도금법은 도금층이 매우 평활하여 기지조직과의 밀착력이 떨어지며 도금층의 두께가 얇아 다이아몬드가 빠져나가지 않는 충분한 보호층을 형성하지 않으며 전체 반응효율이 낮아 환원제의 소모량이 매우 커서 비경제적이다.In addition, the conventional electroless plating method has a very smooth plating layer, which reduces adhesion to the base structure, and because the thickness of the plating layer is thin, it does not form a sufficient protective layer to prevent diamond from falling out. .

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 다이아몬드 표면에 연속적인 침상의 형상과 균일하며 밀착성이 뛰어난 코팅층을 갖는 니켈-다이아몬드 복합분말 제조기술을 확립하기 위한 무전해 니켈도금법을 제공하는데 있다. An object of the present invention for solving the above problems is to provide an electroless nickel plating method for establishing a nickel-diamond composite powder manufacturing technology having a continuous needle shape on the diamond surface and a coating layer having a uniform and excellent adhesion.

또한 본 발명의 목적은 다이아몬드 분말 표면에 도금층이 두께를 두텁게 하여 다이아몬드 분말이 연삭능을 가질 수 있도록 지지층의 역할을 하며 반회분식항온항습조를 이용하여 반응효율을 높여 반응제의 소모량을 줄여 생산비용을 절감할 수 있는 무전해 니켈도금법을 제공하는데 있다.
In addition, an object of the present invention is to serve as a support layer so that the diamond layer has a thick thickness on the surface of the diamond powder, so that the diamond powder can have a grinding ability, and the production cost is reduced by increasing the reaction efficiency by using a semi-batch constant temperature and humidity bath. To provide an electroless nickel plating method that can reduce the cost.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the configuration and the operation of the embodiment of the present invention to achieve the object as described above and to perform the task for eliminating the conventional drawbacks.

본 발명에서는 입자크기 140/170 mesh의 국내산 합성다이아몬드 입자를 코어물질로, 환원제로는 차아인산 용액을, 니켈 공급원으로는 황산니켈염을, 실험장치로는 환원제 주입속도를 조절할 수 있는 반회분식항온반응조(Semi-batch reaction bath)를 사용한 무전해 니켈도금법이다.In the present invention, a semi-batch constant temperature that can control domestic synthetic diamond particles having a particle size of 140/170 mesh as a core material, hypophosphorous acid solution as a reducing agent, nickel sulfate as a nickel source, and a reducing agent injection rate as an experimental apparatus. It is an electroless nickel plating method using a semi-batch reaction bath.

이러한 무전해 도금법에 의한 니켈 다이아몬드 복합분말 제조시 니켈코팅층은 치밀하고 코어입자와의 결합력이 우수한 장점이 있고 환원제의 성분을 조절하면 비교적 저온에서도 반응이 일어나므로 특별한 장치가 필요하지 않다는 장점이 있으 며, 반회분식을 시용할 경우에 표면층의 다양한 형상제어가 가능하다. When manufacturing nickel diamond composite powder by the electroless plating method, the nickel coating layer has the advantage of being dense and excellent bonding strength with the core particles, and it does not require a special device because the reaction occurs at a relatively low temperature by controlling the components of the reducing agent. In case of semi-batch application, various shape control of surface layer is possible.

구체적인 본 발명의 도금방법은 코아로 사용되는 합성다이아몬드 입자(140/170 mesh)의 표면을 예민화(SnCl2) 및 활성화(PdCl2) 처리하는 전처리 단계와, Specifically, the plating method of the present invention comprises a pretreatment step of subjecting the surface of synthetic diamond particles (140/170 mesh) used as cores to sensitization (SnCl 2 ) and activation (PdCl 2 );

상기 전처리된 다이아몬드를 NiSO4 ·6H2O, Na acetate 및 Acetic acid가 용해된 황산니켈염 코팅용액이 장입된 반회분식항온반응조에 첨가한 후 pH를 염산으로 조절하여 교반시키며 가열하는 단계와,Adding the pre-treated diamond to a semi-batch incubator containing NiSO 4 · 6H 2 O, Na acetate, and Acetic acid-containing nickel sulfate coating solution, and heating and stirring the pH with hydrochloric acid;

설정한 반응온도에 도달하면 Sodium hypophosphate와 Citric acid를 함유한 환원용액을 주기적으로 변화시키면서 일정속도로 주입하면서 반응시키는 환원반응단계를 거쳐 니켈이 합성다이아몬드 입자 표면에 코팅된 복합분말을 제조하는 방법이다.It is a method of manufacturing composite powder coated with nickel on the surface of synthetic diamond particles through a reduction reaction step in which the reducing solution containing sodium hypophosphate and citric acid is changed at a constant rate while reacting at a predetermined rate when the reaction temperature is reached. .

이하에서 기술되는 용액(ℓ또는 1000mℓ)은 증류수에 투입되어 혼합된 성분원소를 포함한 전체 혼합용액을 말한다.The solution (l or 1000 ml) described below refers to the total mixed solution including the component elements mixed in distilled water.

상기 다이아몬드의 전처리 단계에서 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한다.In the pretreatment step of the diamond, it is subjected to sensitization with a 1% (weight fraction 10 g / l) SnCl 2 solution.

상기 전처리 단계에서 예민화된 다이아몬드는 다시 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리한다.In the pretreatment step, the sensitized diamond is further activated with 0.1% (weight fraction 1 g / L) PdCl 2 solution.

상기 첨가되는 다이아몬드의 양은 1000㎖ 당 25g이다.The amount of diamond added is 25 g per 1000 ml.

상기 황산니켈염 코팅용액을 이루는 NiSO6H2O, Na acetate 및 Acetic acid의 혼합비율은 1000㎖ 기준으로 NiSO6H2O 6-25g(바람직하게는 12.5g), Na acetate 50g 그리고 Acetic acid 4㎖이다.The mixing ratio of NiSO 4 · 6H 2 O, Na acetate and Acetic acid constituting the nickel sulfate coating solution is 6-25 g (preferably 12.5 g) of NiSO 4 · 6H 2 O based on 1000 ml, 50 g of Na acetate, and Acetic. 4 ml of acid.

상기와 같이 수치를 한정한 이유는 NiSO6H2O의 경우, 6g 보다 적으면 무전해 도금이 잘 되지 않아 내마모성 및 본드 레진과의 접착력이 나빠지며, 25g 이상 첨가하면 니켈의 소모량이 크며 비표면적이 작은 코팅층을 형성하여 레진과의 접착력이 나빠지기 때문이다. The reason for limiting the numerical value as above is that in case of NiSO 4 · 6H 2 O, less than 6g, electroless plating is not good, and wear resistance and adhesion to bond resin worsen. This is because the adhesion to the resin is deteriorated by forming a coating layer having a small surface area.

상기 전처리된 다이아몬드를 파이렉스(pyrex) 반회분식항온반응조에 첨가한 후 200-800rpm의 속도로 바람직하게는 200rpm으로 교반하는데 200rpm 미만의 경우에는 코팅된 니켈-다이아몬드 복합분말이 응집되어 회수율이 떨어지며 800rpm 초과의 경우에는 다이아몬드 분말에 니켈 코팅이 되지 않아 본드 레진과의 접착력이 나빠진다. 이때 반응온도는 70℃까지 가열한다. The pre-treated diamond is added to a pyrex semi-batch incubator and then stirred at a speed of 200-800 rpm, preferably at 200 rpm. In the case of less than 200 rpm, the coated nickel-diamond composite powder is agglomerated and the recovery rate is lower than 800 rpm. In the case of the diamond powder is not coated with nickel, the adhesive strength with the bond resin worsens. At this time, the reaction temperature is heated to 70 ℃.

상기 무전해니켈 반응시 니켈 코팅염 용액을 염산을 이용하여 pH 4.5-5.5로 조절하며 바람직하게는 5.0으로 유지하는데 pH가 4.5 미만일 경우에는 도금이 되지 않으며 5.5 이상일 경우에는 도금층이 두터워지면서 분말의 응집이 발생하여 연삭재로서 사용하기 어려워진다. In the electroless nickel reaction, the nickel coating salt solution is adjusted to pH 4.5-5.5 using hydrochloric acid, and preferably maintained at 5.0. If the pH is less than 4.5, the plating is not performed. This occurs and becomes difficult to use as a grinding material.

상기 무전해니켈반응시 환원제 용액을 이루는 조성은 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid는 50g(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)이며 이를 주기적으로 변화시키면서 연속식으로 분당 0.25-3 ㎖ 바람직하게는 초기 15분간은 3.0 ㎖ 이며 15분 후부터는 0.25 ㎖의 속도로 반회분식항온반응조 내에 주입하여 환원실험을 진행한다.The composition of the reducing agent solution in the electroless nickel reaction is NaH 2 PO 2 and the mixing ratio of citric acid is 500g based on 1000ml, Citric acid 50g (However, when the amount of the reference solution is large or small, the same fluctuations It is continuously changed at a rate of 0.25-3 ml per minute, preferably 3.0 ml for the first 15 minutes, and 15 minutes after the injection into a semi-batch constant temperature reactor at a rate of 0.25 ml.

상기 반회분식항온반응조 내에서 수소가스의 발생이 정지하면 반회분식항온반응조를 해체하여 반응산물을 채취하고 고·액 분리 후 용액중 잔류 니켈이온농도를 분석하였다.When generation of hydrogen gas was stopped in the semi-batch incubator, the semi-batch incubator was dismantled to collect the reaction product, and the residual nickel ion concentration in the solution was analyzed after solid and liquid separation.

고체입자(니켈계 복합분말)를 증류수로 깨끗이 세척하여 진공오븐에서 80℃의 온도로 24시간 건조시킨 후 무게측정, 화학분석, XRD 및 SEM 관찰을 하였다.Solid particles (nickel-based composite powder) were washed with distilled water, dried at a temperature of 80 ° C. in a vacuum oven for 24 hours, and then weighed, chemically analyzed, XRD and SEM were observed.

이하 본 발명에 따른 바람직한 실시예를 설명하겠다.Hereinafter will be described a preferred embodiment according to the present invention.

실시예 1Example 1

코어입자로 사용한 합성다이아몬드 분말을 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한 후 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리한다.Synthetic diamond powder used as core particles is subjected to sensitization with 1% (weight fraction 10 g / L) SnCl 2 solution and then activated with 0.1% (weight fraction 1 g / L) PdCl 2 solution.

증류수 1000㎖에 NiSO4·6H2O 6g, Na acetate 50g 및 Acetic acid 4㎖가 용해된 황산니켈염 수용액 400㎖를 염산을 이용하여 pH 4.5로 조절하고 파이렉스(pyrex) 반회분식항온반응용기에 장입하고 상기 전처리된 합성다이아몬드 분말 10g을 첨가한다.400 ml of nickel sulfate aqueous solution containing 6 g of NiSO 4 · 6H 2 O, 50 g of Na acetate, and 4 ml of Acetic acid in 1000 ml of distilled water was adjusted to pH 4.5 with hydrochloric acid and charged into a pyrex semi-batch reactor. And 10 g of the pretreated synthetic diamond powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 70℃까지 가열한다.The reaction solution is heated to the reaction temperature of 70 ℃ while stirring at 200rpm.

반응온도에 도달하면 실험조건에 필요한 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid는 50g 인 환원용액을 용액주입장치를 이용하여 초기 15분간은 3.0 ㎖ 이며 15분 후부터는 0.25 ㎖의 속도로 반회분식항온반응조내에 주입하고 200rpm으로 교반하면서 무전해도금반응을 1단계는 15분, 2단계는 200분, 3단계는 200분간의 반응시간으로 진행하였으며 각각의 단계가 완료되면 황산니켈염용액을 상기 조건과 같이 다시 공급하여 실험을 행하였다. (총 3회 코팅)When the reaction temperature is reached, the mixing ratio of NaH 2 PO 2 and citric acid required for the experimental conditions is 500 g based on 1000 ml, and 50 g of citric acid is 3.0 ml for the first 15 minutes using a solution injection device. Thereafter, the mixture was injected into a semi-batch incubator at a rate of 0.25 ml and stirred at 200 rpm. The electroless plating reaction was carried out with a reaction time of 15 minutes in 1 step, 200 minutes in 2 steps, and 200 minutes in 3 steps. When the nickel sulfate solution was supplied again as described above, the experiment was performed. (3 coatings in total)

환원반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다. After the reduction reaction is completed, the reaction product is filtered to separate solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 80℃로 24시간 이상 건조하고, 건조된 니켈-다이아몬드 복합분말은 SEM을 이용하여 코팅상태를 확인하였다.The vacuum oven was dried at 80 ° C. for at least 24 hours, and the dried nickel-diamond composite powder was checked for coating state using SEM.

도 1은 실시예 1을 주사전자현미경으로 본 확대사진이다. 도 1을 도 5와 비교하면 표면에 니켈 코팅층이 형성된 것을 알 수 있다. 이는 XRD 분석으로 니켈도금층임을 확인하였다. 코팅층은 침상의 돌기가 약 20 ㎛의 크기로 자라있으며 다이아몬드 전체 표면에 균일하고 치밀하게 성장한 것을 확인할 수 있다. 1 is an enlarged photograph of Example 1 seen with a scanning electron microscope. Comparing FIG. 1 with FIG. 5, it can be seen that a nickel coating layer is formed on the surface. XRD analysis confirmed that it is a nickel plated layer. The coating layer can be seen that the needle-like protrusions grow to a size of about 20 ㎛ and grown uniformly and densely on the entire surface of the diamond.

실시예 2Example 2

코어입자로 사용한 합성다이아몬드 분말을 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한 후 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리한다. Synthetic diamond powder used as core particles is subjected to sensitization with 1% (weight fraction 10 g / L) SnCl 2 solution and then activated with 0.1% (weight fraction 1 g / L) PdCl 2 solution.

증류수 1000㎖에 NiSO4·6H2O 6g, Na acetate 50g 및 Acetic acid 4㎖가 용해된 황산니켈염 수용액 400㎖를 염산을 이용하여 pH 5.5로 조절하고 파이렉스(pyrex) 반회분식항온반응용기에 장입하고 상기 전처리된 합성다이아몬드 분말 10g을 첨가한다.400 ml of nickel sulfate aqueous solution in which 6 g of NiSO 4 · 6H 2 O, 50 g of Na acetate, and 4 ml of Acetic acid was dissolved in 1000 ml of distilled water was adjusted to pH 5.5 using hydrochloric acid and charged into a pyrex semi-batch reactor. And 10 g of the pretreated synthetic diamond powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 70℃까지 가열한다. The reaction solution is heated to the reaction temperature of 70 ℃ while stirring at 200rpm.

반응온도에 도달하면 200rpm으로 교반하면서 실험조건에 필요한 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid 는 50g 인 환원용액을 용액주입장치를 이용하여 초기 15분간은 3.0㎖ 이며 15분 후부터는 0.25㎖의 속도로 반회분식항온반응조내에 주입하고 200rpm으로 교반하면서 무전해도금반응을 1단계는 15분, 2단계는 200분, 3단계는 200분간의 반응시간으로 진행하였으며 각각의 단계가 완료되면 황산니켈염용액을 상기 조건과 같이 다시 공급하여 실험을 행하였다. (총 3회 코팅)When the reaction temperature was reached, the mixture was stirred at 200 rpm and the mixing ratio of NaH 2 PO 2 and citric acid required for the experimental conditions was 500 g based on 1000 ml, and 50 g of citric acid was 3.0 g. After 15 minutes, it was injected into a semi-batch incubator at a rate of 0.25 ml and stirred at 200 rpm. The electroless plating reaction was carried out with a reaction time of 15 minutes for 1 step, 200 minutes for 2 steps, and 200 minutes for 3 steps, respectively. When the step of was completed, the nickel sulfate solution was again supplied as described above to perform the experiment. (3 coatings in total)

환원반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다. After the reduction reaction is completed, the reaction product is filtered to separate solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 80℃로 24시간 이상 건조하고, 건조된 니켈-다이아몬드 복합분말은 SEM을 이용하여 코팅상태를 확인하였다.The vacuum oven was dried at 80 ° C. for at least 24 hours, and the dried nickel-diamond composite powder was checked for coating state using SEM.

도 2는 실시예 2를 주사전자현미경으로 본 확대사진이다. 도 2를 도 5와 비교하면 표면에 니켈 코팅층이 형성된 것을 알 수 있다. 이는 XRD 분석으로 니켈도금층임을 확인하였다. 코팅층의 형상은 침상의 돌기가 거의 없으며, 돌기의 크기가 도 1에 비하여 매우 작은 것을 알 수 있다. 또한 니켈층 표면에 미세하고 하얀 돌기가 많이 보이고 있음을 알 수 있다. FIG. 2 is an enlarged photograph of Example 2 viewed with a scanning electron microscope. FIG. Comparing FIG. 2 with FIG. 5, it can be seen that a nickel coating layer is formed on the surface. XRD analysis confirmed that it is a nickel plated layer. The shape of the coating layer has almost no needle-like protrusions, and it can be seen that the size of the protrusions is very small as compared with FIG. 1. In addition, it can be seen that a lot of fine white projections on the surface of the nickel layer.

실시예 3Example 3

코어입자로 사용한 합성다이아몬드 분말을 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한 후 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리한다. Synthetic diamond powder used as core particles is subjected to sensitization with 1% (weight fraction 10 g / L) SnCl 2 solution and then activated with 0.1% (weight fraction 1 g / L) PdCl 2 solution.

증류수 1000㎖에 NiSO4·6H2O 6g, Na acetate 50g 및 Acetic acid 4㎖가 용해된 황산니켈염 수용액 400㎖를 염산을 이용하여 pH 5.2로 조절하고 파이렉스(pyrex) 반회분식항온반응용기에 장입하고 상기 전처리된 합성다이아몬드 분말 10g을 첨가한다.400 ml of nickel sulfate aqueous solution in which 6 g of NiSO 4 · 6H 2 O, 50 g of Na acetate, and 4 ml of Acetic acid was dissolved in 1000 ml of distilled water was adjusted to pH 5.2 with hydrochloric acid, and charged into a pyrex semi-batch reactor. And 10 g of the pretreated synthetic diamond powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 70℃까지 가열한다. The reaction solution is heated to the reaction temperature of 70 ℃ while stirring at 200rpm.

반응온도에 도달하면 200rpm으로 교반하면서 실험조건에 필요한 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid 는 50g 인 환원용액을 용액주입장치를 이용하여 주입속도를 1단계는 분당 3 ㎖로 30분간, 2단계는 분당 2 ㎖로 30분간, 3단계는 분당 1 ㎖로 40분간으로 진행하였으며 각각의 단계가 완료되면 황산니켈염용액을 상기 조건과 같이 다시 공급하여 실험을 행하였다.(총 3회 코팅) When the reaction temperature is reached, stirring at 200rpm, the mixing ratio of NaH 2 PO 2 and citric acid required for the experimental conditions is 500g based on 1000ml, and 50g of Citric acid is 50g. Was proceeded for 30 minutes at 3 ml per minute, 2 minutes at 2 ml per minute for 30 minutes, and 3 steps at 1 ml per minute for 40 minutes. When each step was completed, the nickel sulfate salt solution was again supplied as described above. (Total 3 coatings).

환원반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다. After the reduction reaction is completed, the reaction product is filtered to separate solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 80℃로 24시간 이상 건조하고, 건조된 니켈-다이아몬드 복합분말은 SEM을 이용하여 코팅상태를 확인하였다.The vacuum oven was dried at 80 ° C. for at least 24 hours, and the dried nickel-diamond composite powder was checked for coating state using SEM.

도 3은 실시예 3을 주사전자현미경으로 본 확대사진이다. 도 3을 도 5와 비교하면 표면에 니켈 코팅층이 형성된 것을 알 수 있다. 이는 XRD 분석으로 니켈도금층임을 확인하였다. 코팅층의 형상은 침상의 돌기가 거의 없으며, 돌기의 크기가 도 1에 비하여 매우 작고, 또한 니켈층 표면에 미세하고 하얀 돌기가 많이 보이고 있음을 알 수 있다. 전체적으로 니켈층의 표면 형상이 둥근형태를 보여주고 있다. Figure 3 is an enlarged photograph of Example 3 seen with a scanning electron microscope. Comparing FIG. 3 with FIG. 5, it can be seen that a nickel coating layer is formed on the surface. XRD analysis confirmed that it is a nickel plated layer. The shape of the coating layer has almost no needle-like protrusions, and the size of the protrusions is very small compared to FIG. 1, and it can be seen that many fine and white protrusions are seen on the surface of the nickel layer. In general, the surface of the nickel layer is round.

실시예 4Example 4

코어입자로 사용한 합성다이아몬드 분말을 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한 후 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리한다. Synthetic diamond powder used as core particles is subjected to sensitization with 1% (weight fraction 10 g / L) SnCl 2 solution and then activated with 0.1% (weight fraction 1 g / L) PdCl 2 solution.

증류수 1000㎖에 NiSO4·6H2O 6g, Na acetate 50g 및 Acetic acid 4㎖가 용해된 황산니켈염 수용액 400㎖를 염산을 이용하여 pH 5.2로 조절하고 파이렉스(pyrex) 반회분식항온반응용기에 장입하고 상기 전처리된 합성다이아몬드 분말 10g을 첨가한다.400 ml of nickel sulfate aqueous solution in which 6 g of NiSO 4 · 6H 2 O, 50 g of Na acetate, and 4 ml of Acetic acid was dissolved in 1000 ml of distilled water was adjusted to pH 5.2 with hydrochloric acid, and charged into a pyrex semi-batch reactor. And 10 g of the pretreated synthetic diamond powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 70℃까지 가열한다. The reaction solution is heated to the reaction temperature of 70 ℃ while stirring at 200rpm.

반응온도에 도달하면 200rpm으로 교반하면서 실험조건에 필요한 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid 는 50g 인 환원용액을 용액주입장치를 이용하여 주입속도를 각각의 단계는 분당 0.25㎖로 200분간 총 3단계로 진행하였으며 각각의 단계가 완료되면 황산니켈염용액을 상기 조건과 같이 다시 공급하여 실험을 행하였다.(총 3회 코팅)When the reaction temperature is reached, the mixing rate of NaH 2 PO 2 and citric acid is 500g based on 1000ml and 50g of Citric acid is 50g. The step was carried out in three steps for a total of 200 minutes at 0.25ml per minute, and when each step was completed, the experiment was performed by supplying the nickel sulfate solution again as described above (total 3 coatings).

환원반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다. After the reduction reaction is completed, the reaction product is filtered to separate solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 80℃로 24시간 이상 건조하고, 건조된 니켈-다이아몬드 복합분말은 SEM을 이용하여 코팅상태를 확인하였다.The vacuum oven was dried at 80 ° C. for at least 24 hours, and the dried nickel-diamond composite powder was checked for coating state using SEM.

도 3은 실시예 3을 주사전자현미경으로 본 확대사진이다. 도 3을 도 5와 비교하면 표면에 니켈 코팅층이 형성된 것을 알 수 있다. 이는 XRD 분석으로 니켈도금층임을 확인하였다. 코팅층의 형상은 도 3과 비교하여 침상의 돌기가 크게 자라난 것을 확인할 수 있으며 돌기의 크기가 도 3에 비하여 크다. 반면에 니켈층 표면에 미세하고 하얀 돌기가 많이 보이고 있음을 알 수 있다. Figure 3 is an enlarged photograph of Example 3 seen with a scanning electron microscope. Comparing FIG. 3 with FIG. 5, it can be seen that a nickel coating layer is formed on the surface. XRD analysis confirmed that it is a nickel plated layer. The shape of the coating layer can be confirmed that the needle-like protrusions are larger than that of FIG. 3 and the size of the protrusions is larger than that of FIG. 3. On the other hand, it can be seen that many fine and white projections are seen on the surface of the nickel layer.

표 1 실시예 1내지 4의 니켈 함량분석결과Table 1 Results of nickel content analysis of Examples 1 to 4

실시예Example 니켈함량(weight %)Nickel content (weight%) 비고Remarks 1One 55.0 %55.0% 22 57.7 %57.7% 33 60.2 %60.2% 44 54.2 %54.2%

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기와 같은 본 발명의 무전해도금법은 반회분식 공정에 의해 조작이 간단하여 도금액의 산도 조절 및 환원제의 공급속도 변화에 따른 다양한 형상을 가진 니켈 다이아몬드 분말의 제조가 가능하므로 공업적인 이용이 용이한 방법을 제공함으로써 종래 80℃ 이상의 반응온도가 높은 조건에서는 환원속도는 빠르지만 환원된 니켈이 코어입자 표면에 코팅되지 않고 반회분식항온반응조 표면이나 니켈 시트(sheet)로 석출되며, 복합분체간의 응집현상이 발생하여 단분산이 되지 않는 단점을 극복함으로써 복합분말 제조시 제조공정을 단순화하고 에너지를 절약할 수 있는 새롭고 매우 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.









The electroless plating method of the present invention as described above is simple to operate by a semi-batch process, so that it is possible to manufacture nickel diamond powder having various shapes according to the acidity control of the plating liquid and the supply rate of the reducing agent. In the conditions where the reaction temperature is higher than 80 ° C., the reduction rate is high, but the reduced nickel is not coated on the surface of the core particles, but precipitates on the surface of the semi-batch reactor or on the sheet of nickel, and the aggregation phenomenon between the composite powders is improved. It is a new and very useful invention that can simplify the manufacturing process and save energy when manufacturing a composite powder by overcoming the shortcomings that are not caused by monodispersion.









Claims (10)

합성다이아몬드 입자 표면에 니켈이 코팅된 복합분말을 제조하는 방법에 있어서, In the method for producing a composite powder coated with nickel on the surface of synthetic diamond particles, 전처리된 다이아몬드를 NiSO4 ·6H2O, Na acetate 및 Acetic acid가 용해된 황산니켈염 코팅용액이 장입된 항온반응조에 첨가한 후 pH를 염산으로 조절하여 교반시키며 가열하는 단계와,Adding the pre-treated diamond to a constant temperature reactor containing nickel sulfate coating solution containing NiSO 4 · 6H 2 O, Na acetate and Acetic acid, adjusting the pH with hydrochloric acid, stirring and heating, 설정한 반응온도에 도달하면 Sodium hypophosphate와 Citric acid를 함유한 환원용액을 주기적으로 변화시키면서 일정속도로 주입하면서 반응시키는 환원반응단계로 이루어진 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.When the reaction temperature is reached, the nickel-diamond composite powder of the electroless nickel plating method is characterized in that it consists of a reduction reaction step of reacting the reducing solution containing sodium hypophosphate and citric acid at a constant speed while reacting it. Shape control manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 항온반응조는 환원제 주입속도를 조절할 수 있는 반회분식항온반응조(Semi-batch reaction bath)를 사용하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.The constant temperature reaction tank is a semi-batch reaction bath (Semi-batch reaction bath) that can control the injection rate of the reducing agent, characterized in that the shape control manufacturing method of nickel-diamond composite powder by the electroless nickel plating method. 제 1항에 있어서,The method of claim 1, 상기 다이아몬드의 전처리 단계는 합성다이아몬드 입자(140/170 mesh)의 표면을 1%(무게분율 10g/ℓ) SnCl2 용액으로 예민화 처리한 후, 예민화된 다이아몬드는 다시 0.1%(무게분율 1g/ℓ) PdCl2 용액으로 활성화 처리하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.In the pretreatment step of the diamond, the surface of the synthetic diamond particles (140/170 mesh) is sensitized with a 1% (weight fraction 10 g / L) SnCl 2 solution, and then the sensitized diamond is again 0.1% (weight fraction 1 g / L). (1) A method for controlling the shape of a nickel-diamond composite powder by electroless nickel plating, characterized in that it is activated with a PdCl 2 solution. 제 1항에 있어서,The method of claim 1, 상기 황산니켈염 코팅용액을 이루는 NiSO6H2O, Na acetate 및 Acetic acid의 혼합비율은 1000㎖ 기준으로 NiSO6H2O 6-25g, Na acetate 50g 그리고 Acetic acid 4㎖인 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.The mixing ratio of NiSO 4 · 6H 2 O, Na acetate, and Acetic acid constituting the nickel sulfate coating solution is based on 1000 ml of 6-25 g of NiSO 4 · 6H 2 O, 50 g of Na acetate, and 4 ml of Acetic acid. A shape control manufacturing method of a nickel-diamond composite powder by an electroless nickel plating method. 제 1항에 있어서,The method of claim 1, 상기 pH를 염산으로 조절하여 교반시키며 가열하는 무전해니켈 반응시 니켈 코팅염 용액을 염산을 이용하여 pH 4.5-5.5로 조절하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.Shape control of the nickel-diamond composite powder by the electroless nickel plating method characterized by adjusting the pH to hydrochloric acid and adjusting the nickel coating salt solution to pH 4.5-5.5 using hydrochloric acid during the stirring and heating the electroless nickel reaction. Manufacturing method. 제 1항에 있어서,The method of claim 1, 상기 무전해니켈반응시 환원제 용액을 이루는 조성은 NaH2PO2와 citric acid의 혼합비율은 1000㎖를 기준으로 500g, Citric acid는 50g(단, 기준용액의 양이 많거나 적을시 동일한 비례로 변동된다)인 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.The composition of the reducing agent solution during the electroless nickel reaction is 500 g of citric acid and 50 g of citric acid based on the mixing ratio of NaH 2 PO 2 and citric acid. The shape control manufacturing method of the nickel-diamond composite powder by the electroless nickel plating method characterized by the above-mentioned. 제 1항 또는 6항중 어느 한항에 있어서,The method according to any one of claims 1 to 6, 환원제 용액을 주기적으로 변화시키면서 연속식으로 반회분식항온반응조 내에 주입하되, 분당 0.25-3 ㎖가 되도록 주입하여 총 3회 코팅반응시킨 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.The shape of the nickel-diamond composite powder by the electroless nickel plating method was injected into a semi-batch incubator continuously while periodically changing the reducing agent solution, and then injected into a solution of 0.25-3 ml per minute for a total of three coating reactions. Controlled manufacturing method. 제 7항에 있어서,The method of claim 7, wherein 상기 1회 코팅시 주입은 3단계로 나누어 반회분식항온반응조 내에 주입하여 환원실험을 진행하되,When the coating is carried out once, the injection is divided into three stages and injected into a semi-batch constant temperature reaction tank to perform a reduction experiment. 1단계는 15분에서 200분사이에 분당 0.25~3.0㎖를 주입하고,In the first step, inject 0.25 ~ 3.0ml per minute between 15 and 200 minutes, 2단계는 30분에서 200분사이에 분당 0.25~2.0㎖를 주입하고,Step 2 inject 0.25 ~ 2.0ml per minute between 30 and 200 minutes, 3단계는 40분에서 200분사이에 분당 0.25~1.0㎖를 주입하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.The third step is a shape control manufacturing method of nickel-diamond composite powder by electroless nickel plating method characterized in that the injection of 0.25 ~ 1.0ml per minute between 40 minutes and 200 minutes. 제 7항에 있어서,The method of claim 7, wherein 상기 1회코팅시 주입은 3단계로 나누어 주입하되, 초기 15분간은 3.0 ㎖ 이며 15분 후부터는 0.25 ㎖의 속도로 반회분식항온반응조 내에 주입하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법.In the single coating, the injection is divided into three stages, but the initial 15 minutes are 3.0 ml and after 15 minutes, the nickel-diamond composite by the electroless nickel plating method is injected into a semi-batch constant temperature reactor at a rate of 0.25 ml. Shape control manufacturing method of powder. 제 1항에 있어서,The method of claim 1, 상기 교반시 가열온도는 70℃까지 가열하는 것을 특징으로 하는 무전해 니켈도금법에 의한 니켈-다이아몬드 복합분말의 형상제어 제조방법. Forming method for controlling the shape of the nickel-diamond composite powder by the electroless nickel plating method characterized in that the heating temperature during the stirring is heated to 70 ℃.
KR1020040049268A 2004-06-29 2004-06-29 Synthesis of surface controlled nickel-diamond composite powders by electroless plating method KR100602482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040049268A KR100602482B1 (en) 2004-06-29 2004-06-29 Synthesis of surface controlled nickel-diamond composite powders by electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040049268A KR100602482B1 (en) 2004-06-29 2004-06-29 Synthesis of surface controlled nickel-diamond composite powders by electroless plating method

Publications (2)

Publication Number Publication Date
KR20060000413A true KR20060000413A (en) 2006-01-06
KR100602482B1 KR100602482B1 (en) 2006-07-19

Family

ID=37103715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040049268A KR100602482B1 (en) 2004-06-29 2004-06-29 Synthesis of surface controlled nickel-diamond composite powders by electroless plating method

Country Status (1)

Country Link
KR (1) KR100602482B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055927A (en) * 2022-07-01 2022-09-16 吉安富奇精密制造有限公司 Preparation method of high-strength high-temperature-resistant numerical control drill bit
CN115584540A (en) * 2022-11-29 2023-01-10 江苏三超金刚石工具有限公司 Diamond wire saw with composite coating and preparation process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168603B2 (en) * 1991-04-26 2001-05-21 日本電池株式会社 Sealed lead-acid battery
US5190796A (en) * 1991-06-27 1993-03-02 General Electric Company Method of applying metal coatings on diamond and articles made therefrom
JP2803770B2 (en) * 1992-03-27 1998-09-24 東レ株式会社 Biaxially oriented laminated film
JPH0732713A (en) * 1993-07-23 1995-02-03 Fujicopian Co Ltd Reversal preventing mechanism of rotary body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055927A (en) * 2022-07-01 2022-09-16 吉安富奇精密制造有限公司 Preparation method of high-strength high-temperature-resistant numerical control drill bit
CN115055927B (en) * 2022-07-01 2024-02-09 吉安富奇精密制造有限公司 Preparation method of high-strength high-temperature-resistant numerical control drill bit
CN115584540A (en) * 2022-11-29 2023-01-10 江苏三超金刚石工具有限公司 Diamond wire saw with composite coating and preparation process thereof
CN115584540B (en) * 2022-11-29 2024-01-12 江苏三超金刚石工具有限公司 Diamond wire saw with composite coating and preparation process thereof

Also Published As

Publication number Publication date
KR100602482B1 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
CN101186990A (en) Ultra-fine hard alloy coated powder and method for preparing same
CN102321880B (en) Chemical nickel plating solution, and preparation method and plating method thereof
CN100548539C (en) A kind of manufacture method of ultra-fine hard alloy composite powder
CN102381844A (en) Method for modifying hollow glass microspheres by chemical precipitation process
CN101559494A (en) Core-shell structure type tungsten carbide-cobalt hard alloy raw material powder and preparation method thereof
CN106906646A (en) A kind of carbon fiber surface metallization treating method
CN102634778B (en) Activation method for electromagnetic shielding fabrics before chemical plating based on PAMAM (polyamidoamine)/ palladium ligand
JP2017508881A (en) Treatment method for chemical nickel plating solution
CN1947845A (en) Carried catalyst chemical plating method for hydrolyzing hydroborates to produce hydrogen
KR100602482B1 (en) Synthesis of surface controlled nickel-diamond composite powders by electroless plating method
CN101288905B (en) Preparation method of copper cladding tungsten composite powder
CN109680310A (en) A kind of nickel antimony electroplating solution and preparation method thereof
KR100545107B1 (en) Synthesis of nickel-diamond composite powders by electroless plating method
CN105937027A (en) Diamond surface metallizing production method for ultrafine diamond wire saw
CN103132059B (en) Fabric chemical plating method using HBP-NH2/ Ag+ coordination compound as activate fluid
CN100595326C (en) Ni-Fe-La-P four-component alloy plating solution for chemical plating on surface of fiberglass and method for preparing same
US7338686B2 (en) Method for producing conductive particles
CN109750283B (en) Process method for chemically plating nickel-phosphorus alloy on SMC material surface
CN106835089A (en) Ni W P Nano-meter SiO_2s2The preparation method of chemical composite plating
CN113502467A (en) Nickel-phosphorus plated part and low-temperature neutral simplified chemical nickel-phosphorus plating method
CN101173350A (en) Electroless plating method for producing basalt fibre-nickel one-dimensional nucleocapsid structure
CN101713068A (en) Chemical copper plating technique for plastic tube of fuel sensor in fuel tank
CN1158406C (en) Process for preparing light metallic microspheres with natural pollen as core skeleton
CN1600899A (en) Complex additive for chemical nickel plating
CN100487166C (en) Foam nickel preparing process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 18