KR20050113090A - The method of producing carbon fiber reinforced ceramic matrix composites - Google Patents

The method of producing carbon fiber reinforced ceramic matrix composites Download PDF

Info

Publication number
KR20050113090A
KR20050113090A KR1020040038589A KR20040038589A KR20050113090A KR 20050113090 A KR20050113090 A KR 20050113090A KR 1020040038589 A KR1020040038589 A KR 1020040038589A KR 20040038589 A KR20040038589 A KR 20040038589A KR 20050113090 A KR20050113090 A KR 20050113090A
Authority
KR
South Korea
Prior art keywords
carbon
carbon fiber
fiber reinforced
composite
silicon
Prior art date
Application number
KR1020040038589A
Other languages
Korean (ko)
Other versions
KR100624094B1 (en
Inventor
임동원
박홍식
조대현
신현규
Original Assignee
주식회사 데크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 데크 filed Critical 주식회사 데크
Priority to KR1020040038589A priority Critical patent/KR100624094B1/en
Priority to PCT/KR2005/001581 priority patent/WO2005115945A1/en
Priority to JP2007510630A priority patent/JP2007535461A/en
Priority to EP05746091A priority patent/EP1758837A4/en
Priority to US11/579,445 priority patent/US20080143005A1/en
Publication of KR20050113090A publication Critical patent/KR20050113090A/en
Application granted granted Critical
Publication of KR100624094B1 publication Critical patent/KR100624094B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00362Friction materials, e.g. used as brake linings, anti-skid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 탄소섬유 강화 세라믹 복합체의 제조방법에 관한 것으로, 본 발명에 따른 탄소섬유 강화 세라믹 복합체 제조방법은 탄소섬유와 탄소 함유 폴리머 전구체를 혼합한 혼합물로 성형한 탄소섬유 강화 수지 복합체를 제조하는 단계와; 상기 탄소섬유 강화 수지 복합체를 고온 열처리하여 내부에서 외부로 증착속도를 빠르게 하면서 급속 열구배 화학기상 침투공정으로 열분해 탄소를 증착하여 탄소섬유 강화 탄소 복합체를 제조하는 단계와; 상기 탄소섬유 강화 탄소 복합체의 기공으로 액상 규소를 침투시키는 단계로 된 것을 특징으로 한다. 이러한 본 발명에 따른 탄소섬유 강화 세라믹 복합체의 제조방법은 탄소섬유 강화 세라믹 복합체의 물성을 향상시키는 효과가 있고, 종래의 모든 화학기상 침투공정에 비해 5 ~ 10배 이상의 증착속도로 열분해 탄소층을 증착할 수 있으므로, 제조공정과 제조시간 그리고 제조비용 면에서 월등히 향상된 효과를 발휘한다.The present invention relates to a method of manufacturing a carbon fiber reinforced ceramic composite, the method of manufacturing a carbon fiber reinforced ceramic composite according to the present invention comprises the steps of preparing a carbon fiber reinforced resin composite molded into a mixture of carbon fiber and a carbon-containing polymer precursor Wow; Manufacturing a carbon fiber reinforced carbon composite by depositing pyrolytic carbon by a rapid thermal gradient chemical vapor permeation process while increasing the deposition rate from the inside to the outside by high temperature heat treatment of the carbon fiber reinforced resin composite; It characterized in that the step of penetrating the liquid silicon into the pores of the carbon fiber reinforced carbon composite. The method of manufacturing a carbon fiber reinforced ceramic composite according to the present invention has an effect of improving the physical properties of the carbon fiber reinforced ceramic composite, and deposits a pyrolytic carbon layer at a deposition rate of 5 to 10 times or more than all conventional chemical vapor penetration processes. This greatly improves the manufacturing process, manufacturing time and manufacturing cost.

Description

탄소섬유 강화 세라믹 복합체 제조방법{The method of producing carbon fiber reinforced ceramic matrix composites}The method of producing carbon fiber reinforced ceramic matrix composites

본 발명은 고온에서 우수한 기계적 강도를 유지하고, 열·화학적 침식 등 혹독한 환경에서 우수한 내식성, 내열성 그리고 마찰·마모 특성을 가지는 탄소섬유강화 세라믹 복합체 제조 방법에 관한 것이다.The present invention relates to a method for producing a carbon fiber reinforced ceramic composite having excellent mechanical strength at high temperatures and having excellent corrosion resistance, heat resistance, and friction and abrasion properties in harsh environments such as thermal and chemical erosion.

섬유 강화 세라믹 복합체(ceramic matrix composites)는 경량이면서 고온에서 우수한 기계적·열적 특성을 가지고 있다. 이러한 특성으로 섬유 강화 세라믹 복합체는 항공기와 육상용 운송수단의 브레이크 디스크 및 패드 등과 같은 마찰·마모 재료, 고온에서 기계적 강도, 내식성 그리고 내열성을 요하는 세라믹 엔진 그리고 로켓 노즐 부분의 초고온 내열재 등으로 응용되고 있다. 섬유 강화 세라믹 복합체는 세라믹 재료(Monolithic Ceramics)가 가지고 있는 취성파괴의 단점을 극복하기 위해 연구되었으며, 탄소섬유 또는 탄화규소 섬유로 제조된 프리폼의 기공을 열분해 탄소, 탄화규소 또는 질화붕소와 같은 내열 재료로 채워서 제조한다. Fiber matrix ceramics composites are lightweight and have good mechanical and thermal properties at high temperatures. Due to these characteristics, fiber-reinforced ceramic composites are applied to friction and abrasion materials such as brake discs and pads for aircraft and land vehicles, ceramic engines requiring mechanical strength, corrosion resistance and heat resistance at high temperatures, and ultra-high heat resistance materials for rocket nozzle parts. It is becoming. Fiber-reinforced ceramic composites have been studied to overcome the drawbacks of brittle fracture of ceramic materials, and heat-resistant materials such as pyrolytic carbon, silicon carbide or boron nitride can be used to break pores of preforms made of carbon or silicon carbide fibers. Prepared by filling with

현재까지 섬유 강화 세라믹 복합체는 여러 가지 제조공정으로 제조되고 있으나 대부분의 경우 제조공정 중 기계적·열적 충격으로 섬유에 손상을 주게 된다. 이러한 문제를 해결하기 위해 세라믹 복합체는 저밀도의 다공성 섬유 프리폼 내에 기체 상태의 전구체를 투입 후 열분해시켜 세라믹 기지상을 증착시킨다. 이러한 공정을 화학기상증착법(chemical vapor infiltration)이라 하며, 이 제조 공정은 낮은 온도와 압력 조건에서 기지상을 증착시킴으로 기존의 세라믹 복합체 제조에서 발생되는 섬유 손상의 문제점을 해결하였다. Until now, fiber-reinforced ceramic composites have been manufactured in various manufacturing processes, but in most cases, fiber damage is caused by mechanical and thermal shocks during the manufacturing process. To solve this problem, the ceramic composite deposits a ceramic matrix by thermal decomposition after injecting a gaseous precursor into a low density porous fiber preform. This process is called chemical vapor infiltration, and this manufacturing process solves the problem of fiber damage caused by conventional ceramic composites by depositing matrix phase at low temperature and pressure conditions.

그러나 이러한 공정은 고가의 원료 물질과 제조 장비를 사용하며, 제조공정이 복잡하고 수백 시간 이상의 공정 시간을 필요로 하므로 그 응용 분야는 우주·항공과 같은 첨단 산업분야로 매우 제한적이다. However, these processes use expensive raw materials and manufacturing equipment, and because their manufacturing processes are complex and require more than several hundred hours of processing time, their applications are very limited to advanced industries such as space and aerospace.

기체 상태의 원료가스를 사용하는 화학기상침투공정과 달리 액상의 규소를 다공성의 탄소 프리폼에 함침하여 탄소섬유 강화 세라믹 복합체를 제조하는 공정이 개발되었다. Unlike the chemical vapor permeation process using gaseous raw gas, a process for producing a carbon fiber reinforced ceramic composite by impregnating liquid silicon into a porous carbon preform has been developed.

Walter krenkel 등은 특허 US 6,308,808, US 6,358,565 그리고 US 5,942,064에서, 절단된 탄소섬유, 액상 페놀 그리고 탄소 분말 혼합체를 고온·고압의 조건에서 성형한 후 고온 열처리 공정으로 탄소섬유 강화 탄소 복합체를 제조하였다. 이와 같이 제조한 탄소섬유 강화 탄소 복합체에 액상 규소를 침투시켜 탄소섬유 강화 세라믹 복합체를 육상용 차량의 브레이크 디스크 및 우주·항공 분야의 내열재료 응용 하였다. Walter Krenkel et al., In US Pat. Nos. 6,308,808, 6,358,565 and 5,942,064, prepared carbon fiber reinforced carbon composites by molding a cut carbon fiber, liquid phenol and carbon powder mixture under high temperature and high pressure. Liquid silicon was infiltrated into the carbon fiber reinforced carbon composite thus prepared to apply the carbon fiber reinforced ceramic composite to brake discs of land vehicles and heat-resistant materials for aerospace and aviation.

그러나 상기와 같이 액상 탄소 전구체를 혼합하여 제조한 탄소섬유 강화 수지 복합체는 제조비용 면에서는 기존 화학기상 침투공정에 비해 효율적이지만, 균일한 탄소섬유 보호층 형성이 어려워 액상 규소 함침공정 과정에서 액상 규소와 탄소섬유의 반응을 막기 힘들며, 이것은 탄소섬유 강화 세라믹 복합체의 기계적 물성을 급격히 감소시켰다. 이와 같은 문제점을 해결하기 위해 한국특허출원번호 제 1999-7008146호와 미국특허 US 6079525, US 6030913 그리고 US 6231791에서는 액상 유기 바인더를 반복적으로 함침시키거나, 혼합체의 조성을 변화시켜 탄소섬유 강화 세라믹 복합체를 제조하였으나, 탄소섬유 침식에 의한 기계적 물성 저하 방지 및 고온 마찰·마모 특성의 향상을 얻지는 못하였다.However, the carbon fiber reinforced resin composite prepared by mixing the liquid carbon precursor as described above is more efficient than the conventional chemical vapor infiltration process in terms of manufacturing cost, but it is difficult to form a uniform carbon fiber protective layer. It is difficult to prevent the carbon fiber reaction, which drastically reduced the mechanical properties of the carbon fiber reinforced ceramic composite. In order to solve such a problem, Korean Patent Application No. 1999-7008146 and US Patent Nos. 6079525, US 6030913 and US 6231791 repeatedly manufacture the carbon fiber reinforced ceramic composite by impregnating the liquid organic binder or changing the composition of the mixture. However, it was not possible to prevent mechanical property deterioration and to improve the high temperature friction and wear characteristics by carbon fiber erosion.

상기와 다른 공정으로 미국특허 US 6221475와 한국특허출원번호 제 1999-7003211호에서는 탄소섬유를 직조하여 만든 프리폼을 등온/등압 화학기상침투(Isothermal/Isobaric chemical vapor infiltration, ICVI) 공정으로 열분해 탄소를 증착한 후 다시 탄소 전구체를 액상 함침방법으로 밀도화 공정을 진행하여 탄소섬유 강화 세라믹 복합체를 제조하였다. 이러한 공정은 섬유 보호의 측면에서는 뛰어난 성능 향상을 이루었으나, 서로 다른 탄소섬유 강화 세라믹 복합체를 하나의 구조물로 결합하기 어려워 복잡한 형상의 탄소섬유 강화 세라믹 복합체의 제조가 힘들다. 특히, 그 제조공정이 복잡하고 수백 시간 이상의 제조시간이 소요되므로 제조비용의 증가를 초래하였다.In a process different from that described in US Pat. No. 6,221,475 and Korean Patent Application No. 1999-7003211, pyrolyzed carbon is deposited by isothermal / isobaric chemical vapor infiltration (ICVI). After the carbon precursor was further densified by the liquid phase impregnation method to prepare a carbon fiber reinforced ceramic composite. This process has achieved excellent performance in terms of fiber protection, but it is difficult to combine different carbon fiber reinforced ceramic composites into one structure, which makes it difficult to manufacture a complex carbon fiber reinforced ceramic composite. In particular, the manufacturing process is complicated, and the manufacturing time takes more than several hundred hours, resulting in an increase in manufacturing cost.

현재까지의 탄소섬유 강화 세라믹 복합체의 제조 기술에 관한 문제점을 종합적으로 검토해보면, 대부분의 경우 탄소섬유 강화 세라믹 복합체의 제조를 위해 사용되는 탄소섬유 강화 탄소 복합체의 제조공정에 많은 제조비용의 투입과 기술적 문제점을 안고 있음을 알 수 있다. 예를 들면, 기존의 화학기상침투 공정의 경우 섬유 보호층으로 우수한 특성을 가지고 있으나 고가의 원료물질과 제조공정의 어려움으로 탄소섬유 강화 탄소 복합체의 제조에 부적합하다. 그리고 탄소 성분을 함유한 유기바인더의 함침공정을 이용하여 탄소섬유 강화 수지 복합체를 제조할 경우 반복적인 함침 공정을 필요로 하며 섬유 보호 측면에서 그 효능이 감소함을 알 수 있다. Considering the problems related to the manufacturing technology of the carbon fiber reinforced ceramic composites up to now, in most cases, a large amount of manufacturing cost is put into the manufacturing process of the carbon fiber reinforced carbon composites used for the production of the carbon fiber reinforced ceramic composites. It can be seen that there is a problem. For example, the conventional chemical vapor permeation process has excellent properties as a fiber protective layer, but is not suitable for the production of carbon fiber reinforced carbon composites due to the expensive raw materials and difficulties in the manufacturing process. In addition, when the carbon fiber reinforced resin composite is manufactured using the impregnation process of the organic binder containing the carbon component, it can be seen that the repeated impregnation process is required and its efficacy is reduced in terms of fiber protection.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 탄소섬유 강화 세라믹 복합체 제조에 필요한 출발물질 및 탄소섬유 강화 탄소 복합체 제조 방법을 개선하여 탄소섬유 강화 세라믹 복합체의 열·기계적 물성을 향상 시키고, 고가의 제조비용 및 공정으로 인한 상기의 문제점을 해결한 탄소섬유 강화 세라믹 복합체 제조방법을 제공하기 위한 것이다.The present invention is to solve the above problems, an object of the present invention is to improve the thermal and mechanical properties of the carbon fiber reinforced ceramic composite by improving the starting material and carbon fiber reinforced carbon composite manufacturing method required for the production of carbon fiber reinforced ceramic composite And to provide a carbon fiber reinforced ceramic composite manufacturing method that solves the above problems due to expensive manufacturing costs and processes.

본 발명자들은 상기의 문제점을 해결하기 위해 탄소 펠트 프리폼, 샌드위치 구조 또는 탄소섬유 혼합물을 출발물질로 하여 제조공정을 단순화하고, 빠르면서 저가의 공정으로 균일한 섬유 보호층을 가지는 탄소섬유 강화 탄소 복합체를 제조하기 위해 급속 열구배 화학기상침투공정을 적용하고, 이와 함께 액상 규소 침투공정을 이용하여 탄소섬유 강화 세라믹 복합체를 제조하는 방법을 제공하기 위한 것이다.In order to solve the above problems, the present inventors simplified the manufacturing process using a carbon felt preform, a sandwich structure or a carbon fiber mixture as a starting material, and a carbon fiber reinforced carbon composite having a uniform fiber protective layer in a fast and inexpensive process. In order to provide a rapid thermal gradient chemical vapor permeation process, and together with the liquid silicon infiltration process to provide a method for producing a carbon fiber reinforced ceramic composite.

전술한 목적을 달성하기 위한 본 발명에 따른 탄소섬유 강화 세라믹 복합체 (Cf/C-SiC)제조방법은 탄소섬유와 탄소 함유 폴리머 전구체를 혼합한 혼합물로 성형한 탄소섬유 강화 수지 복합체를 제조하는 단계와; 상기 탄소섬유 강화 수지 복합체를 고온 열처리하여 내부에서 외부로 증착속도를 빠르게 하면서 급속 열구배 화학기상 침투공정으로 열분해 탄소를 증착하여 탄소섬유 강화 탄소 복합체를 제조하는 단계와; 상기 탄소섬유 강화 탄소 복합체의 기공으로 액상 규소를 침투시키는 단계로 된 것을 특징으로 한다.Carbon fiber reinforced ceramic composite (C f / C-SiC) manufacturing method according to the present invention for achieving the above object is a step of preparing a carbon fiber reinforced resin composite molded from a mixture of carbon fiber and carbon-containing polymer precursor Wow; Manufacturing a carbon fiber reinforced carbon composite by depositing pyrolytic carbon by a rapid thermal gradient chemical vapor permeation process while increasing the deposition rate from the inside to the outside by high temperature heat treatment of the carbon fiber reinforced resin composite; It characterized in that the step of penetrating the liquid silicon into the pores of the carbon fiber reinforced carbon composite.

그리고 바람직하게 상기 혼합물에는 상기 탄소섬유가 10 ~ 60w%, 상기 탄소 함유 폴리머 전구체가 30 ~ 60wt% 로 포함된 것을 특징으로 한다.And preferably the mixture is characterized in that the carbon fiber is contained 10 to 60w%, the carbon-containing polymer precursor 30 to 60wt%.

또한 바람직하게 상기 혼합물에는 탄화규소 분말 30wt% 이하, 탄소분말 30wt% 이하가 포함된 것을 특징으로 한다.In addition, the mixture is preferably characterized in that the silicon carbide powder 30wt% or less, carbon powder 30wt% or less.

또한 바람직하게 상기 탄소섬유 강화 수지 복합체는 상기 혼합물과 탄소직물이 교대로 적층된 것인 것을 특징으로 한다.In addition, the carbon fiber reinforced resin composite is characterized in that the mixture and the carbon fabric is laminated alternately.

또한 바람직하게 상기 성형체에는 혼합과정에서 혼합된 상기 혼합물에 의하여 탄소섬유와 규소의 반응을 막아주는 1차 표면층이 형성되고, 상기 1차 표면층은 상기 액상 규소를 침투시키는 단계에서 상기 액상 규소와 화학 반응하여 탄화규소와 규소로 이루어진 세라믹 기지층으로 형성되는 것을 특징으로 한다.Also preferably in the molded body is formed a first surface layer to prevent the reaction of carbon fibers and silicon by the mixture mixed in the mixing process, the first surface layer is a chemical reaction with the liquid silicon in the step of infiltrating the liquid silicon To form a ceramic base layer consisting of silicon carbide and silicon.

또한 바람직하게 상기 성형체는 불활성 가스 분위기 하에서 900 ~ 2200℃의 온도로 열처리된 후, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 1차 표면층위에 2차 표면층인 열분해 탄소 기지층이 증착되는 것을 특징으로 한다.Also preferably, the molded body is heat-treated at a temperature of 900 to 2200 ° C. under an inert gas atmosphere, and then a pyrolytic carbon matrix layer, which is a secondary surface layer, is deposited on the primary surface layer in the deposition by the rapid thermal gradient chemical vapor penetration process. It features.

또한 바람직하게 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 탄화수소 가스를 사용하여 열분해 반응 온도 700 ~ 1200℃, 반응압력 188 ~ 1130torr 범위에서 이루어지는 것을 특징으로 한다.In addition, the pyrolysis reaction temperature is 700 to 1200 ℃ using a hydrocarbon gas in the step of depositing in the rapid thermal gradient chemical vapor infiltration process, characterized in that the reaction pressure is made in the range of 188 ~ 1130torr.

또한 바람직하게 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서, 증착 영역을 내부에서 외부로 적어도 복수 개로 나누고, 각각의 영역에서 서로 다른 속도로 증착하는 것을 특징으로 한다.Also preferably in the step of depositing in the rapid thermal gradient chemical vapor penetration process, the deposition region is divided into at least a plurality from the inside to the outside, and characterized in that the deposition at different rates in each region.

또한 바람직하게 상기 증착 영역은 0.5 ~ 3.0 mm/hr의 증착속도 범위로 내부에서 외부로 증착되는 것을 특징으로 한다.In addition, the deposition region is characterized in that the deposition from the inside to the outside in the deposition rate range of 0.5 ~ 3.0 mm / hr.

또한 바람직하게 상기 탄소섬유 강화 탄소 복합체는 겉보기 밀도 1.0 ~ 1.7g/㎤, 상기 액상 규소의 침투 경로로 이용되는 열린 기공을 5 ~ 30% 가지는 것을 특징으로 한다.Also preferably, the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used as a penetration path of the liquid silicon.

또한 바람직하게 상기 액상 규소를 침투시키는 단계는 상기 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층시키고, 반응기 내부를 100torr 이하로 유지한 후 규소의 녹는점인 1410℃ 이상의 온도로 가열하여 액상 규소를 프리폼 내부로 침투시킴과 동시에 복수개의 탄소층과 화학반응을 유도하는 것을 특징으로 한다.Also preferably, the step of infiltrating the liquid silicon is to laminate the carbon fiber reinforced carbon composite on the silicon powder, and maintain the inside of the reactor to 100torr or less and then heated to a temperature above 1410 ℃, the melting point of the silicon liquid silicon inside the preform While infiltrating into and inducing a chemical reaction with the plurality of carbon layers.

전술한 목적을 달성하기 위한 본 발명에 따른 탄소섬유 강화 세라믹 복합체 제조방법은 탄소 펠트 프리폼을 제조하는 단계와; 상기 탄소 펠트 프리폼을 내부에서 외부로 증착속도를 빠르게 하면서 급속 열구배 화학기상 침투공정으로 증착하여 탄소섬유 강화 탄소 복합체를 제조하는 단계와; 상기 탄소섬유 강화 탄소 복합체의 기공으로 액상 규소를 침투시키는 단계로 된 것을 특징으로 한다.Carbon fiber reinforced ceramic composite manufacturing method according to the present invention for achieving the above object comprises the steps of preparing a carbon felt preform; Preparing a carbon fiber-reinforced carbon composite by depositing the carbon felt preform in a rapid thermal gradient chemical vapor penetration process while increasing the deposition rate from the inside to the outside; It characterized in that the step of penetrating the liquid silicon into the pores of the carbon fiber reinforced carbon composite.

그리고 바람직하게 상기 탄소 펠트 프리폼은 옥시펜, 펜, 레이온, 핏치계 등의 탄소계 섬유 중 어느 하나로 된 것을 특징으로 한다.And preferably the carbon felt preform is characterized in that it is made of any one of carbon-based fibers, such as oxyphen, pen, rayon, pitch system.

또한 바람직하게 상기 탄소 펠트 프리폼은 매트의 적층을 0°/+60°/-60°와 같은 준등방성으로 하며, Z축으로 10mm 이하의 탄소섬유가 보강된 것을 특징으로 한다.In addition, the carbon felt preform is preferably a quasi isotropic lamination of the mat, such as 0 ° / +60 ° / -60 °, characterized in that the carbon fiber of less than 10mm in the Z axis.

또한 바람직하게 상기 탄소 펠트 프리폼에는 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에 의해 5 ~ 100㎛ 두께의 열분해 탄소층이 증착되는 것을 특징으로 한다.Also preferably, the carbon felt preform is deposited with a pyrolytic carbon layer having a thickness of 5 to 100 μm by the deposition by the rapid thermal gradient chemical vapor penetration process.

또한 바람직하게 상기 액상 규소를 침투시키는 단계에서 상기 탄소섬유 보강 탄소 복합체에 액상 규소를 함침하여 X, Y, Z 3축으로 탄소섬유가 보강된 것을 특징으로 한다.Also preferably, the carbon fiber is reinforced by X, Y, Z triaxial by impregnating the liquid silicon in the carbon fiber reinforced carbon composite in the step of penetrating the liquid silicon.

또한 바람직하게 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 탄화수소 가스를 사용하여 열분해 반응 온도 700 ~ 1200℃, 반응압력 188 ~ 1130torr 범위에서 이루어지는 것을 특징으로 한다.In addition, the pyrolysis reaction temperature is 700 to 1200 ℃ using a hydrocarbon gas in the step of depositing in the rapid thermal gradient chemical vapor infiltration process, characterized in that the reaction pressure is made in the range of 188 ~ 1130torr.

또한 바람직하게 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서, 증착 영역을 내부에서 외부로 적어도 복수개로 나누고, 각각의 영역에서 서로 다른 속도로 증착하는 것을 특징으로 한다.Also preferably in the step of depositing by the rapid thermal gradient chemical vapor penetration process, the deposition region is divided into at least a plurality from the inside to the outside, and characterized in that the deposition at different rates in each region.

또한 바람직하게 상기 증착 영역은 0.5 ~ 3.0 mm/hr의 증착속도 범위로 내부에서 외부로 증착되는 것을 특징으로 한다.In addition, the deposition region is characterized in that the deposition from the inside to the outside in the deposition rate range of 0.5 ~ 3.0 mm / hr.

또한 바람직하게 상기 탄소섬유 강화 탄소 복합체는 겉보기 밀도 1.0 ~ 1.7g/㎤, 상기 액상 규소의 침투 경로로 이용되는 열린 기공을 5 ~ 30% 가지는 것을 특징으로 한다.Also preferably, the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used as a penetration path of the liquid silicon.

또한 바람직하게 상기 액상 규소를 침투시키는 단계는 상기 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층시키고, 반응기 내부를 100torr 이하로 유지한 후 규소의 녹는점인 1410℃ 이상의 온도로 가열하여 액상 규소를 상기 탄소 펠트 프리폼 내부로 침투시킴과 동시에 복수개의 탄소층과 화학반응을 유도하는 것을 특징으로 한다.Also preferably, the step of infiltrating the liquid silicon is to laminate the carbon fiber reinforced carbon composite on the silicon powder, and to maintain the inside of the reactor to 100torr or less and then heated to a temperature above 1410 ℃, the melting point of silicon to the liquid silicon to the carbon It penetrates into the felt preform and simultaneously induces a chemical reaction with the plurality of carbon layers.

이하에서는 본 발명에 따른 탄소섬유 강화 세라믹 복합체의 제조방법에 대하여 설명하기로 한다. 이하의 실시예에서의 각 혼합물의 조성 및 제조방법은 그 구성의 일부를 변형하여 보다 다양하게 변형 실시할 수 있을 것이다. 그러나 변형된 실시예들이 기본적으로 본 발명이 청구하고 있는 기술적 구성요소들을 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.Hereinafter, a method of manufacturing a carbon fiber reinforced ceramic composite according to the present invention will be described. The composition and production method of each mixture in the following examples may be modified in more various ways by modifying a part of its configuration. However, if the modified embodiments include basically the technical components claimed in the present invention, it should be considered that they all fall within the technical scope of the present invention.

먼저 출발물질의 측면에서 탄소섬유를 X, Y, Z 3축 방향으로 보강한 탄소 펠트 프리폼을 이용하거나, 또는 0.3∼150㎜의 길이를 가지는 탄소섬유(carbon fibers), 탄소 함유 폴리머 전구체, 탄화규소 분말 그리고 흑연 분말로 이루어진 혼합물과 탄소직물(carbon fabrics)을 교대로 적층시켜 제조한 샌드위치 구조를 적용하거나, 또는 상기의 혼합물로만 이루어진 탄소섬유 강화 수지 복합체(CFRP)를 사용할 수 있다.First, in terms of starting materials, carbon felt preforms in which carbon fibers are reinforced in X, Y, Z triaxial directions, or carbon fibers having a length of 0.3 to 150 mm, carbon-containing polymer precursors, and silicon carbide A sandwich structure prepared by alternately stacking a mixture of powder and graphite powder and carbon fabrics may be applied, or a carbon fiber reinforced resin composite (CFRP) consisting of the above mixture may be used.

그리고 제조된 출발물질은 이하에서 설명하는 급속 열구배 화학기상침투공정으로 열분해 탄소층을 증착하여 다공성의 탄소섬유 강화 탄소 복합체를 제조하고, 액상 규소를 탄소섬유 강화 탄소 복합체 내의 열린 기공으로 침투시켜 탄소섬유 강화 세라믹 복합체를 제조한다. 상기의 탄소섬유 강화 세라믹 복합체는 겉보기 밀도 2.2g/㎤ 이상, 겉보기 기공율 1% 이하, 굽힘 강도 100㎫ 이상, 열전도도 35W/mk 이상의 물성 값을 가진다.The prepared starting material is a pyrolytic carbon layer deposited by a rapid thermal gradient chemical vapor permeation process to be described below to prepare a porous carbon fiber reinforced carbon composite, and infiltrate liquid silicon into open pores in the carbon fiber reinforced carbon composite to obtain carbon. Prepare fiber reinforced ceramic composites. The carbon fiber-reinforced ceramic composite has a physical density of 2.2 g / cm 3 or more, an apparent porosity of 1% or less, a bending strength of 100 MPa or more, and a thermal conductivity of 35 W / mk or more.

본 발명에 따른 탄소섬유 강화 세라믹 복합체의 제조방법은 도 1과 도 2에 도시된 바와 같이 출발물질에 따라 두 가지의 공정으로 나누어 질 수 있다.Method for producing a carbon fiber reinforced ceramic composite according to the present invention can be divided into two processes according to the starting material as shown in Figure 1 and FIG.

먼저 도 1에 도시된 공정은 0.3 ∼ 150㎜ 크기로 절단된 탄소섬유, 탄소 함유 폴리머 전구체, 탄화규소 분말 그리고 흑연 분말의 혼합물과 탄소직물을 이용하여 탄소섬유 강화 수지 복합체 제조하는 공정이다.First, the process illustrated in FIG. 1 is a process of preparing a carbon fiber reinforced resin composite using a carbon fabric and a mixture of carbon fiber, carbon-containing polymer precursor, silicon carbide powder, and graphite powder cut into a size of 0.3 to 150 mm.

탄소섬유 강화 수지 복합체 제조단계는 0.3 ∼ 150㎜ 크기로 절단된 탄소섬유를 탄소 함유 폴리머 전구체, 탄화규소 분말 그리고 흑연 분말과 함께 증류수에 넣고 분산과 혼합 과정을 거쳐 균일한 혼합물을 제조한다. In the carbon fiber reinforced resin composite manufacturing step, a carbon fiber cut to a size of 0.3 ~ 150 mm is put in distilled water together with a carbon-containing polymer precursor, silicon carbide powder and graphite powder to prepare a uniform mixture through a process of dispersion and mixing.

그리고 이 혼합물은 탄소섬유 표면에 탄소 함유 폴리머 전구체, 탄화규소 분말 그리고 흑연 분말이 1차 표면층을 형성하며, 혼합 조성은 탄소섬유 10 ~ 60wt%, 탄소 함유 액상 전구체 30 ~ 60wt% 이다. 그리고 탄화규소 분말과 탄소 분말은 선택적으로 포함된다. 즉 탄화규소 분말 0 ~ 30wt% 그리고 탄소 분말 0 ~ 30wt% 로 조성될 수 있다.(S101)(S102)The mixture is composed of a carbon-containing polymer precursor, silicon carbide powder and graphite powder on the surface of the carbon fiber to form a primary surface layer, and the mixed composition is 10 to 60 wt% of carbon fiber and 30 to 60 wt% of the carbon-containing liquid precursor. And silicon carbide powder and carbon powder are optionally included. That is, the silicon carbide powder may be composed of 0 to 30wt% and carbon powder 0 to 30wt%. (S101) (S102)

이렇게 제조된 혼합물을 탄소직물과 함께 교대 적층하여 샌드위치 구조의 성형체(green body)를 만든다(S110). 탄소직물은 평직, 주자직, 능직 형태가 가능하다. 여기서 성형체 제조의 또 다른 방법으로는 탄소직물을 교대 적층하지 않고 혼합물만을 적층하여 제조할 수 있다.The mixture thus prepared is alternately laminated together with the carbon fabric to form a green body of a sandwich structure (S110). Carbon fabrics can be plain, runner or twill. Here, as another method of producing a molded article, it is possible to manufacture by only laminating the mixture without alternating laminating the carbon fabric.

이후 제조된 성형체를 성형 몰드에 장입한 후, 80 ~ 250℃ 열과 1 ~ 20㎫의 압력을 동시에 가하여 탄소섬유 강화 수지 복합체를 제조한다. 이때 제조된 탄소섬유 강화 수지 복합체는 겉보기 밀도 1.2 ~ 1.6g/㎤ 그리고 겉보기 기공율 1 ~ 20%의 값을 가진다.(S110)(S120)(S130) Thereafter, the prepared molded product is charged into a molding mold, and then a carbon fiber reinforced resin composite is prepared by simultaneously applying 80 to 250 ° C. heat and a pressure of 1 to 20 MPa. At this time, the carbon fiber reinforced resin composite prepared had a value of an apparent density of 1.2 to 1.6 g / cm 3 and an apparent porosity of 1 to 20%. (S110) (S120) (S130)

이상의 탄소섬유 강화 수지 복합체의 제조방법은 본 출원인이 출원한 한국특허출원번호 1995-0069130과 한국특허출원번호 1997-0023344에 기재된 기술적 내용을 다른 실시예로 응용하여 적용할 수 있다.The above method for producing a carbon fiber reinforced resin composite may be applied by applying the technical details described in Korean Patent Application No. 1995-0069130 and Korean Patent Application No. 1997-0023344 filed by the present applicant in another embodiment.

다음으로 급속 열구배 화학기상 침투공정으로 증착하는 단계(S140)는 제조된 탄소섬유 강화 수지 복합체를 불활성 가스 분위기 하에서 700 ~ 2200℃의 온도로 열처리한 후, 급속 열구배 화학기상 침투 공정을 진행하여 탄소섬유 강화 탄소 복합체를 제조하는 단계이다.Next, the step (S140) of depositing by a rapid thermal gradient chemical vapor infiltration process heat-treats the prepared carbon fiber reinforced resin composite at a temperature of 700 to 2200 ° C. under an inert gas atmosphere, and then performs a rapid thermal gradient chemical vapor penetration process. A step of preparing a carbon fiber reinforced carbon composite.

구체적으로 설명하면 본 발명의 급속 열구배 화학기상 침투 공정은, 밀도 1.3g/㎤ 이상의 치밀한 탄소섬유 강화 탄소 복합체 제조를 위한 것으로, 이 급속 열구배 화학기상 침투 공정은 증착시켜야 할 영역을 적어도 3곳 이상으로 나누어서 각 구간에서 증착속도를 제어하여 보다 급속하게 증착이 이루어지도록 하는 것이다. 이때의 증착속도 제어는 화학기상증착장치 내부에 설치된 열전대를 성형체의 내부에서 외부로 점차 빠른 속도로 이동시켜 증착을 수행한다.Specifically, the rapid thermal gradient chemical vapor penetration process of the present invention is for producing a dense carbon fiber-reinforced carbon composite having a density of 1.3 g / cm 3 or more, and the rapid thermal gradient chemical vapor penetration process includes at least three regions to be deposited. By dividing the above, the deposition rate is controlled in each section so that the deposition is performed more rapidly. At this time, the deposition rate control is performed by moving the thermocouple installed inside the chemical vapor deposition apparatus at a high speed gradually from the inside of the molded body to the outside.

즉 도 4에 도시된 바와 같이 반응기(300) 내부에 탄소섬유 강화 수지 복합체(500)를 설치하고, 중앙부에 발열체(400)를 설치한다. 그리고 공정가스로 탄화수소가스를 공급하며 실시한다. 그리고 증착속도 제어는 상술한 바와 같이 열전대(미도시)를 사용하여 실시하며, 증착은 내부에서 외부로 이루어진다. That is, as shown in FIG. 4, a carbon fiber reinforced resin composite 500 is installed in the reactor 300, and a heating element 400 is installed in the center. And it carries out supplying hydrocarbon gas to process gas. As described above, the deposition rate control is performed using a thermocouple (not shown), and the deposition is performed from the inside to the outside.

그리고 도면에 도시된 증착속도 화살표는 짧은 것이 증착속도가 느리다는 것을 표시하고, 긴 것이 증착속도가 빠름을 표시한다. 그리고 T1 부분이 고온이고 T2 부분이 저온을 나타내며, 이것은 열구배가 유도되는 것을 나타낸다. In addition, the deposition rate arrow shown in the drawing indicates that the shorter one indicates that the deposition rate is slower, and the longer one indicates that the deposition rate is faster. And the T1 portion is hot and the T2 portion is cold, indicating that a thermal gradient is induced.

이때의 증착속도는 0.5 ~ 3.0 mm/hr의 범위로 내부에서 외부로 증착한다. 일예로 영역을 내부, 중간부 그리고 외부로 나눈 후 내부를 1.0mm/hr로 증착하고, 중간부를 1.5mm/hr로 증착하고, 외부를 2.0mm/hr로 증착하여 보다 신속하게 증착이 이루어지도록 한다. 이때 내부에서 증착속도를 느리게 한 것으로 성형체의 내부에서 증착이 외부보다 상대적으로 늦어지기 때문이다.The deposition rate at this time is deposited from the inside to the outside in the range of 0.5 ~ 3.0 mm / hr. For example, after dividing the area into the inside, the middle part, and the outside, the inside is deposited at 1.0 mm / hr, the middle part is deposited at 1.5 mm / hr, and the outside is deposited at 2.0 mm / hr for faster deposition. . At this time, the deposition rate is slowed in the inside because the deposition in the molded body is relatively slower than the outside.

이와 같이 증착속도를 제어하면, 복잡한 공정과 긴 제조 시간 때문에 많은 제조비용을 요구하는 등온/등압 화학기상침투법, 압력구배 화학기상침투법, 그리고 기존의 등속 열구배 화학기상침투법 등 기존의 모든 화학기상침투 공정에 비해 제조공정과 제조비용을 혁신적으로 개선할 수 있다.By controlling the deposition rate in this way, all of the existing methods, such as isothermal / isopressure chemical vapor permeation, pressure gradient chemical vapor permeation, and conventional isothermal thermal gradient chemical vapor permeation, which require high manufacturing costs due to complex processes and long production times. Compared to chemical vapor infiltration process, manufacturing process and manufacturing cost can be improved.

이 급속 열구배 화학기상침투 공정은 본 출원인의 특허권인 한국등록특허 제 0198154 호인 열구배 화학기상침투 공정에 비해 증착속도를 5 ~ 10배 이상으로 빠르고, 치밀화 하게 진행함으로써 탄소섬유 표면에 5 ∼ 100㎛ 정도의 열분해 탄소층을 형성시킬 수 있다.This rapid thermal gradient chemical vapor permeation process is 5 to 10 times faster and denser than the thermal gradient chemical vapor permeation process of Korean Patent No. 0198154, which is the applicant's patent. It is possible to form a pyrolytic carbon layer on the order of μm.

그리고 이때 형성된 열분해 탄소층은 액상 규소 함침 공정 시에, 액상 규소와 반응하여 탄화규소 기지상을 형성하는 반응층으로 작용한다. And the pyrolysis carbon layer formed at this time acts as a reaction layer to form a silicon carbide matrix phase by reacting with the liquid silicon in the liquid silicon impregnation process.

이러한 본 발명의 급속 열구배 화학기상침투 공정으로 제조된 탄소섬유 강화 수지 복합체는 1.0 ∼ 1.7g/㎤의 겉보기 밀도와 5 ∼ 30%의 겉보기 기공율 값을 가진다.The carbon fiber reinforced resin composite prepared by the rapid thermal gradient chemical vapor penetration process of the present invention has an apparent density of 1.0 to 1.7 g / cm 3 and an apparent porosity value of 5 to 30%.

다음으로 액상 규소 침투 공정은 급속 열구배 화학기상침투 공정으로 제조된 탄소섬유 강화 탄소 복합체를 1㎛∼10㎜ 입자 크기 범위의 규소 분말 위에 위치시킨다.Next, the liquid silicon infiltration process places a carbon fiber reinforced carbon composite prepared by a rapid thermal gradient chemical vapor permeation process on silicon powder in a particle size range of 1 μm to 10 mm.

이때의 공정 조건은 진공 분위기 하에서 규소의 녹는점인 1410℃ 이상의 온도로 가열한다. 1410℃ 이상의 고온에서 용융된 규소는 탄소섬유 강화 탄소 복합체 내에 존재하는 기공의 모세관력에 의해 불과 몇 분 내에 대부분의 기공을 채우고, 이와 동시에 탄소섬유 위의 탄소 반응층과 반응하여 탄화규소로 합성된다. 이렇게 최종 제조된 탄소섬유 강화 세라믹 복합체는 30 ∼ 60wt%의 탄소, 35 ∼ 60wt%의 탄화규소 그리고 5wt% 이하의 미반응 규소로 이루어진다.Process conditions at this time are heated to the temperature of 1410 degreeC or more which is the melting point of silicon in a vacuum atmosphere. Silicon melted at a high temperature of 1410 ° C. or higher fills most of the pores in only a few minutes by capillary force of pores present in the carbon fiber reinforced carbon composite, and at the same time, it is synthesized into silicon carbide by reacting with the carbon reaction layer on the carbon fiber. . The final carbon fiber reinforced ceramic composite thus prepared is composed of 30 to 60 wt% carbon, 35 to 60 wt% silicon carbide and 5 wt% or less unreacted silicon.

다음으로 도 2에 도시된 바와 같이 출발물질로 탄소 펠트 프리폼으로 된 성형체를 이용하여 탄소섬유 강화 세라믹 복합체를 제조할 수 있다.Next, as shown in FIG. 2, a carbon fiber reinforced ceramic composite may be manufactured using a molded body made of a carbon felt preform as a starting material.

먼저 X, Y, Z 3축 방향으로 보강한 탄소 펠트 프리폼을 제조(S200)하는데, 구체적으로 설명하면, 옥시펜, 펜, 레이온, 핏치계 등의 탄소계 섬유를 멘드렐에 감아 일 방향 탄소 매트를 제작하며, 이 방법으로 제작된 탄소 매트를 적층한다. 적층 방법은 0°/+60°/-60°와 같은 준등방성으로 교대 적층한다.First, the carbon felt preform reinforced in the X, Y, Z triaxial directions is manufactured (S200). Specifically, the carbon fiber such as oxyphen, pen, rayon, and pitch system is wound around the mandrel to form a one-way carbon mat. To produce a carbon mat laminated in this manner. The lamination method alternately laminates in anisotropic manner, such as 0 ° / + 60 ° / -60 °.

그리고 적층을 최소 두 개의 층을 한 후 니들을 이용하여 펀칭하여 각 층들을 Z축 방향으로 보강하며 상기 공정을 반복하여 두께 30mm 이상의 펠트 프리폼을 제작한다.After laminating at least two layers, punching using needles reinforces each layer in the Z-axis direction, and repeats the above process to produce a felt preform having a thickness of 30 mm or more.

이 펠트 프리폼의 섬유 부피는 약 10 ~ 55%로 제작하며, 한 층의 두께는 약 0.1mm 이하, Z축의 섬유 길이는 10mm 이하이며 섬유비는 약 10%로 제작한다. 그리고 Z축은 15penetration/㎤ 밀도의 니들을 사용할 수 있다.The fiber volume of this felt preform is about 10-55%, the thickness of one layer is about 0.1mm or less, the Z-axis fiber length is 10mm or less, and the fiber ratio is about 10%. In addition, the Z axis may use a needle having a density of 15 penetration / cm 3.

이후 탄소 펠트 프리폼의 불순물을 제거하기 위하여 1700℃이상, 진공분위기 하에서 열처리를 수행한다. 이러한 탄소 펠트 프리폼 제조 방법에 관한 내용은 본 출원인이 출원한 미국특허출원 US 10-180778과 한국등록특허 제 27788 호의 실시예를 참고기술로 한다.Then, to remove impurities of the carbon felt preform, heat treatment is performed at 1700 ° C. or above in a vacuum atmosphere. For a method of manufacturing the carbon felt preform, reference is made to the examples of the US patent application US 10-180778 and Korean Patent No. 27788 filed by the applicant.

다음으로 급속 열구배 화학기상 침투 공정을 이용하여 탄소섬유 강화 탄소 복합체를 제조(S210)하는데, 이때의 공정은 전술한 첫 번째 공정에서 언급한 급속 열구배 화학기상 침투 공정을 이용하여 탄소섬유 강화 탄소 복합체를 제조(S220)한다.Next, a carbon fiber-reinforced carbon composite is manufactured by using a rapid thermal gradient chemical vapor penetration process (S210), wherein the carbon fiber-reinforced carbon using the rapid thermal gradient chemical vapor penetration process mentioned in the first process described above. To prepare a composite (S220).

그리고 액상 규소 침투 공정을 이용하여 탄소섬유 강화 세라믹 복합체를 제조한다. 이 액상 규소 함침 공정은 전술한 첫 번째 공정 실시 예와 동일하게 적용된다. In addition, a carbon fiber reinforced ceramic composite is manufactured using a liquid silicon infiltration process. This liquid silicon impregnation process is applied in the same manner as the first process embodiment described above.

이하 이상과 같은 방법에 대한 바람직한 실시 예를 설명하기로 한다.Hereinafter, a preferred embodiment of the method as described above will be described.

<실시 예 1><Example 1>

30㎜ 크기로 절단된 탄소섬유 30wt%, 페놀 수지 40wt%, 탄소 분말 5wt% 그리고 탄화규소분말 5wt%의 혼합물을 만들어 20wt%의 주자직 형태의 탄소직물과 교대 적층하여 성형체를 제조하였다. 제조된 성형체를 성형 몰드에 넣고 2㎫의 압력으로 10분 동안 가압과 동시에 경화시켜 탄소섬유 강화 수지 복합체를 제조하였다.A mixture of 30 wt% carbon fiber cut to 30 mm, 40 wt% phenol resin, 5 wt% carbon powder, and 5 wt% silicon carbide powder was made and alternately laminated with a 20 wt% carbon fiber in the form of a main fabric. The prepared molded article was placed in a molding mold and cured simultaneously with pressing at a pressure of 2 MPa for 10 minutes to prepare a carbon fiber reinforced resin composite.

상기의 탄소섬유 강화 수지 복합체를 불활성 가스 분위기 하에서 고온 열처리하였다. 그리고 급속 열구배 화학기상침투 공정조건에서 열분해 탄소를 증착시켜 탄소섬유 강화 탄소 복합체를 제조하였다. The carbon fiber reinforced resin composite was subjected to high temperature heat treatment under an inert gas atmosphere. And carbon fiber reinforced carbon composite was prepared by depositing pyrolysis carbon under rapid thermal gradient chemical vapor permeation process conditions.

상기와 같이 제조된 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층하고, 진공 분위기 하에서 1550℃ 온도로 가열하여 액상 규소를 함침시켜 탄소섬유 강화 탄소 세라믹 복합체를 제조하였다. 이때 제조된 탄소섬유 강화 세라믹 복합체의 물성은 표 1과 같다.The carbon fiber reinforced carbon composite prepared as described above was laminated on silicon powder, and heated to 1550 ° C. under vacuum atmosphere to impregnate liquid silicon to prepare a carbon fiber reinforced carbon ceramic composite. At this time, the physical properties of the prepared carbon fiber reinforced ceramic composite are shown in Table 1.

<실시 예 2><Example 2>

30㎜ 크기로 절단된 탄소섬유 55wt%, 페놀 수지 35wt%, 탄소 분말 5wt% 그리고 탄화규소분말 5wt%의 혼합물을 만들어 성형체를 제조하였다. 실시 예 2에서는 탄소직물을 이용한 교대 적층은 하지 않았다. 제조된 성형체를 성형 몰드에 넣고 2㎫의 압력으로 10분 동안 가압과 동시에 경화시켜 탄소섬유 강화 수지 복합체를 제조하였다.A molded article was made by making a mixture of 55 wt% carbon fiber, 35 wt% phenol resin, 5 wt% carbon powder, and 5 wt% silicon carbide powder cut into a size of 30 mm. In Example 2, alternating lamination using a carbon fabric was not performed. The prepared molded article was placed in a molding mold and cured simultaneously with pressing at a pressure of 2 MPa for 10 minutes to prepare a carbon fiber reinforced resin composite.

상기의 탄소섬유 강화 수지 복합체를 불활성 가스 분위기 하에서 고온 열처리하였다. 그리고 급속 열구배 화학기상침투 공정조건에서 열분해 탄소를 증착시켜 탄소섬유 강화 탄소 복합체를 제조하였다. The carbon fiber reinforced resin composite was subjected to high temperature heat treatment under an inert gas atmosphere. And carbon fiber reinforced carbon composite was prepared by depositing pyrolysis carbon under rapid thermal gradient chemical vapor permeation process conditions.

상기와 같이 제조된 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층하고, 진공 분위기 하에서 1550℃ 온도로 가열하여 액상 규소를 함침시켜 탄소섬유 강화 탄소 세라믹 복합체를 제조하였다. 제조된 탄소섬유 강화 세라믹 복합체의 물성은 표 1과 같다.The carbon fiber reinforced carbon composite prepared as described above was laminated on silicon powder, and heated to 1550 ° C. under vacuum atmosphere to impregnate liquid silicon to prepare a carbon fiber reinforced carbon ceramic composite. Physical properties of the prepared carbon fiber reinforced ceramic composite are shown in Table 1.

<실시 예 3>Example 3

320K 옥시펜 섬유를 멘드렐에 감아 일 방향 탄소 매트를 제작하여, 상기 방법으로 제작된 탄소 매트를 적층하였다. 적층 방법은 0°/+60°/-60°의 방법으로 교대 적층하였다. A 320K oxyphene fiber was wound around the mandrel to produce a unidirectional carbon mat, and the carbon mat produced by the above method was laminated. The lamination method alternately laminated by the method of 0 degrees / + 60 degrees / -60 degrees.

적층을 최소 두 개의 층을 한 후 니들을 이용하여 펀칭하여 각 층들을 Z축 방향으로 보강을 하며, 상기 공정을 반복하여 두께 30mm의 프리폼을 제작하였다. 프리폼의 옥시펜 섬유 부피비는 약 45%로 제작하였으며, 한 층의 두께는 약 0.9mm, z축의 섬유비는 약 10%로 제작하였다. After stacking at least two layers, punching was performed using a needle to reinforce each layer in the Z-axis direction, and the above process was repeated to prepare a preform having a thickness of 30 mm. The oxyphene fiber volume ratio of the preform was made to about 45%, the thickness of one layer was about 0.9mm, the fiber ratio of the z-axis was made to about 10%.

상기와 같이 제작한 프리폼을 1700℃, 진공분위기 하에서 열처리하여 불순물을 제거하였다. The preform prepared as described above was heat treated under vacuum atmosphere at 1700 ° C. to remove impurities.

제조된 탄소 펠트 프리폼을 급속 열구배 화학기상침투 공정조건에서 열분해 탄소를 증착시켜 탄소섬유 강화 탄소 복합체를 제조하였다. Carbon fiber reinforced carbon composites were prepared by depositing pyrolyzed carbon on the prepared carbon felt preform under rapid thermal gradient chemical vapor permeation process conditions.

상기와 같이 제조된 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층하고, 진공 분위기 하에서 1550℃ 온도로 가열하여 액상 규소를 함침시켜 탄소섬유 강화 탄소 세라믹 복합체를 제조하였다. 제조된 탄소섬유 강화 세라믹 복합체의 물성은 표 1과 같다.The carbon fiber reinforced carbon composite prepared as described above was laminated on silicon powder, and heated to 1550 ° C. under vacuum atmosphere to impregnate liquid silicon to prepare a carbon fiber reinforced carbon ceramic composite. Physical properties of the prepared carbon fiber reinforced ceramic composite are shown in Table 1.

<비교 예 1><Comparative Example 1>

130mm 크기로 절단된 탄소섬유 54wt%를 페놀 수지 36wt%, 탄소 분말 10wt%와 혼합하여 혼합물을 만들어 성형 몰드에 넣고 3㎫의 압력으로 가압과 동시에 경화시켜 탄소섬유 강화 수지 복합체를 제조하였다.A carbon fiber reinforced resin composite was prepared by mixing 54 wt% of carbon fiber cut to 130 mm in size with 36 wt% of phenol resin and 10 wt% of carbon powder, putting the mixture into a molding mold and curing it under pressure at a pressure of 3 MPa.

상기의 탄소섬유 강화 수지 복합체를 불활성 가스 분위기 하에서, 900℃로 열처리하여 탄소섬유 강화 수지 복합체를 제조하였다. 이와 같이 제조한 탄소섬유 강화 수지 복합체를 규소 분말 위에 적층하고, 진공 분위기 하에서 1600℃ 온도로 가열하여 액상 규소를 함침시켜 탄소섬유 강화 탄소 세라믹 복합체를 제조하였다. 제조된 탄소섬유 강화 세라믹 복합체의 물성은 표 1과 같다.The carbon fiber reinforced resin composite was heat-treated at 900 ° C. under an inert gas atmosphere to prepare a carbon fiber reinforced resin composite. The carbon fiber reinforced resin composite thus prepared was laminated on silicon powder, and heated to 1600 ° C. under vacuum atmosphere to impregnate liquid silicon to prepare a carbon fiber reinforced carbon ceramic composite. Physical properties of the prepared carbon fiber reinforced ceramic composite are shown in Table 1.

시편Psalter 겉보기 밀도Apparent density 겉보기 기공율Apparent porosity 굴곡강도Flexural strength 열전도도Thermal conductivity 마찰계수Coefficient of friction (g/㎤)(g / cm 3) (%)(%) (㎫)(MPa) W/mKW / mK 실시 예1Example 1 2.32.3 0.50.5 125125 4040 0.450.45 실시 예2Example 2 2.42.4 0.30.3 120120 4242 0.450.45 실시 예3Example 3 2.32.3 0.70.7 140140 4040 0.430.43 비교 예1Comparative Example 1 2.12.1 0.90.9 8080 3535 0.400.40

전술한 바와 같은 본 발명에 따른 탄소섬유 강화 세라믹 복합체 제조방법은 급속 열구배 화학기상침투공정으로 제조한 탄소섬유 강화 탄소 복합체의 탄소섬유는 균일하게 증착된 열분해 탄소층을 가지고 있으며, 이러한 열분해 탄소층은 액상 규소 함침공정 시, 규소와 반응하여 탄화규소로 합성되는데, 열분해 탄소층은 액상 규소 함침공정에서 가장 문제점인 탄소섬유의 침식을 막아주는 섬유 보호층으로의 역할뿐만 아니라, 탄화규소를 합성하는 반응층으로서 우수한 특성을 가지고, 또한 탄소섬유와 탄화규소 기지상 사이에 새로운 계면을 형성하여 탄소섬유 강화 세라믹 복합체의 기계적 물성 향상시킨다.The carbon fiber reinforced ceramic composite manufacturing method according to the present invention as described above, the carbon fiber of the carbon fiber reinforced carbon composite prepared by the rapid thermal gradient chemical vapor permeation process has a uniformly deposited pyrolytic carbon layer, such a pyrolytic carbon layer Silver is synthesized into silicon carbide by reacting with silicon in the liquid silicon impregnation process. The pyrolytic carbon layer is used to synthesize silicon carbide as well as a fiber protective layer that prevents the erosion of carbon fibers, which is the most problematic problem in the liquid silicon impregnation process. It has excellent properties as a reaction layer and also improves the mechanical properties of the carbon fiber reinforced ceramic composite by forming a new interface between the carbon fiber and the silicon carbide matrix.

이러한 본 발명의 제조방법에 따라 제조된 탄소섬유 강화 세라믹 복합체의 미세구조는 도 3에 도시된 바와 같이 탄소섬유 주위의 어두운 회색 부분은 열분해 탄소층(102), 밝은 회색 부분은 탄화규소층(103) 그리고 가장 밝은 부분이 잔류 규소층(104) 이다. 탄소섬유 주위의 열분해 탄소층에 의해 탄소섬유의 침식은 거의 없으며, 열분해 탄소층 주변에 탄화규소가 합성된 것을 알 수 있다.As shown in FIG. 3, the microstructure of the carbon fiber-reinforced ceramic composite prepared according to the method of the present invention is a dark gray portion around the carbon fiber pyrolysis carbon layer 102, the light gray portion is a silicon carbide layer 103 And the brightest part is the residual silicon layer 104. There is little erosion of the carbon fiber by the pyrolytic carbon layer around the carbon fiber, and it can be seen that silicon carbide is synthesized around the pyrolytic carbon layer.

그리고 본 발명에서 급속 열구배 화학기상 침투공정은 탄소섬유 강화 탄소 복합체의 제조 시간을 고려할 때, 기존의 화학기상 침투공정에 비해 10배 이상, 종래의 열구배 화학침투공정에 비해 5배 이상의 증착속도로 열분해 탄소층을 증착시킬 수 있으므로 탄소섬유 강화 탄소 복합체의 제조비용을 현저히 줄일 수 있다.In the present invention, the rapid thermal gradient chemical vapor infiltration process has a deposition rate of 10 times or more compared to the conventional chemical vapor infiltration process and 5 times or more than the conventional thermal gradient chemical infiltration process, considering the manufacturing time of the carbon fiber reinforced carbon composite. Since the pyrolysis carbon layer can be deposited, the manufacturing cost of the carbon fiber reinforced carbon composite material can be significantly reduced.

또한, 탄소 함유 액상 전구체를 이용한 탄소섬유 강화 수지 복합체 제조공정에서와 같은 반복적인 밀도화 공정없이, 단 일회의 공정으로 탄소섬유 강화 수지 복합체를 제조할 수 있고, 급속 열구배 화학기상 침투공정과 액상 규소 함침공정의 조합으로 탄소섬유 강화 세라믹 복합체의 제조공정을 단순화하고 제조비용을 현저히 줄일 수 있으므로, 다양한 분야에서 탄소섬유 강화 세라믹 복합체의 응용이 가능하다.In addition, the carbon fiber reinforced resin composite can be produced in a single process without the repetitive density process as in the carbon fiber reinforced resin composite manufacturing process using the carbon-containing liquid precursor, and the rapid thermal gradient chemical vapor penetration process and liquid phase Since the combination of the silicon impregnation process can simplify the manufacturing process of the carbon fiber reinforced ceramic composite and significantly reduce the manufacturing cost, it is possible to apply the carbon fiber reinforced ceramic composite in various fields.

그리고 0.3 ~ 150㎜ 크기의 탄소섬유를 탄소 함유 폴리머 전구체, 탄화규소 분말 그리고 탄소 분말과 혼합한 후 탄소직물과 교대 적층하거나 혼합물만으로 제조한 성형체는 분산과 혼합이 균질하며, 탄소섬유 및 탄소직물의 1차 표면층을 형성하는데 우수한 특성을 가진다. 또한 1000℃ 이상의 고온 열처리 시 수축이 거의 일어나지 않으므로 치수 변화가 없어 치수 및 형상 가공에 필요한 비용을 대폭 절감할 수 있다.In addition, a molded article prepared by mixing carbon fibers having a size of 0.3 to 150 mm with a carbon-containing polymer precursor, a silicon carbide powder, and a carbon powder, and then alternately laminating the carbon fabric or using only a mixture is homogeneous in dispersion and mixing. It has excellent properties in forming the primary surface layer. In addition, since shrinkage hardly occurs during the high temperature heat treatment of 1000 ° C. or higher, there is no change in dimensions, thereby greatly reducing the cost required for dimension and shape processing.

이상과 같은 본 발명에 따른 탄소섬유 강화 세라믹 복합체는 제조방법 탄소섬유 강화 세라믹 복합체의 물성을 향상시키는 효과가 있고, 종래의 모든 화학기상 침투공정에 비해 5 ~ 10배 이상의 증착속도로 열분해 탄소층을 증착할 수 있으므로, 제조공정과 제조시간 그리고 제조비용 면에서 월등히 향상된 효과를 발휘한다.Carbon fiber reinforced ceramic composite according to the present invention as described above has the effect of improving the physical properties of the carbon fiber reinforced ceramic composite manufacturing method, compared to all conventional chemical vapor penetration process 5 to 10 times more than the deposition rate of the pyrolysis carbon layer It can be deposited, which greatly improves the manufacturing process, manufacturing time and manufacturing cost.

도 1은 본 발명에 따른 탄소직물과 탄소섬유 혼합물 이용한 탄소섬유 강화 세라믹 복합체의 제조방법을 도시한 블럭도이다.1 is a block diagram illustrating a method of manufacturing a carbon fiber reinforced ceramic composite using a carbon fabric and a carbon fiber mixture according to the present invention.

도 2는 본 발명에 따른 탄소 펠트 프리폼 이용한 탄소섬유 강화 세라믹 복합체의 제조방법을 도시한 블럭도이다.Figure 2 is a block diagram showing a method of manufacturing a carbon fiber reinforced ceramic composite using a carbon felt preform according to the present invention.

도 3은 본 발명에 따른 탄소섬유 강화 세라믹 복합체의 미세구조 사진이다.3 is a microstructure photograph of a carbon fiber reinforced ceramic composite according to the present invention.

도 4는 본 발명에 따른 급속 열구배 화학기상 침투법을 나타낸 개념도이다. Figure 4 is a conceptual diagram showing a rapid thermal gradient chemical vapor infiltration method according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

101...탄소섬유101 ... Carbon Fiber

102...열분해 탄소102 ... Pyrolysis Carbon

103...탄화규소103.Silicon Carbide

104...잔류규소104 ... residual silicon

Claims (21)

탄소섬유와 탄소 함유 폴리머 전구체를 혼합한 혼합물로 성형한 탄소섬유 강화 수지 복합체를 제조하는 단계와;Preparing a carbon fiber reinforced resin composite molded into a mixture of carbon fibers and a carbon-containing polymer precursor; 상기 탄소섬유 강화 수지 복합체를 고온 열처리하여 내부에서 외부로 증착속도를 빠르게 하면서 급속 열구배 화학기상 침투공정으로 열분해 탄소를 증착하여 탄소섬유 강화 탄소 복합체를 제조하는 단계와;Manufacturing a carbon fiber reinforced carbon composite by depositing pyrolytic carbon by a rapid thermal gradient chemical vapor permeation process while increasing the deposition rate from the inside to the outside by high temperature heat treatment of the carbon fiber reinforced resin composite; 상기 탄소섬유 강화 탄소 복합체의 기공으로 액상 규소를 침투시키는 단계로 된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.Method for producing a carbon fiber reinforced ceramic composite, characterized in that the step of infiltrating the liquid silicon into the pores of the carbon fiber reinforced carbon composite. 제 1항에 있어서, 상기 혼합물에는 상기 탄소섬유가 10 ~ 60w%, 상기 탄소 함유 폴리머 전구체가 30 ~ 60wt% 로 포함된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein the mixture comprises 10 to 60 w% of the carbon fiber and 30 to 60 wt% of the carbon-containing polymer precursor. 제 2항에 있어서, 상기 혼합물에는 탄화규소 분말 30wt% 이하, 탄소분말 30wt% 이하가 포함된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 2, wherein the mixture contains 30 wt% or less of silicon carbide powder and 30 wt% or less of carbon powder. 제 2항 또는 제 3항에 있어서, 상기 탄소섬유 강화 수지 복합체는 상기 혼합물과 탄소직물이 교대로 적층된 것인 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 2 or 3, wherein the carbon fiber reinforced resin composite is a carbon fiber reinforced ceramic composite manufacturing method characterized in that the mixture and the carbon fabric laminated alternately. 제 4항에 있어서, 상기 성형체에는 혼합과정에서 혼합된 상기 혼합물에 의하여 탄소섬유와 규소의 반응을 막아주는 1차 표면층이 형성되고, 상기 1차 표면층은 상기 액상 규소를 침투시키는 단계에서 상기 액상 규소와 화학 반응하여 탄화규소와 규소로 이루어진 세라믹 기지층으로 형성되는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The liquid crystal of claim 4, wherein a primary surface layer is formed on the molded body to prevent reaction between carbon fibers and silicon by the mixture mixed in a mixing process, and the primary surface layer is infiltrated with the liquid silicon. And chemically reacting with each other to form a ceramic matrix layer made of silicon carbide and silicon. 제 1항에 있어서, 상기 성형체는 불활성 가스 분위기 하에서 900 ~ 2200℃의 온도로 열처리된 후, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 1차 표면층위에 2차 표면층인 열분해 탄소 기지층이 증착되는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein the molded body is heat-treated at a temperature of 900 ~ 2200 ℃ under an inert gas atmosphere, the pyrolysis carbon base layer is a secondary surface layer on the primary surface layer in the step of depositing by the rapid thermal gradient chemical vapor penetration process Carbon fiber reinforced ceramic composite manufacturing method characterized in that the deposition. 제 1항에 있어서, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 탄화수소 가스를 사용하여 열분해 반응 온도 700 ~ 1200℃, 반응압력 188 ~ 1130torr 범위에서 이루어지는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The carbon fiber reinforced ceramic composite according to claim 1, wherein the pyrolysis reaction temperature is 700 to 1200 ° C and a reaction pressure of 188 to 1130 torr using hydrocarbon gas in the rapid thermal gradient chemical vapor infiltration process. Way. 제 1항에 있어서, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서, 증착 영역을 내부에서 외부로 적어도 복수개로 나누고, 각각의 영역에서 서로 다른 속도로 증착하는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein in the step of depositing by the rapid thermal gradient chemical vapor infiltration process, at least a plurality of deposition areas are divided from inside to outside, and carbon fiber reinforced ceramics are deposited at different rates in each area. Composite manufacturing method. 제 1항에 있어서, 상기 증착 영역은 0.5 ~ 3.0 mm/hr의 증착속도 범위로 내부에서 외부로 증착되는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein the deposition region is deposited from the inside to the outside in a deposition rate range of 0.5 to 3.0 mm / hr. 제 1항에 있어서, 상기 탄소섬유 강화 탄소 복합체는 겉보기 밀도 1.0 ~ 1.7g/㎤, 상기 액상 규소의 침투 경로로 이용되는 열린 기공을 5 ~ 30% 가지는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used as a penetration path of the liquid silicon. . 제 1항에 있어서, 상기 액상 규소를 침투시키는 단계는 상기 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층시키고, 반응기 내부를 100torr 이하로 유지한 후 규소의 녹는점인 1410℃ 이상의 온도로 가열하여 액상 규소를 프리폼 내부로 침투시킴과 동시에 복수개의 탄소층과 화학반응을 유도하는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 1, wherein the infiltration of the liquid silicon is carried out by laminating the carbon fiber-reinforced carbon composite on the silicon powder, maintaining the inside of the reactor at 100torr or less, and then heating the liquid silicon to a temperature of at least 1410 ° C, which is the melting point of silicon. The method of manufacturing a carbon fiber reinforced ceramic composite, which infiltrates into the preform and induces a chemical reaction with the plurality of carbon layers. 탄소 펠트 프리폼을 제조하는 단계와;Preparing a carbon felt preform; 상기 탄소 펠트 프리폼을 내부에서 외부로 증착속도를 빠르게 하면서 급속 열구배 화학기상 침투공정으로 증착하여 탄소섬유 강화 탄소 복합체를 제조하는 단계와;Preparing a carbon fiber-reinforced carbon composite by depositing the carbon felt preform in a rapid thermal gradient chemical vapor penetration process while increasing the deposition rate from the inside to the outside; 상기 탄소섬유 강화 탄소 복합체의 기공으로 액상 규소를 침투시키는 단계로 된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조 방법.Method for producing a carbon fiber reinforced ceramic composite, characterized in that the step of infiltrating the liquid silicon into the pores of the carbon fiber reinforced carbon composite. 제 12항에 있어서, 상기 탄소 펠트 프리폼은 옥시펜, 펜, 레이온, 핏치계 등의 탄소계 섬유 중 어느 하나로 된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.13. The method of claim 12, wherein the carbon felt preform is made of any one of carbon-based fibers such as oxyphen, pen, rayon, and pitch system. 제 12항에 있어서, 상기 탄소 펠트 프리폼은 매트의 적층을 0°/+60°/-60°와 같은 준등방성으로 하며, Z축으로 10mm 이하의 탄소섬유가 보강된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.13. The carbon felt preform according to claim 12, wherein the carbon felt preform has quasi-isotropy such as 0 ° / + 60 ° / -60 °, and carbon fiber reinforcement of 10 mm or less in the Z axis is reinforced. Ceramic composite manufacturing method. 제 12항에 있어서, 상기 탄소 펠트 프리폼에는 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에 의해 5 ~ 100㎛ 두께의 열분해 탄소층이 증착되는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.13. The method of claim 12, wherein the carbon felt preform is deposited with a pyrolytic carbon layer having a thickness of 5 to 100 µm by the deposition by the rapid thermal gradient chemical vapor penetration process. 제 12항에 있어서, 상기 액상 규소를 침투시키는 단계에서 상기 탄소섬유 강화 탄소 복합체에 액상 규소를 함침하여 X, Y, Z 3축으로 탄소섬유가 보강된 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 12, wherein impregnating the carbon fiber reinforced carbon composite with liquid silicon in the step of infiltrating the liquid silicon, the carbon fiber reinforced ceramic composite is characterized in that the carbon fiber reinforced by X, Y, Z triaxial. . 제 12항에 있어서, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서 탄화수소 가스를 사용하여 열분해 반응 온도 700 ~ 1200℃, 반응압력 188 ~ 1130torr 범위에서 이루어지는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The carbon fiber reinforced ceramic composite according to claim 12, wherein the pyrolysis reaction temperature is 700 to 1200 ° C and a reaction pressure of 188 to 1130 torr using hydrocarbon gas in the rapid thermal gradient chemical vapor infiltration process. Way. 제 12항에 있어서, 상기 급속 열구배 화학기상 침투공정으로 증착하는 단계에서, 증착 영역을 내부에서 외부로 적어도 복수개로 나누고, 각각의 영역에서 서로 다른 속도로 증착하는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.13. The method of claim 12, wherein in the step of depositing by the rapid thermal gradient chemical vapor infiltration process, the deposition region is divided into at least a plurality from inside to outside, and carbon fiber reinforced ceramics are deposited at different speeds in each region. Composite manufacturing method. 제 12항에 있어서, 상기 증착 영역은 0.5 ~ 3.0 mm/hr의 증착속도 범위로 내부에서 외부로 증착되는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 12, wherein the deposition region is deposited from the inside to the outside in a deposition rate range of 0.5 to 3.0 mm / hr. 제 12항에 있어서, 상기 탄소섬유 강화 탄소 복합체는 겉보기 밀도 1.0 ~ 1.7g/㎤, 상기 액상 규소의 침투 경로로 이용되는 열린 기공을 5 ~ 30% 가지는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.13. The method of claim 12, wherein the carbon fiber reinforced carbon composite has an apparent density of 1.0 to 1.7 g / cm 3 and 5 to 30% of open pores used as a penetration path of the liquid silicon. . 제 12항에 있어서, 상기 액상 규소를 침투시키는 단계는 상기 탄소섬유 강화 탄소 복합체를 규소 분말 위에 적층시키고, 반응기 내부를 100torr 이하로 유지한 후 규소의 녹는점인 1410℃ 이상의 온도로 가열하여 액상 규소를 상기 탄소 펠트 프리폼 내부로 침투시킴과 동시에 복수개의 탄소층과 화학반응을 유도하는 것을 특징으로 하는 탄소섬유 강화 세라믹 복합체 제조방법.The method of claim 12, wherein the infiltration of the liquid silicon is carried out by laminating the carbon fiber-reinforced carbon composite on the silicon powder, maintaining the inside of the reactor at 100torr or less, and then heating the liquid silicon to a temperature of at least 1410 ° C, which is the melting point of silicon. Infiltrating the inside of the carbon felt preform and at the same time induce a chemical reaction with a plurality of carbon layer carbon fiber reinforced ceramic composite manufacturing method.
KR1020040038589A 2004-05-28 2004-05-28 The method of producing carbon fiber reinforced ceramic matrix composites KR100624094B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040038589A KR100624094B1 (en) 2004-05-28 2004-05-28 The method of producing carbon fiber reinforced ceramic matrix composites
PCT/KR2005/001581 WO2005115945A1 (en) 2004-05-28 2005-05-27 Method of producing carbon fiber reinforced ceramic matrix composites
JP2007510630A JP2007535461A (en) 2004-05-28 2005-05-27 Process for producing carbon fiber reinforced ceramic composites
EP05746091A EP1758837A4 (en) 2004-05-28 2005-05-27 Method of producing carbon fiber reinforced ceramic matrix composites
US11/579,445 US20080143005A1 (en) 2004-05-28 2005-05-27 Method of Producing Carbon Fiber Reinforced Ceramic Matrix Composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040038589A KR100624094B1 (en) 2004-05-28 2004-05-28 The method of producing carbon fiber reinforced ceramic matrix composites

Publications (2)

Publication Number Publication Date
KR20050113090A true KR20050113090A (en) 2005-12-01
KR100624094B1 KR100624094B1 (en) 2006-09-19

Family

ID=35450796

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040038589A KR100624094B1 (en) 2004-05-28 2004-05-28 The method of producing carbon fiber reinforced ceramic matrix composites

Country Status (5)

Country Link
US (1) US20080143005A1 (en)
EP (1) EP1758837A4 (en)
JP (1) JP2007535461A (en)
KR (1) KR100624094B1 (en)
WO (1) WO2005115945A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678521A (en) * 2019-01-29 2019-04-26 潍坊工商职业学院 A kind of preparation method that silicon carbide is ceramic layered
CN111548177A (en) * 2020-04-23 2020-08-18 山东工业陶瓷研究设计院有限公司 Preparation method of carbon fiber reinforced ceramic matrix composite and pyrolytic carbon interface layer
CN113004041A (en) * 2021-03-09 2021-06-22 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof
CN114225843A (en) * 2021-12-06 2022-03-25 中南大学 Zone-limited directional flow full-saturation infiltration reactor and method for preparing carbon/carbon composite material brake disc
CN115231938A (en) * 2022-07-22 2022-10-25 常州翊翔炭材科技有限公司 Preparation method of carbon/carbon composite material brake disc
CN115448744A (en) * 2022-09-14 2022-12-09 湖南博云新材料股份有限公司 Preparation method of carbon/carbon throat insert
CN115536419A (en) * 2022-10-14 2022-12-30 湖南博云新材料股份有限公司 Aviation carbon-ceramic brake material and preparation method thereof
CN116283326A (en) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof
CN116803951A (en) * 2023-07-19 2023-09-26 北京亦盛精密半导体有限公司 High-purity high-resistivity silicon carbide workpiece and forming process thereof
CN117447222A (en) * 2023-12-26 2024-01-26 富优特(山东)新材料科技有限公司 Preparation method of carbon fiber reinforced carbon-based composite material

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428671B (en) * 2005-07-29 2011-08-31 Surface Transforms Plc Method for the manufacture of carbon fibre-reinforced ceramic brake or clutch disks
DE102006026549A1 (en) 2006-06-08 2007-12-13 Audi Ag Process for producing friction discs of ceramic materials with improved friction layer
CN101028752B (en) * 2007-04-17 2010-04-14 洛阳鹏飞耐火耐磨材料有限公司 Abrasive ceramic member preparation method
US8281603B2 (en) * 2008-08-11 2012-10-09 United Technologies Corporation Fastener assembly for connecting rocket engine nozzles
TWI482329B (en) * 2012-08-23 2015-04-21 Atomic Energy Council A charging/discharging apparatus having two flows
KR101071878B1 (en) 2009-06-08 2011-10-10 주식회사 씨알-텍 Carbon composite, manufacturing method thereof, disk for clutch, and manufacturing method thereof
JP5504827B2 (en) * 2009-10-30 2014-05-28 日立化成株式会社 Disc-shaped friction member
EP2546196A1 (en) * 2010-03-11 2013-01-16 Mitsubishi Chemical Corporation Method and jig for producing silicon
JP5413384B2 (en) * 2011-02-28 2014-02-12 新日鐵住金株式会社 Steel making equipment member and method for producing steel making equipment member
DE102011006850A1 (en) * 2011-04-06 2012-10-11 Schunk Kohlenstofftechnik Gmbh Method for producing a resistance heating element and resistance heating element
US9181134B1 (en) 2011-04-27 2015-11-10 Israzion Ltd. Process of converting textile solid waste into graphite simple or complex shaped manufacture
US8597772B2 (en) 2011-09-20 2013-12-03 Honeywell International Inc. Corrugated carbon fiber preform
KR101318113B1 (en) * 2011-12-05 2013-10-18 주식회사 데크 Refractory composite and method for manufacturing the same
CN102584308B (en) * 2012-02-03 2013-04-24 西北工业大学 Preparation method of carbon fiber/zirconia nano-wire hybrid reinforced material
US10710341B2 (en) 2012-05-16 2020-07-14 Petroceramics S.P.A. Shaped composite material
WO2014081005A1 (en) * 2012-11-26 2014-05-30 東洋炭素株式会社 Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
KR102059879B1 (en) * 2013-02-22 2019-12-31 한국에너지기술연구원 Fiber reinforced ceramic composite materials honeycomb and method for preparing the same
JP6027929B2 (en) * 2013-03-29 2016-11-16 大陽日酸株式会社 Method for adjusting vapor phase growth apparatus
US20160229753A1 (en) * 2013-09-19 2016-08-11 United Technologies Corporation Method of fabricating a ceramic article
FR3024054B1 (en) * 2014-07-28 2020-07-10 Total Raffinage Chimie INJECTOR IN CERAMIC MATERIAL FOR FLUID CATALYTIC CRACKING UNIT
FR3024050A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie FUEL INJECTION ELEMENT IN A REGENERATOR OF A FLUID CATALYTIC CRACKING UNIT
FR3024049A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie DEVICE FOR TERMINATING A REACTOR OF A FLUID CATALYTIC CRACKING UNIT
FR3024051A1 (en) * 2014-07-28 2016-01-29 Total Raffinage Chimie CERAMIC MATERIAL PLATE ROOM FOR FLUID CATALYTIC CRACKING UNIT
FR3024053B1 (en) * 2014-07-28 2020-07-24 Total Raffinage Chimie GAS INJECTION ELEMENT IN A REGENERATOR OF A FLUID CATALYTIC CRACKING UNIT
US9677845B2 (en) 2015-04-02 2017-06-13 Lancer Systems L.P. Firearm handguard having heat-reducing features
US10401028B2 (en) * 2015-06-05 2019-09-03 Rolls-Royce American Technologies, Inc. Machinable CMC insert
CN105040925B (en) * 2015-07-01 2018-07-10 内蒙古筑友建材有限公司 A kind of impact-resistant abrasion-proof ceramic coating structure and its construction method
CN105016760B (en) * 2015-07-09 2017-04-05 西北工业大学 A kind of preparation method of the modified C/C composites of superhigh temperature ceramics
WO2017103199A1 (en) * 2015-12-16 2017-06-22 Basf Se Reactor for carrying out heterogeneously catalysed gas phase reactions, and use of the reactor
CN106957181B (en) * 2016-01-11 2019-11-01 山东理工大学 The preparation method of resin dispersion hafnium carbide silicon carbide―carbon fiber friction material
CN105924199B (en) * 2016-04-27 2019-02-19 航天材料及工艺研究所 A kind of fast preparation method of low cost carbon/carbon compound material
US10144675B2 (en) * 2016-10-24 2018-12-04 Honeywell International Inc. Segmented carbon fiber preform
US10365061B1 (en) * 2016-12-29 2019-07-30 Aaron E. Painter Firearm barrel with non-metal outer sleeve
US11179917B2 (en) * 2017-01-09 2021-11-23 General Electric Company CMC ply assembly, CMC article, and method for forming CMC article
JP2018083755A (en) * 2018-01-09 2018-05-31 ペトロチェラミクス ソシエタ ペル アチオニ Shaped composite material
CN108274826A (en) * 2018-01-22 2018-07-13 山东大学 A kind of high temperature resistant erosion resistance carbon fibre reinforced pipe and preparation method thereof
CN108178633B (en) * 2018-01-24 2021-08-17 湖南屹林材料技术有限公司 Skid body material for medium-low speed maglev train and preparation method thereof
IT201800009953A1 (en) 2018-10-31 2020-05-01 Petroceramics Spa Method and assembly of infiltration and rapid vapor deposition of porous components
EP3647459A1 (en) 2018-10-31 2020-05-06 Petroceramics S.p.A. Method and an assembly by chemical vapor infiltration of porous components
KR102309595B1 (en) 2019-09-16 2021-10-06 국방과학연구소 Ceramic matrix composite for transmitting electromagnetic wave and method thereof
CN111348931B (en) * 2020-03-26 2024-02-09 孚迪斯石油化工(葫芦岛)有限公司 Annular carbon/carbon composite material gas phase permeation method
CN112125691A (en) * 2020-09-19 2020-12-25 山东天久高科新材料有限公司 Preparation method of modified carbon-carbon composite material
KR102258338B1 (en) * 2020-11-25 2021-05-31 국방과학연구소 Fabrication Method of Carbon Composite
CN113149683A (en) * 2021-04-29 2021-07-23 上海骐杰碳素材料有限公司 Carbon or carbon ceramic composite material short fiber preform, product and preparation method thereof
CN113858651B (en) * 2021-08-26 2023-03-14 中国航空制造技术研究院 Design method of high-throughput process test flow of fiber reinforced resin matrix composite material
CN114455968B (en) * 2022-02-10 2023-08-29 航天材料及工艺研究所 C/SiC-SiO 2 Composite material and preparation method thereof
CN115385708B (en) * 2022-08-18 2023-07-11 西北工业大学 Preparation method of superhigh temperature ceramic selective area suction filtration modified carbon/carbon composite material and suction filtration device
CN115385710B (en) * 2022-09-05 2023-11-03 华东理工大学 Mixed-woven fiber reinforced porous carbon-based composite material and preparation method thereof
CN115894060B (en) * 2022-10-10 2023-11-14 北京天宜上佳高新材料股份有限公司 Preparation method of carbon fiber brake disc
EP4368852A1 (en) * 2022-11-14 2024-05-15 REBRAKE Ceramic Brake Service GmbH Method for manufacturing friction units
CN116082053B (en) * 2023-02-24 2024-05-03 中南大学 Rapid preparation method of ceramic modified carbon/carbon composite material
CN116332663A (en) * 2023-03-02 2023-06-27 中南大学 Preparation method of carbon/carbon-silicon carbide composite material

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737328A (en) * 1985-07-29 1988-04-12 General Electric Company Infiltration of material with silicon
JP2782892B2 (en) * 1990-01-26 1998-08-06 石川島播磨重工業株式会社 Manufacturing method of composite material
US5067999A (en) * 1990-08-10 1991-11-26 General Atomics Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
JPH0767684B2 (en) * 1991-02-28 1995-07-26 川崎重工業株式会社 Molding method for heat resistant composite materials
US5294489A (en) * 1992-04-02 1994-03-15 General Electric Company Protective coating with reactive interlayer on reinforcement in silicon carbide composite
JPH06247782A (en) * 1993-02-19 1994-09-06 Tokai Carbon Co Ltd Production of oxidation resistant c/c composite material
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
FR2711646B1 (en) * 1993-10-27 1996-02-09 Europ Propulsion Method of chemical vapor infiltration of a pyrocarbon matrix within a porous substrate with establishment of a temperature gradient in the substrate.
DE4409099C2 (en) * 1994-03-17 1997-02-20 Dornier Gmbh Process for producing a fiber composite material with a ceramic matrix and use of such a material
JPH082976A (en) * 1994-06-17 1996-01-09 Ishikawajima Harima Heavy Ind Co Ltd Production of carbon fiber/carbon-based composite material
JP3548605B2 (en) * 1994-08-18 2004-07-28 東海カーボン株式会社 Oxidation-resistant treatment of carbon fiber reinforced carbon composites
FR2732677B1 (en) * 1995-04-07 1997-06-27 Europ Propulsion CHEMICAL STEAM INFILTRATION PROCESS WITH VARIABLE INFILTRATION PARAMETERS
EP0835853A1 (en) * 1996-10-14 1998-04-15 Societe Europeenne De Propulsion Friction element made of carbon/carbon-silicon carbide composite material and method of making it
KR100198152B1 (en) * 1996-10-16 1999-06-15 추호석 A cvd method for manufacturing c/c composites using modified process gas
KR100198154B1 (en) * 1996-10-29 1999-06-15 추호석 A thermal gradient cvd for manufacturing c/c composite, and device thereof
DE19710105A1 (en) * 1997-03-12 1998-09-17 Sgl Technik Gmbh Silicon carbide body reinforced with short graphite fibers
FR2778403B1 (en) * 1998-05-07 2000-08-04 Snecma CARBON / CARBON COMPOSITE MATERIAL HAVING INCREASED OXIDATION RESISTANCE
JP4450919B2 (en) * 1999-02-09 2010-04-14 日本碍子株式会社 Carbon fiber composite material
JP2001048664A (en) * 1999-08-11 2001-02-20 Tokai Carbon Co Ltd Production of carbon fiber-reinforced carbon material
JP2001146485A (en) * 1999-11-15 2001-05-29 Ngk Insulators Ltd Tray for firing powder
KR100447840B1 (en) * 2002-05-20 2004-09-08 주식회사 데크 Manufacturing method for carbon-carbon composites

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678521A (en) * 2019-01-29 2019-04-26 潍坊工商职业学院 A kind of preparation method that silicon carbide is ceramic layered
CN111548177A (en) * 2020-04-23 2020-08-18 山东工业陶瓷研究设计院有限公司 Preparation method of carbon fiber reinforced ceramic matrix composite and pyrolytic carbon interface layer
CN113004041A (en) * 2021-03-09 2021-06-22 贵州木易精细陶瓷有限责任公司 Gradient carbide ceramic and preparation method thereof
CN114225843A (en) * 2021-12-06 2022-03-25 中南大学 Zone-limited directional flow full-saturation infiltration reactor and method for preparing carbon/carbon composite material brake disc
CN114225843B (en) * 2021-12-06 2022-08-05 中南大学 Zone-limited directional flow full-saturation infiltration reactor and method for preparing carbon/carbon composite material brake disc
CN115231938A (en) * 2022-07-22 2022-10-25 常州翊翔炭材科技有限公司 Preparation method of carbon/carbon composite material brake disc
CN115448744A (en) * 2022-09-14 2022-12-09 湖南博云新材料股份有限公司 Preparation method of carbon/carbon throat insert
CN115448744B (en) * 2022-09-14 2023-09-12 湖南博云新材料股份有限公司 Preparation method of carbon/carbon throat liner
CN115536419B (en) * 2022-10-14 2023-09-29 湖南博云新材料股份有限公司 Aviation carbon ceramic brake material and preparation method thereof
CN115536419A (en) * 2022-10-14 2022-12-30 湖南博云新材料股份有限公司 Aviation carbon-ceramic brake material and preparation method thereof
CN116283326A (en) * 2023-02-22 2023-06-23 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof
CN116283326B (en) * 2023-02-22 2024-04-16 陕西天策新材料科技有限公司 Carbon fiber reinforced ceramic encapsulated graphite heat-conducting plate and preparation method thereof
CN116803951A (en) * 2023-07-19 2023-09-26 北京亦盛精密半导体有限公司 High-purity high-resistivity silicon carbide workpiece and forming process thereof
CN116803951B (en) * 2023-07-19 2024-03-05 北京亦盛精密半导体有限公司 High-purity high-resistivity silicon carbide workpiece and forming process thereof
CN117447222A (en) * 2023-12-26 2024-01-26 富优特(山东)新材料科技有限公司 Preparation method of carbon fiber reinforced carbon-based composite material
CN117447222B (en) * 2023-12-26 2024-04-02 富优特(山东)新材料科技有限公司 Preparation method of carbon fiber reinforced carbon-based composite material

Also Published As

Publication number Publication date
EP1758837A1 (en) 2007-03-07
WO2005115945A1 (en) 2005-12-08
KR100624094B1 (en) 2006-09-19
JP2007535461A (en) 2007-12-06
EP1758837A4 (en) 2010-04-14
US20080143005A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
KR20050113090A (en) The method of producing carbon fiber reinforced ceramic matrix composites
US7374709B2 (en) Method of making carbon/ceramic matrix composites
US8039053B2 (en) Method for making a part of composite material with ceramic matrix and resulting part
JP6155439B2 (en) Manufacturing method of parts made of CMC material
CN110330351B (en) Preparation method and product of SiC fiber reinforced SiC ceramic-based part
CA2666134C (en) Process for manufacturing a thermostructural composite part
Naslain Materials design and processing of high temperature ceramic matrix composites: state of the art and future trends
US8101272B1 (en) Armor shell and fabrication methods
CN104507676B (en) Shaped composite material
KR20100010023A (en) A method of fabricating a thermostructural composite material part, and a part obtained thereby
JPS605070A (en) Composite material and manufacture
EP2578555B1 (en) Method of fabricating a ceramic component
CN105541364B (en) A kind of method of step densification production carbon pottery automobile brake disc
CN112409003B (en) Hybrid matrix silicon carbide-based composite material and preparation method thereof
EP2578556B1 (en) Method and ceramic component
US5494867A (en) Method for making fiber-reinforced silicon nitride composites
Wielage et al. A cost effective route for the densification of carbon–carbon composites
Morozumi et al. Preparation of high strength ceramic fibre reinforced silicon nitride composites by a preceramic polymer impregnation method
CN114230347A (en) Preparation method and product of continuous fiber reinforced ZrC/SiC composite part
US20020190409A1 (en) Method for reinforcing ceramic composites and ceramic composites including an improved reinforcement system
KR101467665B1 (en) THE MANUFACTURING METHOD FOR C-SiC COMPOSITES
KR101540306B1 (en) Method for manufacturing SiCf/SiC composites
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3574583B2 (en) Heat radiating material and method of manufacturing the same
JPH11130553A (en) Carbon/carbon composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120712

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130621

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 13