KR20050112715A - Recombinant vector containing gene of hctla4-ig fusion protein and manufacturing process of the protein by using them - Google Patents

Recombinant vector containing gene of hctla4-ig fusion protein and manufacturing process of the protein by using them Download PDF

Info

Publication number
KR20050112715A
KR20050112715A KR1020040038098A KR20040038098A KR20050112715A KR 20050112715 A KR20050112715 A KR 20050112715A KR 1020040038098 A KR1020040038098 A KR 1020040038098A KR 20040038098 A KR20040038098 A KR 20040038098A KR 20050112715 A KR20050112715 A KR 20050112715A
Authority
KR
South Korea
Prior art keywords
hctla4
fusion protein
recombinant
pmyn409
protein
Prior art date
Application number
KR1020040038098A
Other languages
Korean (ko)
Other versions
KR100542605B1 (en
Inventor
김상린
단현광
류욱상
정한선
구재경
이송재
박미영
박천익
김동일
임상민
Original Assignee
보령제약 주식회사
양문식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 보령제약 주식회사, 양문식 filed Critical 보령제약 주식회사
Priority to KR1020040038098A priority Critical patent/KR100542605B1/en
Priority to PCT/KR2005/001582 priority patent/WO2005116221A1/en
Publication of KR20050112715A publication Critical patent/KR20050112715A/en
Application granted granted Critical
Publication of KR100542605B1 publication Critical patent/KR100542605B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/14Plant cells

Abstract

본 발명은 hCTLA4-Ig 융합단백질 유전자를 포함하는 재조합벡터 pMYN409 및 이를 이용한 hCTLA4-Ig 융합단백질의 대량생산방법에 관한 것으로서, 더욱 상세하게는 재조합 hCTLA4-Ig 융합단백질을 암호화하는 유전자를 포함하는 발현벡터 pMYN409 및 이를 식물세포에 형질전환시킨 후 현탁배양을 통해 재조합 hCTLA4-Ig 융합단백질을 대량으로 생산하는 방법에 관한 것이다. 그 결과, 본 발명은 식물세포 현탁배양을 이용하여 기존 동물세포에서 발현된 hCTLA4-Ig 융합단백질과 동등한 면역억제 활성을 지니는 재조합 hCTLA4-Ig 융합단백질의 생산을 가능케 하며, 동물세포 배양에 비해 보다 경제적으로 단백질을 생산할 수 있는 효과가 있다.The present invention relates to a recombinant vector pMYN409 comprising a hCTLA4-Ig fusion protein gene and a method for mass production of a hCTLA4-Ig fusion protein using the same, and more particularly, an expression vector comprising a gene encoding a recombinant hCTLA4-Ig fusion protein. pMYN409 and a method for producing a large amount of recombinant hCTLA4-Ig fusion protein through transformation in plant cells and suspension culture. As a result, the present invention enables the production of recombinant hCTLA4-Ig fusion protein having immunosuppressive activity equivalent to that of hCTLA4-Ig fusion protein expressed in existing animal cells using plant cell suspension culture, and is more economical than animal cell culture. It is effective to produce protein.

Description

에이치씨티엘에이4-아이지 융합단백질 유전자를 포함하는 재조합 벡터 및 이를 이용한 에이치씨티엘에이4-아이지 융합 단백질의 생산방법{Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them} Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them}

본 발명은 hCTLA4-Ig 융합단백질 유전자를 포함하는 재조합벡터 pMYN409 및 이를 이용한 hCTLA4-Ig 융합단백질의 대량생산방법에 관한 것으로서, 더욱 상세하게는 재조합 hCTLA4-Ig 융합단백질을 암호화하는 유전자를 포함하는 발현벡터 pMYN409 및 이를 식물세포에 형질전환시킨 후 현탁배양을 통해 재조합 hCTLA4-Ig 융합단백질을 대량으로 생산하는 방법에 관한 것이다. The present invention relates to a recombinant vector pMYN409 comprising a hCTLA4-Ig fusion protein gene and a method for mass production of a hCTLA4-Ig fusion protein using the same, and more particularly, an expression vector comprising a gene encoding a recombinant hCTLA4-Ig fusion protein. pMYN409 and a method for producing a large amount of recombinant hCTLA4-Ig fusion protein through transformation in plant cells and suspension culture.

일반적으로, 면역조절물질은 면역기능을 증강시키거나 억제시키는 약리작용에 따라 면역증강제와 면역억제제로 구분할 수 있다. 이중 면역억제제는 최근 들어 심장, 간, 신장 등의 장기이식수술이 비약적으로 증가함에 따라 이식거부반응을 억제하기 위한 약물의 필요성이 급증하고, 또한 면역기능이 항진되어 자신의 조직을 공격함으로써 생겨나는 일종의 염증성 질환인 자가면역질환의 치료제 개발이 상업적인 관심을 유도하면서 그 중요성이 크게 부각되고 있다. In general, immunomodulators can be divided into immunopotentiators and immunosuppressants according to pharmacological actions that enhance or inhibit immune function. In recent years, as immunosuppressive agents have recently increased in transplantation of heart, liver and kidney, the necessity of drugs for suppressing the transplant rejection is rapidly increasing, and the immune function is enhanced to attack the tissues. The development of a therapeutic agent for autoimmune diseases, a type of inflammatory disease, has attracted much attention as it attracts commercial interest.

T 세포의 활성화(T cell activation)는 이식거부반응의 시작에 있어서 중요한 역할을 담당한다. T 세포의 완전한 활성을 위해서는 두 가지 신호가 요구된다. 하나는 항원 특이적인 항원 제시세포(antigen presenting cell; APC)의 주요조직 적합인자(Major Histocompatibility Complex; MHC)와 T 세포 항원수용체(T cell antigen receptor; TCR)간의 상호작용으로 인한 활성화 신호를 세포내로 전달함으로써 시작된다. 두번째는 항원 비특이적인 동조 자극신호(costimulatory signal)다. TCR에 의한 항원 인식 후의 동조 자극신호의 결여는 T 세포 활성화의 부분적이거나 실패를 초래하여 T 세포가 이후의 항원 공격에 무반응하게 되는 T 세포 에네르기(cell anergy: 면역성 결여)상태가 되며, 이러한 T 세포 에네르기(anergy)는 이식거부를 예방하는 항원 특이적 관용의 유발(induction of antigen-specific tolerence)에 가장 중요하다. 가장 중요한 T 세포의 동조 자극신호는 T 세포의 CD28과 CTLA4와 APC 표면의 B7수용체(CD80과 CD86)간의 결합이다. CTLA4는 CD28에 비해 B7 수용체와 약 20배 높은 친화력을 나타낸다(Linsley et al., J. Exp. Med. 174;561,1991, Linsley et al., Immunity, 1:793, 1994). CD28과 달리 B7수용체에 CTLA4의 결합은 T 세포 활성화를 억제하거나 감소시키는 신호를 전달한다(Sebille et al., Philos. Trans. R. Soc. Lond., B Biol. Sci. 356:649, 2001). T cell activation plays an important role in initiating transplant rejection. Two signals are required for the full activity of T cells. One is intracellular activation signals due to the interaction between the major histocompatibility complex (MHC) of the antigen-specific antigen presenting cell (APC) and the T cell antigen receptor (TCR). It begins by delivering. The second is an antigen nonspecific costimulatory signal. Lack of synchronizing stimulatory signals after antigen recognition by TCR results in partial or failure of T cell activation resulting in T cell anergy, in which the T cells become unresponsive to subsequent antigenic attack. Cellular energy is most important for the induction of antigen-specific tolerence that prevents transplant rejection. The most important T cell synchronizing stimulatory signal is the binding between CD28 and CTLA4 of T cells and B7 receptors (CD80 and CD86) on the surface of APC. CTLA4 exhibits about 20-fold higher affinity with the B7 receptor than with CD28 (Linsley et al., J. Exp. Med. 561,1991, Linsley et al., Immunity, 1: 793, 1994). Unlike CD28, binding of CTLA4 to the B7 receptor carries a signal that inhibits or reduces T cell activation (Sebille et al., Philos. Trans. R. Soc. Lond., B Biol. Sci. 356: 649, 2001) .

또한, 린슬리 등(Linsley et al., J. Exp. Med., 174: 561, 1991)은 인위적으로CTLA4의 C-말단에 면역글로블린 IgG의 Fc 부분을 융합시킨 CTLA4-Ig 융합단백질을 제조하고, 이 융합단백질이 면역억제효과를 가지고 있음을 보고한 바 있다. 그 결과, 이러한 CTLA4-Ig의 면역글로블린(immumoglobulin) 부분은 친화크로마토그래피 칼럼(affinity chromatography column)에서 효과적인 정제와 이합체(dimeric) CTLA4 단백질의 생산 그리고 생체 내에서 긴 반감기를 가능하게 한다. CTLA4-Ig에 의한 CD28/B7 동조신호의 차단은 쥐심장이식[rat cardiac transplantation(Guillot et al., J.Immunol.164:5228,2000; Hayashi et al., Transpl. Int. 13(Suppl. 1), S329, 2000; Turka et al., Proc. Natl. Acad. Sci. U.S.A. 89:11102, 1992)], 마우스 아일렛 제노그라프트[mice xenograft(Feng et al., Transplantation 67:1607, 1999; Lenschow et al., Science, 257:789,2000)], 쥐 신장이식[rat renal transplantation(Tomasoni et al., J. Am. Soc. Nephrol. 11, 747,2000)], 원숭이 아일렛 이식[monkey islet transplantation(Kirk et al., Proc.Natl.Acad.Sci.U.S.A.94;8789,1997; Levisetti et al., J.Immunol.159:5187,1997)] 등의 동물실험 모델에서 이식 생존의 연장을 가능하게 하여 실제 임상에서 중요한 치료제의 가능성을 제시하였다. 실제로 CTLA4-Ig의 임상시험에서도 치료제로서 확신하게 하는 결과를 보여주었다(Abrams et al., J.Clin.Invest.103:1243,1999, J.Exp.Med.192:681,2000; Guinan et al., N. Engl.Jmed, 340:1704, 1999). 기존의 범용되고 있는 스테로이드 계열의 호르몬 제제, 사이클로포스파미드(cyclophosphamide), 사이클로스포린(cyclosporin), FK506 등의 면역억제제는 거의 비특이적으로 면역계를 억제시킴으로서 나타나는 부작용의 단점이 있는 반면, CTLA4-Ig는 T 세포의 활성화 과정만을 특이적으로 억제함으로서 비교적 적은 부작용을 나타내면서도 우수한 면역억제효과를 갖을 것으로 예상된다. Linsley et al., J. Exp. Med., 174: 561, 1991 also prepared a CTLA4-Ig fusion protein that artificially fused the Fc portion of an immunoglobulin IgG to the C-terminus of CTLA4. In addition, it has been reported that this fusion protein has an immunosuppressive effect. As a result, this immunoglobulin portion of CTLA4-Ig enables efficient purification, production of dimeric CTLA4 protein, and long half-life in vivo in an affinity chromatography column. Blocking of CD28 / B7 tuning signal by CTLA4-Ig was confirmed by rat cardiac transplantation (Guillot et al., J. Immunol. 164: 5228,2000; Hayashi et al., Transpl. Int. 13 (Suppl. 1). ), S329, 2000; Turka et al., Proc. Natl. Acad. Sci. USA 89: 11102, 1992), mouse eyelet xenograft (Feng et al., Transplantation 67: 1607, 1999; Lenschow et al., Science, 257: 789,2000), rat renal transplantation (Tomasoni et al., J. Am. Soc. Nephrol. 11, 747, 2000), monkey islet transplantation (Kirk et al., Proc. Natl. Acad. Sci. USA 94; 8789, 1997; Levisetti et al., J. Immunol. 159: 5187, 1997). This suggests the possibility of an important therapeutic agent in actual clinical practice. Indeed, clinical trials of CTLA4-Ig have shown convincing results as therapeutic agents (Abrams et al., J. Clin. Invest. 103: 1243, 1999, J. Exp. Med. 192: 681, 2000; Guinan et al. , N. Engl. Jmed, 340: 1704, 1999). While conventional immunosuppressive drugs such as steroid-based hormones, cyclophosphamide, cyclosporin, and FK506 have almost the non-specificity of suppressing the immune system, CTLA4-Ig has a disadvantage of T By specifically inhibiting only the activation process of the cell, it is expected to have relatively little side effects and excellent immunosuppressive effect.

그러나, 이러한 CTLA4-Ig 융합단백질은 사람의 경우 투여량이 최고10mg/kg/회로 타 사이토카인류의 단백질 제제에 비해 높기 때문에(Abrams, J.R. et al., J. Clin. Invest., 103(9):1243, 1999: Greene J.L. et al., Arthritis Rheum. 46:1470, 2002, Kremer, J.M. et al., N Engl J. Med., 349(20):1907, 2003), 동물세포 배양을 이용할 경우 생산 비용이 높은 문제점이 있다. However, these CTLA4-Ig fusion proteins are high in humans compared to protein preparations of up to 10 mg / kg / circuit cytokines (Abrams, JR et al., J. Clin. Invest., 103 (9)). : 1243, 1999: Greene JL et al., Arthritis Rheum. 46: 1470, 2002, Kremer, JM et al., N Engl J. Med., 349 (20): 1907, 2003), when using animal cell culture There is a problem of high production cost.

이에, 최근에는 형질전환 동물의 우유에서 생물학적 활성을 갖는 CTLA4-Ig를 생산하여 동물세포보다 약 5배 높은 생산량을 얻을 수 있다는 보고가 있었다(Lui V.C.H., et al., J. Immuno., Meth., 277:171, 2003). 또한, 식물 생명공학의 발달과 더불어 식물 세포의 대량배양을 통해 고부가가치의 유용 단백질을 생산하고자 하는 시도가 활발히 진행되고 있으며, 저가의 배지성분 및 단백질 생산, 분리, 정제의 용이함에서 기인하는 경제적 우월성 때문에 기존의 미생물이나 동물 세포배양을 통해 생산되던 사이토카인(cytokine)류나 성장인자류, 면역조절제 등의 의약용 단백질의 대체 생산시스템으로서 관심을 끌고 있다(Miele, L., Trends Biotechnol., 15: 45-50, 1997; Doran, P.M., Curr. Opin. Biotechnol., 11: 199- 204, 2000). 또한 식물 세포배양을 이용해 재조합 단백질을 생산할 경우, 대장균과 같은 원핵세포와는 달리 동물세포와 거의 유사한 해독후 수식(post- translational modification) 과정을 수행하므로 단백질의 생물학적 활성을 유지하기 용이할 뿐 아니라, 혈청을 사용하는 동물세포 배양에 비해 사람에게 치명적인 바이러스나 병원성균의 혼입 위험이 적기 때문에 안정성면에서도 우수한 장점을 지닌다. 그러나, 식물세포배양 시스템의 느린 세포생장과 미생물이나 동물세포에 비해 낮은 단백질 발현율의 단점은 여전히 극복해야 할 문제이며, 상업화를 위해서는 비용면에서 경제성 있고 효율적인 대량생산 방법이 절실히 필요한 실정이었다. Recently, it has been reported that the production of CTLA4-Ig having biological activity in the milk of transgenic animals yields about five times higher yield than animal cells (Lui VCH, et al., J. Immuno., Meth. , 277: 171, 2003). In addition, with the development of plant biotechnology, attempts are being actively made to produce high value-added useful proteins through mass culture of plant cells, and economic superiority due to low-cost medium components and ease of protein production, isolation and purification Therefore, it is attracting attention as an alternative production system of pharmaceutical proteins such as cytokines, growth factors, and immunomodulators produced through existing microbial or animal cell cultures (Miele, L., Trends Biotechnol., 15: 45-50, 1997; Doran, PM, Curr. Opin. Biotechnol., 11: 199-204, 2000). In addition, when producing recombinant protein using plant cell culture, unlike prokaryotic cells such as Escherichia coli, a post-translational modification process is similar to that of animal cells, which not only maintains the biological activity of the protein, Compared to animal cell cultures using serum, there is less risk of incorporation of viruses or pathogens that are lethal to humans. However, the disadvantages of slow cell growth in plant cell culture systems and low protein expression rates compared to microorganisms or animal cells are still a problem to be overcome, and cost-effective and efficient mass production methods are urgently needed for commercialization.

이에, 본 발명자들은 상기와 같은 문제점을 개선시키기 위하여 예의 노력한 결과, 높은 발현을 유도할 수 있는 강력한 프로모터 시스템을 갖춘 벡터 및 식물세포를 개발하여 이들 형질전환 식물세포가 hCTLA4-Ig 융합단백질을 고농도 및 대량배양이 가능함을 확인하였다. Accordingly, the present inventors have made intensive efforts to improve the above problems. As a result, we have developed vectors and plant cells having a strong promoter system capable of inducing high expression. It was confirmed that mass culture is possible.

결국, 본 발명은 첨부 서열목록 1의 hCTLA4-Ig(human cytotoxic T lymphocyte antigen 4-Immunoglobulin) 융합단백질-코딩 유전자를 포함하는 재조합벡터 pMYN409를 제공하는 데에 그 목적이 있다.After all, the present invention is to provide a recombinant vector pMYN409 comprising the hCTLA4-Ig (human cytotoxic T lymphocyte antigen 4-Immunoglobulin) fusion protein-coding gene of the attached SEQ ID NO: 1.

또한, 본 발명은 상기 벡터로 형질전환된 식물세포를 제공하는 데에 또 다른 목적이 있다. In addition, the present invention has another object to provide a plant cell transformed with the vector.

마지막으로, 본 발명은 상기 식물세포를 현탁 배양하는 공정을 포함하는 재조합 hCTLA4-Ig 융합단백질 생산방법을 제공하는 데에 그 목적이 있다. Finally, an object of the present invention is to provide a method for producing a recombinant hCTLA4-Ig fusion protein comprising the step of suspension culture of the plant cells.

본 발명은 hCTLA4-Ig 융합단백질-코딩 유전자를 포함하는 재조합 벡터 pMYN409 및 이를 이용한 hCTLA4-Ig 융합단백질의 대량생산방법에 관한 것이다.The present invention relates to a recombinant vector pMYN409 comprising a hCTLA4-Ig fusion protein-coding gene and a method for mass production of hCTLA4-Ig fusion protein using the same.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

우선, 본 발명은 hCTLA4-Ig(cytotoxic T lymphocyte antigen 4- Imunoglobulin) 융합단백질-코딩 유전자를 포함하는 재조합벡터 pMYN409에 관한 것으로서, 상기 재조합벡터 pMYN409는 첨부 서열목록 1의 벼 아밀라아제 리더서열(RAmy1A leader sequence) 및 재조합 hCTLA4-Ig 융합 단백질-코딩 유전자 서열을 포함한다. 첨부된 서열목록 1에서 1~93bp는 signal peptide 이고 94~465bp는 CTLA4 Extracellular 영역이며, 466~1166bp는 IgG1 Fc 분획이다. 또한, 이 재조합 벡터 pMYN409는 형질전환 식물세포주의 선별마커로 항생제 하이그로마이신(hygromycin)에 대한 저항성을 이용하며, 벼 아밀라아제 리더서열에 의해 현탁배양시 재조합 hCTLA4-Ig 융합단백질을 식물세포 외부로 분비할 수 있도록 하는 것을 특징으로 한다(참조: 도 1). 그리고, 상기 융합단백질 중 Ig는 사람 IgG1의 Cγ1 영역 중 힌지(hinge), CH2, CH3 영역을 포함한다.First, the present invention relates to a recombinant vector pMYN409 comprising a hCTLA4-Ig (cytotoxic T lymphocyte antigen 4-Imunoglobulin) fusion protein-coding gene, wherein the recombinant vector pMYN409 is a rice amylase leader sequence of the attached SEQ ID NO: 1 (RAmy1A leader sequence) ) And recombinant hCTLA4-Ig fusion protein-coding gene sequences. In the attached Sequence Listing 1, 1 ~ 93bp is a signal peptide, 94 ~ 465bp is a CTLA4 extracellular region, and 466 ~ 1166bp is an IgG1 Fc fraction. In addition, this recombinant vector pMYN409 is a selection marker for transgenic plant cell lines, which utilizes resistance to antibiotic hygromycin, and secretes recombinant hCTLA4-Ig fusion protein to outside of plant cells during suspension culture by rice amylase leader sequence. It can be characterized in that (see Figure 1). In addition, the Ig in the fusion protein includes a hinge, CH2, and CH3 regions of the Cγ1 region of human IgG1.

또한, 본 발명은 hCTLA4-Ig 융합단백질-코딩 유전자를 포함하는 재조합벡터 pMYN409로 형질전환시킨 식물세포를 포함한다. 이러한 식물세포로는 벼(Oryza sativa L. cv. Dongjin)가 바람직하며, 이밖에도 담배(Nicotiana tabacum), 옥수수(Zea mays), 대두(Glycine max), 밀(Triticum aestivum), 토마토(Lycopersicon esculentum),유채(Brassica napus),또는 감자 (Solanum tuberosum) 등을 이용할 수 있다.The present invention also includes plant cells transformed with the recombinant vector pMYN409 comprising the hCTLA4-Ig fusion protein-coding gene. Such plant cells are preferably rice ( Oryza sativa L. cv. Dongjin), and in addition to tobacco (Nicotiana tabacum), corn (Zea mays), soybean (Glycine max), wheat (Triticum aestivum), tomato (Lycopersicon esculentum), Rapeseed (Brassica napus), potato (Solanum tuberosum) and the like can be used.

본 발명에서는 상기 식물세포에 재조합벡터 pMYN409를 마이크로프로젝타일 밤바드먼트(microprojectile bombardment) 형질전환방법으로 형질도입한 다음, 선별배지에서 형질전환 식물세포주만을 선별한다. In the present invention, the recombinant vector pMYN409 is transduced into the plant cell by a microprojectile bombardment transformation method, and then only the transformed plant cell line is selected in a selection medium.

그리고, 본 발명은 상기에서 선별된 형질전환 식물세포를 현탁배양하여 prhCTLA4-Ig(plant recombinant human CTLA4-Ig)를 대량생산하는 방법을 포함한다. 즉, 상기 항생물질을 포함한 선별배지에서 형질전환된, 항생물질에 저항성을 갖는 식물세포만을 선별하여 현탁배양한다. 이러한 현탁배양의 조건은 Chu N6 또는 AA 배지나 식물세포배양에 널리 쓰이는 MS (Murashige and Skoog) 배지 등을 기본배지로 하여 탄소원으로 10 ~ 60 g/L의 자당, 생장조절제로 0.1 ~ 2.0 mg/L 2,4-D와 0.01 ~ 2.0 mg/L 키네틴(kinetin), 그리고 선별을 위해 50 mg/L 하이그로마이신(hygromycin)을 함유하는 배지를 이용하여 22 ~ 28℃, 80 ~ 150 rpm, 암조건에서 배양하는 것이 바람직하다.In addition, the present invention includes a method of mass-producing prhCTLA4-Ig (plant recombinant human CTLA4-Ig) by suspension culture of the transformed plant cells selected above. That is, only the plant cells transformed in the selection medium containing the antibiotic and resistant to the antibiotic are selected and suspended in culture. Suspension culture conditions are based on Chu N6 or AA medium or MS (Murashige and Skoog) medium, which is widely used in plant cell culture, and 10 ~ 60 g / L sucrose and growth regulator as a carbon source. 22-28 ° C., 80-150 rpm, cancer using medium containing L 2,4-D and 0.01-2.0 mg / L kinetin and 50 mg / L hygromycin for selection It is preferable to culture under conditions.

그 결과, 상기 형질전환된 식물세포주는 현탁배양시 배지로 prhCTLA4-Ig를 발현 분비시킨다. 가령, 오리자 사티바 pMYN409(KCTC 10618BP)의 현탁배양 경우, 30 g/L 자당, 2 mg/L 2,4-D, 0.2 mg/L 키네틴(kinetin), 50 mg/L 하이그로마이신(hygromycin)을 함유하는 N6 액체배지 또는 AA 벼 현탁배양 배지를 이용하여 28℃, 120 rpm, 암조건에서 배양하면서 배양물을 7일째 자당이 없는 N6배지로 교환하여 재조합 단백질 발현을 유도하여 prhCTLA4-Ig를 발현시키는 것이 바람직하다. 이러한 prhCTLA4-Ig 단백질은 오리자 사티바 pMYN409 배양물을 원심분리하여 배양상등액을 분리하여 단백질 A 친화 크로마토그래피(Affinity Chromatography)로 정제한 다음 동결건조하여 수득한 결과, 본 발명의 오리자 사티바 pMYN409(KCTC 10618BP)의 경우, prhCTLA4-Ig 생산율은 배양액 당 약 10mg/L이다.    As a result, the transformed plant cell line expresses and releases prhCTLA4-Ig into the medium during suspension culture. For example, in suspension culture of Oriza sativa pMYN409 (KCTC 10618BP), 30 g / L sucrose, 2 mg / L 2,4-D, 0.2 mg / L kinetin, 50 mg / L hygromycin ) Was cultured at 28 ° C., 120 rpm, in a dark condition using N6 liquid medium or AA rice suspension culture medium containing) to exchange recombinant culture with N6 medium without sucrose at 7 days to induce recombinant protein expression to obtain prhCTLA4-Ig. It is preferable to express. The prhCTLA4-Ig protein was obtained by centrifugation of Orissa sativa pMYN409 culture, purified by protein A affinity chromatography, followed by lyophilization, to separate the culture supernatant, oryza sativa pMYN409 of the present invention. For (KCTC 10618BP), the prhCTLA4-Ig production rate is about 10 mg / L per culture.

또한, 본 발명에 따라 생산된 prhCTLA4-Ig 단백질의 면역억제 활성은 림프구 혼합배양[mixed Lymphocyte Reaction(MLR)], ConA 유발 T세포 증식[ConA-induced T cell proliferation], in vitro T세포 의존 항체생성[in vitro T-dependent Ab production] 시험을 통해 T 세포 증식억제 효과로서 확인한 결과, 종래의 CHO 세포 발현시스템에서 생산된 재조합 hCTLA4-Ig와 동등 이상임을 알 수 있었다. In addition, immunosuppressive activity of the prhCTLA4-Ig protein produced according to the present invention is characterized by lymphocyte mixed culture (MLR), ConA-induced T cell proliferation, in vitro T cell dependent antibody production. As a result of T cell proliferation inhibitory effect through [in vitro T-dependent Ab production] test, it was found that the recombinant hCTLA4-Ig equivalent or more produced in the conventional CHO cell expression system.

따라서, 본 발명은 hCTLA4-Ig 융합단백질-코딩 유전자를 포함하는 재조합벡터와 이를 이용해 형질전환시킨 식물세포주를 제조하고, 상기 형질전환 식물세포의 prhCTLA4-Ig발현체계를 확립하여 면역억제활성이 있는 prhCTLA4-Ig의 대량생산방법을 제공한다. 그 결과, 상기prhCTLA4-Ig는 식물발현시스템을 이용하여 저가의 비용으로 대량으로 생산될 수 있을 뿐 아니라, 면역억제 활성도 확인되어 의학적 용도로 사용될 수 있다.Accordingly, the present invention provides a recombinant vector comprising a hCTLA4-Ig fusion protein-coding gene and a plant cell line transformed using the same, and establishes a prhCTLA4-Ig expression system of the transformed plant cell, thereby having prhCTLA4 having immunosuppressive activity. Provide mass production of Ig As a result, the prhCTLA4-Ig can be produced in large quantities at low cost using a plant expression system, and immunosuppressive activity can also be confirmed and used for medical purposes.

이하, 본 발명을 실시예 및 실험예에 의하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되지 않음은 자명할 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples, but the present invention is not limited thereto.

실시예 : 형질전환 벼 현탁세포에서 재조합 CTLA4-Ig 융합 단백질의 생산 Example : Production of Recombinant CTLA4-Ig Fusion Protein in Transgenic Rice Suspension Cells

1. pMYN409 벡터 제조1. pMYN409 Vector Fabrication

hCTLA4-Ig 유전자를 발현하는 재조합 발현벡터의 유전자지도 모식도는 도 1에 간략하게 나타내었다. 우선, hCTLA4-Ig 융합단백질이 배지내로 분비되도록 하기 위하여 오버래핑 PCR(overlapping polymerase chain reaction) 기술을 이용하여 벼 아밀라아제 리더서열을 hCTLA-4 N-말단에 결합시켜 합성 융합유전자를 제작하였다. 먼저 벼 아밀라아제 리더서열(RAmy1A signal peptide)의 C-말단 유전자서열과 CTLA-4 N-말단 유전자서열을 동시에 포함하는 전진프라이머(foward primer) CTLA4-F1 (5'-TCCAACTTGACAGCCGGGGCAA TGCACGTGGCCCAGCCTGC-3')과 CTLA-4 C-말단 부위를 인지하는 후진프라이머(reverse primer) CTLA4-R1 (5'-CTCTGCAGAATCTGGG CACGGTTCTG-3')을 이용하여 94℃ 2분 전변성단계(pre-denaturation) 1회; 94℃ 45초 변성단계(denaturation), 55℃ 45초 어닐링단계(annealing) 및 72℃ 45초 신장단계(elongation) 30회, 72℃ 5분 최종 신장단계(final elongation) 1회의 조건으로 PCR을 실시하였다. A schematic diagram of the gene map of the recombinant expression vector expressing the hCTLA4-Ig gene is briefly shown in FIG. 1. First, in order to secrete the hCTLA4-Ig fusion protein into the medium, a synthetic fusion gene was prepared by binding a rice amylase leader sequence to the hCTLA-4 N-terminus using an overlapping polymerase chain reaction (PCR) technique. First, the forward primer CTLA4-F1 (5'-TCCAACTTGACAGCCGGGGCAA TGCACGTGGCCCAGCCTGC-3 ') containing the C-terminal and CTLA-4 N-terminal sequences of the rice amylase leader sequence (RAmy1A signal peptide) One 94-degree two-minute pre-denaturation step using reverse primer CTLA4-R1 (5'-CTCTGCAGAATCTGGG CACGGTTCTG-3 ') recognizing the -4 C-terminal site; PCR was performed under conditions of 94 ° C 45 sec denaturation, 55 ° C 45 sec annealing, 72 ° C 45 sec elongation, and 30 ° C 72 min 5 final elongation. It was.

상기 PCR 산물과 벼 cDNA로부터 얻은 벼 아밀라아제 분비 신호유전자를 주형으로 사용하는 오버래핑(overlapping) PCR를 실시하여 벼 아밀라아제의 고분비 리더 서열과 hCTLA4유전자가 결합된 합성 융합유전자를 제조하고 pGEM-T 이지벡터(Easy vector)(Promega, USA)로 삽입시켜 벡터 pMYN407을 제조하였다. An overlapping PCR using a rice amylase secretion signal gene obtained from the PCR product and rice cDNA as a template was carried out to prepare a synthetic fusion gene in which a high secretion leader sequence of rice amylase and a hCTLA4 gene were combined, and a pGEM-T easy vector. Vector pMYN407 was prepared by insertion into (Easy vector) (Promega, USA).

인간 면역글로블린 IgG1 Fc 유전자를 포함하는 pMYN406벡터를 제한효소 PstI/SalI으로 절단하여 얻은 IgG1 Fc 유전자를 동일 제한효소로 절단한 상기pMYN407벡터내로 삽입하여 벡터 pMYN408을 제조하였다. The vector pMYN408 was prepared by inserting the IgG1 Fc gene obtained by cleaving the pMYN406 vector containing the human immunoglobulin IgG1 Fc gene into the pMYN407 vector digested with the same restriction enzyme.

마지막으로, 발현벡터인 pMYN409는 상기 pMYN408 벡터상의 벼 아밀라아제 분비신호와 결합된 hCTLA4-Ig 융합단백질 유전자를 제한효소 BamHI/SacI으로 절단하여 동일 제한효소를 포함하는 pMYN75 발현벡터에 삽입하여 pMYN409벡터를 제조하였다. pMYN409 벡터는 제한효소 맵핑(mapping)을 통해 RAmy3D 프로모터와 3'-UTR 사이에 hCTLA4-Ig 유전자가 삽입된 것을 확인하였다. Finally, pMYN409, an expression vector, was prepared by cutting the hCTLA4-Ig fusion protein gene coupled with the rice amylase secretion signal on the pMYN408 vector with a restriction enzyme BamHI / SacI and inserting it into a pMYN75 expression vector containing the same restriction enzyme. It was. The pMYN409 vector confirmed that the hCTLA4-Ig gene was inserted between the RAmy3D promoter and the 3′-UTR through restriction enzyme mapping.

2. 형질전환 식물 세포주 제조2. Preparation of Transgenic Plant Cell Lines

벼(Oryza sativa L. cv. Dongjin)에 hCTLA4-Ig 유전자를 도입시키기 위하여 발현벡터 pMYN409를 마이크로프로젝타일 밤바드먼트(microprojectile bombardment)를 이용한 형질전환방법을 실시하였다.In order to introduce hCTLA4-Ig gene into rice ( Oryza sativa L. cv. Dongjin), the expression vector pMYN409 was transformed using a microprojectile bombardment.

우선, 벼 종자의 껍질을 제거하고 표면살균 처리를 실시하였고, 멸균증류수로 세척하여 캘러스(callus) 유도용 한천배지에 치상하였다. 25℃, 16시간 명조건/8시간 암조건에서 7 ~ 10일간 배양한 후, 발아한 종자로부터 배반(胚盤, scutellum)유래 캘러스를 취하여 새 한천배지로 옮겨 바이오리스틱(Biolistic) PDS-1000/He(BioRad Laboratories, USA)를 이용하여 밤바드먼트(bombardment)를 실시하였다. 밤바드먼트(Bombardment) 후 25℃, 암조건에서 4일간 더 배양하고 항생제 하이그로마이신(hygromycin) B 50 mg/L가 첨가된 선별 배지(N6 SE)로 캘러스를 옮겨 배양하였다. 3 ~ 5주 동안 배양하면서 선별마크인 하이그로마이신(hygromycin)에 저항성을 나타내는 캘러스가 직경 1 cm 정도로 자랄 때까지 배양하여 형질전환 벼 캘러스 세포주를 획득하였다.First, the husks of rice seeds were removed, subjected to surface sterilization, washed with sterile distilled water, and placed on callus-inducing agar medium. After 7-10 days of incubation at 25 ° C for 16 hours in bright conditions and 8 hours in dark conditions, scutellum-derived calli were taken from the germinated seeds and transferred to new agar medium. Biolistic PDS-1000 / Bombardment was carried out using He (BioRad Laboratories, USA). After bombardment (Bombardment) was further incubated for 4 days at 25 ℃, dark conditions and the callus was cultured by transferring the callus to the selection medium (N6 SE) to which the antibiotic hygromycin B 50 mg / L was added. After culturing for 3 to 5 weeks, the transformed rice callus cell line was obtained by culturing until the callus showing resistance to the selection mark hygromycin grew to about 1 cm in diameter.

3. 서든 분석(Southern blot analysis)을 통한 유전자 삽입 확인3. Confirmation of gene insertion through Southern blot analysis

상기 밤바드먼트(Bombardment)를 통해 얻은 11종의 형질전환 벼 캘러스가hCTLA4-Ig 유전자를 포함하는지 여부를 확인하기 위해 게놈 DNA PCR과 함께 서든 블롯팅(Southern blotting)을 실시하였다.Southern blotting was performed along with genomic DNA PCR to confirm whether the 11 kinds of transformed rice callus obtained through the Bombardment contain the hCTLA4-Ig gene.

우선, 벼 캘러스로부터 게놈 DNA를 DNAeasyplant mini kit(Qiage, CA, USA)로 분리하였다. 분리한 게놈 DNA를 주형으로 이용하여 PCR 증폭을 실시하였으며, 전진 프라이머는 CTLA4-F1(5'-TCCAACTTGACAGCCGGGGCAATGCACGTGGCCCAGCCTGC-3')을, 후진 프라이머는 hIgG-R1(5'-CTCTAGACTCATTTACCCGGAGACAGGGAG-3')을 사용하였다. PCR 산물은 1.0% 아가로스 겔(agrose gel)상에서 전기영동한 후 EtBr로 염색하였다.First, genomic DNA was isolated from rice callus with DNAeasyplant mini kit (Qiage, CA, USA). PCR amplification was performed using the isolated genomic DNA as a template, and the forward primer was CTLA4-F1 (5'-TCCAACTTGACAGCCGGGGCAATGCACGTGGCCCAGCCTGC-3 '), and the reverse primer was hIgG-R1 (5'-CTCTAGACTCATTTACCCGGAGACAGGGAG-3'). . PCR products were electrophoresed on 1.0% agarose gel and stained with EtBr.

도 2A는 11종의 형질전환 벼 캘러스 세포주에 포함된 hCTLA4-Ig 유전자를 PCR하여 증폭한 사진이며, M은 사이즈 마커이고, P는 pMYN409 벡터를 PCR한 양성대조군이고, N은 천연 벼 식물의 게놈 유전자를 PCR한 음성대조군이고, 레인 1 ~ 11은 상기 실시예 2항의 형질전환 벼 캘러스 세포주를 PCR한 것이다. PCR 증폭된 DNA 절편은 약 1167 bp로 나타나 예상되는 크기와 일치함을 확인하였다.Figure 2A is a PCR amplified picture of the hCTLA4-Ig gene contained in 11 transformed rice callus cell line, M is the size marker, P is a positive control PCR PCR pMYN409 vector, N is the genome of the natural rice plant The gene was PCR-negative control group, lanes 1 to 11 PCR the transformed rice callus cell line of Example 2. The PCR amplified DNA fragment was found to be approximately 1167 bp, which is consistent with the expected size.

또한, 상기 PCR 산물을 전기영동한 후 Hybond(TM)-N+ 나일론 멤브레인(nylon membrane)(Amersham Pharmacia, USA)으로 이동시켜 서든블롯을 실시하였다. 서든 블롯의 프로브는 a-32P-라벨(labeled) hCTLA4 DNA를 사용하여 혼성화(Hybridization)를 실시하였다. 도 2B의 결과와 같이 프로브인 hCTLA4 DNA가 형질전환 세포주로부터 증폭된 PCR 산물과 결합함을 확인하였으며, 이로부터 hCTLA4-Ig 유전자가 상기 실시예 2항의 총 11종의 형질전환 벼 캘러스 세포주의 염색체상에 성공적으로 삽입된 것을 확인하였고, 그 결과, 형질전환 캘러스를 PCR과 서든블럿을 통하여 정상적으로 유전자가 도입되고 유전자 발현율이 가장 높은 형질전환 캘러스를 오리자 사티바 pMYN409(Oryza sativa pMYN409)로 명하였다. 그리고, 본 발명의 prhCTLA4-Ig를 발현하는 오리자 사티바 pMYN409 는 생명공학연구소내 유전자은행에 2004년 5 월 6 일에 KCTC 10618BP 로 기탁하였다.In addition, the PCR product was electrophoresed and then moved to a Hybond (TM) -N + nylon membrane (Amersham Pharmacia, USA) to perform a sudden blot. Southern blot probes were hybridized using a-32P-labeled hCTLA4 DNA. As shown in FIG. 2B, it was confirmed that the hCTLA4 DNA probe was bound to the PCR product amplified from the transformed cell line. From this, the hCTLA4-Ig gene was identified on the chromosome of 11 transformed rice callus cell lines of Example 2. It was confirmed that it was successfully inserted into the transgenic callus. As a result, the transgenic callus was normally introduced through PCR and Southern blotting and the highest expression rate was designated as Oryza sativa pMYN409 (Oriza sativa pMYN409). Oriza sativa pMYN409, which expresses prhCTLA4 -Ig of the present invention, was deposited with KCTC 10618BP on May 6, 2004, to the Gene Bank in the Biotechnology Research Institute.

4. 형질전환 벼 캘러스 유래 재조합 hCTLA4-Ig 융합단백질의 정량분석4. Quantitative Analysis of Recombinant hCTLA4-Ig Fusion Protein Derived from Transgenic Rice Callus

상기 실시예 2항으로부터 얻은 총 11종의 형질전환 벼 캘러스 세포주의 hCTLA4-Ig 발현량을 정량하고 고발현 세포주를 선별하기 위해 ELISA(enzyme linked immunosorbent assay) 분석을 실시하였다. An ELISA (enzyme linked immunosorbent assay) assay was performed to quantify the expression level of hCTLA4-Ig of 11 transformed rice callus cell lines obtained from Example 2 and to select high expressing cell lines.

먼저 벼 캘러스를 자당이 포함되지 않은 N6 한천배지 상으로 옮겨 RAmy3D 프로모터(promoter)에 의한 단백질 발현을 유도하였다. 7일간 상기 배지상에서 유지한 벼 캘러스를 파쇄한 후, 인산완충용액 500 ㎕에 현탁시키고 1분 동안 볼텍싱(vortexing)한 후, 15,000 rpm, 4℃에서 30분간 원심분리하여 상등액만을 분리하여 분석에 사용하였다.First, rice callus was transferred onto N6 agar medium containing no sucrose to induce protein expression by the RAmy3D promoter. After crushing the rice callus maintained on the medium for 7 days, suspended in 500 μl of phosphate buffer solution, vortexing for 1 minute, centrifuged at 15,000 rpm, 4 ℃ for 30 minutes to separate only the supernatant for analysis Used.

ELISA 분석을 위해 96-웰플레이트(well plate)를 코팅버퍼(coating buffer)에 염소 항-사람 IgG(goat anti-human IgG)(KPL사 제품)를 1:1000으로 희석하여 웰 당 100ul씩 분주하고, 4℃에서 하룻밤(overnight) 방치한 후, 세척완충액 PBST(T 0.05% tween20함유 PBS)으로 3회 세척하였다. 웰당 200ul의 분석희석액(2% FBS를 함유한 PBS완충액)을 분주하고 상온에서 1시간 반응시킨 후 세척완충액 PBST로 3회 세척하였다. 캘러스 추출 시료를 웰(well) 당 100 ㎕씩 분주하고 분석희석액으로 2배 단계희석하여 37℃에서 1시간 동안 반응시켰다. 다시 세척완충액으로 3회 세척하고 분석희석액에 1:1000의 비율로 희석한 퍼옥시데이즈 표지 염소 항-사람 IgG(peroxidase-labeled goat anti-human IgG)(KPL사 제품)를 웰당100 ㎕씩 가하고 37℃에서 1시간 동안 반응시켰다. 세척완충액으로 3회 세척한 후 100ul의 기질로 15분간 반응시키고 405 nm에서 흡광도를 측정하였다. For ELISA analysis, a 96-well plate was diluted 1: 1000 with goat anti-human IgG (KPL) in a coating buffer and dispensed 100ul per well. After overnight at 4 ° C., it was washed three times with washing buffer PBST (T 0.05% tween20-containing PBS). 200 ul of assay diluent per well (PBS buffer containing 2% FBS) was dispensed and reacted at room temperature for 1 hour, and then washed three times with washing buffer PBST. Callus extract samples were dispensed by 100 μl per well and diluted twice with analytical diluent to react at 37 ° C. for 1 hour. Again wash three times with the wash buffer solution and 100 μl per well of peroxidase-labeled goat anti-human IgG (KPL) diluted in a ratio of 1: 1000 to the assay diluent 37 The reaction was carried out at 1 ° C. for 1 hour. After washing three times with the washing buffer and reacted with 100ul of substrate for 15 minutes and the absorbance was measured at 405 nm.

도 3은 형질전환 벼 캘러스 세포주에서 발현된 재조합 hCTLA4-Ig 융합단백질에 대한 ELISA 정량분석 결과를 그래프로 도시한 것으로, 11개 세포주 중에서 가장 높은 발현량을 보인 BR-N002의 경우 약54 ㎍ hCTLA4-Ig/g fresh calli의 재조합 단백질 생산량을 보였으며, 전체 단백질 당 hCTLA4-Ig의 발현량은 약 30 ㎍ CTLA4-Ig/mg total protein으로 나타나 약 3%의 단백질 발현률을 보이는 것으로 확인하였다.Figure 3 graphically shows the results of ELISA quantitative analysis of recombinant hCTLA4-Ig fusion protein expressed in transformed rice callus cell line, about 54 μg hCTLA4- for BR-N002 showing the highest expression level among 11 cell lines. Recombinant protein production of Ig / g fresh calli was shown, the expression of hCTLA4-Ig per total protein was about 30 ㎍ CTLA4-Ig / mg total protein was confirmed to show a protein expression rate of about 3%.

5. 현탁배양 유도 및 배지 내 hCTLA4-Ig 생산5. Induction of suspension culture and production of hCTLA4-Ig in medium

상기 실시예 2항으로부터 얻은 형질전환 벼 캘러스 세포주를 현탁배양 유도하였다. 현탁배양 배지로는 30 g/L 자당, 2 mg/L 2,4-D, 0.2 mg/L 키네틴(kinetin), 50 mg/L 하이그로마이신(hygromycin)을 함유하는 N6 액체배지 또는 AA 벼 현탁배양 배지를 이용하여 28℃, 120 rpm, 암조건에서 배양하면서 2주 간격으로 계대배양하였다.The transformed rice callus cell line obtained from Example 2 was subjected to suspension culture. Suspension culture media include N6 liquid medium or AA rice suspension containing 30 g / L sucrose, 2 mg / L 2,4-D, 0.2 mg / L kinetin, 50 mg / L hygromycin Subcultured at intervals of two weeks while culturing at 28 ° C., 120 rpm and dark conditions using the culture medium.

배지로의 hCTLA4-Ig 단백질의 분비를 확인하기 위해서는 10일간 배양한 후 자당이 포함되지 않은 배지로 교환을 통해 단백질 발현을 유도하였다. 배지교환 2 ~ 3일 후 배양배지를 회수하여 ELISA를 통해 배지내 hCTLA4-Ig를 확인하였다.To confirm the secretion of hCTLA4-Ig protein into the medium, the protein expression was induced by exchanging with a medium containing no sucrose after incubating for 10 days. After 2-3 days of medium exchange, the culture medium was recovered, and the hCTLA4-Ig was confirmed in the medium by ELISA.

도 4는 형질전환 벼 현탁세포주를 N6 배지(open symbol)와 AA 배지(closed symbol)에서 현탁배양시의 세포생장과 배지내 hCTLA4-Ig 융합단백질의 생산량을 그래프로 도시한 것이다. 배양 7일째에 자당이 없는 배지로 교환하여 재조합 단백질 발현을 유도한 경우, 2 ~ 3일 후에 배지내 hCTLA4-Ig 생산량이 급격히 증가하여 최대 약 10 mg/L까지 hCTLA4-Ig 융합단백질이 생산되는 것을 확인하였다.Figure 4 graphically shows the cell growth and production of hCTLA4-Ig fusion protein in the suspension culture culture cells in suspension culture in N6 medium (open symbol) and AA medium (closed symbol). When recombinant protein expression was induced by exchanging with sucrose-free medium at 7 days of culture, hCTLA4-Ig production was rapidly increased in the medium after 2 to 3 days to produce hCTLA4-Ig fusion protein up to about 10 mg / L. Confirmed.

실험예 : hCTLA4-Ig 융합단백질 분석 Experimental Example : Analysis of hCTLA4-Ig Fusion Protein

1. SDS-PAGE 전기영동과 웨스턴 블럿팅(Western blotting)1. SDS-PAGE Electrophoresis and Western Blotting

오리자 사티바 pMYN409를 현탁배양 후 배양액으로부터 hCTLA4-Ig 단백질을 단백질 A 칼럼(protein A column)을 이용하여 정제하였다. 정제된 prhCTLA4-Ig의 정제도와 분자량을 10% SDS-PAGE 전기영동과 웨스턴 블럿팅으로 확인하였다.After the suspension culture of Orissa sativa pMYN409, hCTLA4-Ig protein was purified from the culture using a Protein A column. Purity and molecular weight of the purified prhCTLA4-Ig were confirmed by 10% SDS-PAGE electrophoresis and Western blotting.

즉, 도 6A는 prhCTLA4-Ig의 SDS-PAGE 전기영동 사진으로 M은 분자량마커이고, 레인 1은 변성된 분자량을 나타낸다. 사진에서 보듯이 변성분자량은 약 50kDa으로 확인되었다. 도 6B는 prhCTLA4-Ig의 웨스턴 블럿팅 사진으로 전기영동 후 PVDF 막으로 전이시킨 후 1차 항체로 염소 항-사람 IgG 항체(KPL사, 미국)로 반응시켰다. 막 세척 후 알칼라인 포스파테이즈 부착 토끼 항-염소 IgG 항체(KPL사, 미국)반응 후 막을 세척하였다. 기질반응을 적당히 한 후 수돗물로 세척하여 반응을 중지하였다. 그 결과, 사진에서 보듯이 특이항체와 반응하여 분자량 약 50kDa의 prhCTLA4-Ig 융합단백질임을 확인하였다.That is, Figure 6A is a SDS-PAGE electrophoresis picture of prhCTLA4-Ig, M is the molecular weight marker, lane 1 shows the modified molecular weight. As shown in the photo, the variable molecular weight was about 50kDa. FIG. 6B is a Western blotting picture of prhCTLA4-Ig, followed by electrophoresis, transfer to PVDF membrane, and reaction with a goat anti-human IgG antibody (KPL, USA) as a primary antibody. After washing the membrane, the membrane was washed after alkaline phosphatase attached rabbit anti-goat IgG antibody (KPL, USA). After the substrate reaction was moderated, the reaction was stopped by washing with tap water. As a result, it was confirmed that the prhCTLA4-Ig fusion protein having a molecular weight of about 50 kDa by reacting with a specific antibody as shown in the photo.

2. hCTLA4/B7 역학분석(kinetic analysis)2. hCTLA4 / B7 Kinetic Analysis

형질전환 현탁배양 BR-N002 세포주 발현 hCTLA4Ig와 B7-1, B7-2와의 상호 작용과 친화도를 BIAcore 3000(Biacore AB)로 확인하였다. 리간드(Ligand)를 고정시키기 위한 칩(chip)으로는 CM5 센서칩(sensor chip)을 사용하였다. 센서칩(Sensor chip)에 고정시키기 위한 리간드(ligand)로는 B7-1과 B7-2를 사용하였고, 분석군(Analyte)은 대조군으로 CD28(R & D system사 제품)과 CHO 세포 발현 hCTLA4Ig를 사용하였고, 실험군으로는 식물세포 유래 hCTLA4-Ig를 사용하였다.Transformation suspension culture BR-N002 cell line expression hCTLA4Ig interaction and affinity with B7-1, B7-2 was confirmed by BIAcore 3000 (Biacore AB). A CM5 sensor chip was used as a chip to fix the ligand. B7-1 and B7-2 were used as ligands for fixing to the sensor chip, and the analysis group used CD28 (product of R & D system) and CHO cell expression hCTLA4Ig as a control. As the experimental group, hCTLA4-Ig derived from plant cells was used.

센서칩(Sensor chip)에 리간드(ligand)의 고정화는 pH5.5의 10mM 소듐 아세테이트 버퍼(sodium acetate buffer)에 리간드(ligand)를 희석하여 주입(injection)하였고, PBS를 러닝버퍼(running buffer)로 사용하였고, 유속은 5ul/ml로 유지하였다. Immobilization of the ligand on the sensor chip was injected by diluting the ligand in a 10 mM sodium acetate buffer at pH 5.5 and injecting PBS into the running buffer. It was used and the flow rate was maintained at 5ul / ml.

분석군(Analyte)은 각각 25℃에서 30ul/ml의 유속으로 2분간 반응하였다. 분석군(Analyte)의 주입이 끝나면 결합된 리간드와 분석군(analyte)을 1M NaCl/50mM NaOH를 사용하여 인위적으로 분리하였다.Analytes were each reacted for 2 minutes at a flow rate of 30ul / ml at 25 ° C. After the injection of the analyte, the bound ligand and the analyte were artificially separated using 1 M NaCl / 50 mM NaOH.

[표 1]TABLE 1

명백한 역학상수 요약(Summary of apparent kinetic constants) Mechanics obvious Constant Summary (Summary of apparent kinetic constants)

리간드(Ligand)Ligand 분석군(Analyte)Analyte Ka()()Ka ( ) ( ) Kd()()Kd ( ) ( ) KD(M)()KD (M) ( ) T(Ka1) T (Ka1) T(Kd1) T (Kd1) Chi2 Chi2 B7-1 B7-2B7-1 B7-2 CD28AaPbCD28APCD28AaPbCD28AP 131261562.4196316131261562.4196316 1.115.815.020.9211.815.71.115.815.020.9211.815.7 8.574.623.2338.46.054.978.574.623.2338.46.054.97 59.814014910.762.461.459.814014910.762.461.4 13.535.633.711.468.894.213.535.633.711.468.894.2 5.152.723.812.584.032.515.152.723.812.584.032.51 Aa: CHO 세포 발현 hCTLA4-IgPb: prhCTLA4IgAa: CHO cell expression hCTLA4-IgPb: prhCTLA4Ig

상기 표 1에서 보듯이, 각 리간드와 분석군(analyte)과의 결합력은 비슷한 양상을 보였는데, B7-1의 경우 A와 P는 CD28에 비해 대략 10배 정도의 결합율(association rate)을 보였고, B7-2의 경우는 약 100배정도의 결합율(association rate)을 보였다. 또한 분리율(dissociation rate) 또한 CD28에 비해 A와 P에서 높게 나타났다. B7-1의 경우 CD28보다 A와 P의 친화도(affinity)가 두 배 정도 높았으며, B7-2의 경우에는 A는 6배정도, P는 8배정도 높게 나타났다. 이 결과 CHO 발현 hCTLA4-Ig와 prhCTLA4-Ig는 모두 CD28에 비해 B7 패밀리(B7-1, B7-2)에 대한 친화도(affinity)가 높았고, prhCTLA4-Ig는 CHO 발현 hCTLA4-Ig와 비슷한 B7 패밀리(B7-1, B7-2)에 대한 친화도(affinity)를 갖음을 확인하였다. As shown in Table 1, the binding force between each ligand and the analysis group (analyte) showed a similar pattern, in the case of B7-1 A and P showed about 10 times the association rate (association rate) compared to CD28 , B7-2 showed an association rate of about 100-fold. Also, the dissociation rate was higher in A and P than in CD28. In the case of B7-1, the affinity of A and P was twice as high as that of CD28, and in the case of B7-2, A was about 6 times and P was about 8 times higher. As a result, both CHO expressing hCTLA4-Ig and prhCTLA4-Ig had higher affinity for B7 family (B7-1, B7-2) than CD28, and prhCTLA4-Ig was similar to CHO expressing hCTLA4-Ig. It was confirmed to have affinity for (B7-1, B7-2).

3. ConA 유발 T 세포 증식(ConA-induced T cell proliferation)의 억제3. Inhibition of ConA-induced T cell proliferation

T 세포의 증식능력을 측정하기 위하여 BDF1 마우스의 비장(spleen)을 적출 후 비장세포를 유리하여 세포의 농도를 1 X 106 cells/ml로 조절하여 96-웰 플레이트(well plate)에 각 웰(well) 당 200 μl 씩 분주하여 배양하였다. 여기에 CHO 세포 유래 hCTLA4-Ig와 prhCTLA4-Ig를 0.001, 0.01, 0.1, 1, 10ug/ml의 농도로 넣어주고 T 임파구(lymphocyte)의 증식을 유도하는 미토겐(mitogen)인 ConA를 5 μg/ml로 첨가하여 37℃, 5% CO2 인큐베이터(incubator)에서 3 일간 배양하였다. 배양 완료전 [3H]-thymidine을 첨가한 후 자동세포회수기(Automatic Cell Harvester)를 이용하여 각 웰(well)의 세포를 회수한 뒤 [3H]-thymidine이 DNA에 결합된 정도를 측정함으로써 면역세포의 증식정도를 검사하였다.To measure the proliferative capacity of T cells, spleens of BDF1 mice were extracted and the splenocytes were released to adjust the cell concentration to 1 × 10 6 cells / ml, each well in a 96-well plate. 200 μl of the cells were aliquoted and cultured. 5 μg / of mitogen ConA, a mitogen that induces C lymphocyte-derived hCTLA4-Ig and prhCTLA4-Ig at concentrations of 0.001, 0.01, 0.1, 1, 10 ug / ml and induces the proliferation of T lymphocytes Addition of ml and incubated for 3 days in 37 ℃, 5% CO2 incubator. After incubation, [3H] -thymidine was added, and the cells of each well were recovered using an automatic cell harvester, and then the degree of binding of [3H] -thymidine to DNA was measured. The proliferation of was examined.

도 6에서 보듯이 용매대조군(VH)과 비교할 때 CHO 세포 유래 hCTLA4-Ig와 prhCTLA4-Ig 모두 농도-의존적으로 Con A에 의한 T 세포증식을 억제하였고, 1ug/ml이상의 농도에서는 50% 이상의 증식 억제효과를 나타내었다. 또한, prhCTLA4-Ig의 T 세포 증식 억제정도는 CHO 세포 유래 hCTLA4-Ig와 거의 동일하였다.As shown in FIG. 6, both CHO cell-derived hCTLA4-Ig and prhCTLA4-Ig inhibited T cell proliferation by Con A in a concentration-dependent manner, compared to the solvent control group (VH), and inhibited proliferation of 50% or more at a concentration of 1ug / ml or more The effect was shown. In addition, the degree of inhibition of T cell proliferation of prhCTLA4-Ig was almost the same as that of CHO cell-derived hCTLA4-Ig.

4. In vitro T-의존 항체생성(Ab production)의 억제4. Inhibition of in vitro T-dependent antibody production (Ab production)

T 세포-의존성 항원인 sRBC(sheep red blood cell)을 이용하여 비장세포(spleen cell)를 활성화시키면 sRBC에 대한 항체를 생성하는 플라즈마 세포(plasma cell)가 만들어진다. 비장세포(spleen cell)를 1 X 107 cells/ml이 되도록 조절한 후 48-웰 플레이트(well plate)에 0.5 ml/well씩 분주하였다. 그 후, 완충액(EBSS)으로 1 X 109 cells/ml이 되게 희석한 sRBC를 각 웰(well)에 6.5μl씩 첨가하여 5일 동안 배양한 후, 배양된 세포를 회수하여 플라그 어세이(plaque assay)에 사용하였다.Activation of spleen cells using sRBC (sheep red blood cell), a T cell-dependent antigen, produces plasma cells that produce antibodies to sRBC. Spleen cells were adjusted to 1 X 107 cells / ml and then dispensed 0.5 ml / well into 48-well plates. Thereafter, 6.5 μl of sRBC diluted to 1 X 109 cells / ml with buffer (EBSS) was added to each well, followed by incubation for 5 days, and then the cultured cells were recovered and plaque assay was performed. ) Was used.

sRBC에 대한 항체를 생성하는 플라즈마 세포(plasma cell), 타겟세포(target cell)로 sRBC, 기니아 피그(guinea pig) 보체 그리고 CHO 세포 유래 hCTLA4-Ig와 prhCTLA4-Ig를 0.001, 0.01, 0.1, 1, 10ug/ml의 농도로 처리한 0.85% 아가(agar)를 사용하여 37℃, 5% CO2 인큐베이터(incubator)에서 약 1 시간 배양한 후 플라그(plaque)의 수를 세었으며, 계산은 PFC/106 cells로 하였다. 활성화된 플라즈마 세포가 많을수록 항체생성을 많이 하게되고 기니아 피그(quinea pig) 보체가 작용하여 세포주위 sRBC를 용해시켜 플라그 수도 많아지게 된다. Plasma cells that produce antibodies to sRBC, sRBC, guinea pig complement and CHO cell-derived hCTLA4-Ig and prhCTLA4-Ig as 0.001, 0.01, 0.1, 1, Plaques were counted after incubation in a 5% CO2 incubator at 37 ° C for about 1 hour using 0.85% agar treated at a concentration of 10 ug / ml, and the count was calculated by PFC / 106 cells. It was set as. The more activated plasma cells, the more antibodies are generated and the guinea pig complement acts to dissolve the periplasmic sRBCs, thereby increasing the number of plaques.

도 7에서 보듯이 용매대조군(VH)과 비교할 때, CHO 세포 유래 CTLA4-Ig와 prhCTLA4-Ig 모두 농도 의존적으로 플라즈마 세포(plasma cell)의 T 세포-의존성(cell-dependent) 항원인 sRBC에 대한 항체생성을 억제하였고, 1ug/ml이상의 농도에서는 80% 이상 억제하였다. 또한 prhCTLA4-Ig의 플라즈마 세포의 T 세포-의존성(cell-dependent) 항원인 sRBC에 대한 항체의 생성 억제정도는 CHO 세포 유래 CTLA4-Ig와 거의 동일하였다.As shown in FIG. 7, both CHO cell-derived CTLA4-Ig and prhCTLA4-Ig, both of which are concentration-dependent, have an antibody against sRBC, a T cell-dependent antigen of plasma cells. Production was inhibited and at least 80% at concentrations above 1 ug / ml. In addition, the inhibition of the production of the antibody against sRBC, which is a T cell-dependent antigen, of plasma cells of prhCTLA4-Ig was almost the same as that of CLA cell derived CTLA4-Ig.

이상에서 상세히 설명하고 입증하였듯이, 본 발명은 hCTLA4-Ig 융합단백질-코딩 유전자를 포함하는 재조합벡터 pMYN409 및 이를 이용한 hCTLA4-Ig 융합단백질의 대량생산방법에 관한 것으로서, 본 발명에 따른 형질전환 식물세포 배양을 이용하여 면역억제 활성을 갖는 재조합 hCTLA4-Ig 융합단백질을 생산하는 방법을 확립하였고, 이로 인하여 경제적으로 면역억제 활성을 갖는 재조합 hCTLA4-Ig 융합단백질을 대량생산할 수 있는 효과가 있다.As described and demonstrated in detail above, the present invention relates to a recombinant vector pMYN409 comprising a hCTLA4-Ig fusion protein-coding gene and a method for mass production of a hCTLA4-Ig fusion protein using the same, the method for culturing a transgenic plant cell according to the present invention Using this method to establish a recombinant hCTLA4-Ig fusion protein having immunosuppressive activity, thereby economically has the effect of mass production of recombinant hCTLA4-Ig fusion protein having immunosuppressive activity.

도 1은 본 발명의 pMYN409 벡터의 유전자지도 모식도를 도시한 것이다.1 shows a schematic diagram of the gene map of the pMYN409 vector of the present invention.

도 2는 11종의 형질전환 균주에 포함된 hCTLA4-Ig 유전자를 PCR하여 증폭한 사진(A)과 상기 증폭된 PCR산물을 서든블롯(Southern blotting)한 사진(B)이다.2 is a photograph (A) obtained by PCR amplification of the hCTLA4-Ig gene included in 11 transgenic strains and a Southern blot of the amplified PCR product (B).

도 3은 오리자 사티바 pMYN409(KCTC 10618BP)의 캘러스에서 발현된 prhCTLA4-Ig의 정량분석그래프이다.Figure 3 is a quantitative graph of prhCTLA4-Ig expressed in the callus of Orissa sativa pMYN409 (KCTC 10618BP).

도 4는 오리자 사티바 pMYN409(KCTC 10618BP)의 현탁배양액에서 발현된 prhCTLA4-Ig의 정량분석 그래프이다. 4 is a quantitative graph of prhCTLA4-Ig expressed in suspension culture of Orissa sativa pMYN409 (KCTC 10618BP).

도 5는 본 발명의 prhCTLA4-Ig 단백질을 각각 전기영동한 사진(A)과 웨스턴 블럿팅 사진(B)이다. Figure 5 is a photograph (A) and Western blotting (B) of the electrophoresis of prhCTLA4-Ig protein of the present invention, respectively.

도 6은 본 발명의 prhCTLA4-Ig 단백질의 ConA-induced T 세포 증식의 억제효과 그래프이다.Figure 6 is a graph of the inhibitory effect of ConA-induced T cell proliferation of prhCTLA4-Ig protein of the present invention.

도 7은 본 발명의 prhCTLA4-Ig 단백질의 in-vitro T 세포-의존성(cell- dependent) 항체 생성의 억제효과에 대한 그래프이다.Figure 7 is a graph of the inhibitory effect of the production of in-vitro T cell-dependent antibody of the prhCTLA4-Ig protein of the present invention.

<110> LEE, ByungWook HONG, GilDong Patent Soft Co. <120> This is test for KopatentIn 1.7 <130> P-1242 <160> 3 <170> KopatentIn 1.7 <210> 1 <211> 157 <212> DNA <213> Abelson murine leukemia virus <220> <221> 3'clip <222> (2)..(3) <220> <221> CDS <222> (5)..(46) <400> 1 aggc agc gca gag gcg agc gac gag gsc gas gcg acs gga cga sgc 46 Ser Ala Glu Ala Ser Asp Glu Xaa Xaa Ala Xaa Gly Arg Xaa 1 5 10 asgc gacgasgcag scgasgasgg ascggcgacg cgcgcgagcg agcgggcggc 100 acgagagaga gacacaacgg agcgacgagc gagacgacag cagcagcgcg cagcaac 157 <210> 2 <211> 14 <212> PRT <213> Abelson murine leukemia virus <400> 2 Ser Ala Glu Ala Ser Asp Glu Xaa Xaa Ala Xaa Gly Arg Xaa 1 5 10 <210> 3 <400> 3 000<110> LEE, ByungWook HONG, GilDong Patent Soft Co. <120> This is test for KopatentIn 1.7 <130> P-1242 <160> 3 <170> KopatentIn 1.7 <210> 1 <211> 157 <212> DNA <213> Abelson murine leukemia virus <220> <221> 3'clip (222) (2) .. (3) <220> <221> CDS (222) (5) .. (46) <400> 1 aggc agc gca gag gcg agc gac gag gsc gas gcg acs gga cga sgc 46 Ser Ala Glu Ala Ser Asp Glu Xaa Xaa Ala Xaa Gly Arg Xaa 1 5 10 asgc gacgasgcag scgasgasgg ascggcgacg cgcgcgagcg agcgggcggc 100 acgagagaga gacacaacgg agcgacgagc gagacgacag cagcagcgcg cagcaac 157 <210> 2 <211> 14 <212> PRT <213> Abelson murine leukemia virus <400> 2 Ser Ala Glu Ala Ser Asp Glu Xaa Xaa Ala Xaa Gly Arg Xaa 1 5 10 <210> 3 <400> 3 000

Claims (6)

첨부 서열목록 1의 hCTLA4-Ig(human cytotoxic T lymphocyte antigen 4-Immunoglobulin) 융합단백질-코딩 유전자를 포함하는 재조합 벡터 pMYN409.Recombinant vector pMYN409 comprising a human cytotoxic T lymphocyte antigen 4-Immunoglobulin (HCTLA4-Ig) fusion protein-coding gene of SEQ ID NO: 1. 제 1 항에 있어서, 상기 hCTLA4-Ig중 Ig는 사람 IgG1 의 Cγ1 중 힌지(hinge), CH2, CH3 영역인 것을 특징으로 하는 재조합 벡터 pMYN409.The recombinant vector pMYN409 according to claim 1, wherein the Ig in the hCTLA4-Ig is a hinge, CH2, or CH3 region of Cγ1 of human IgG1. 제 1 항 또는 제 2 항의 재조합 벡터 pMYN409로 형질 전환된 것을 특징으로하는 오리자 사티바(Oryza sativa L.), 담배(Nicotiana tabacum), 옥수수(Zea mays), 대두(Glycine max), 밀(Triticum aestivum), 토마토(Lycopersicon esculentum), 유채(Brassica napus) 및 감자 (Solanum tuberosum) 중에서 선택된 어느 하나의 식물세포.Oryza sativa L., Tobacco (Nicotiana tabacum), Corn (Zea mays), Soybean (Glycine max), Wheat (Triticum), characterized in that transformed with the recombinant vector pMYN409 of claim 1 or 2. aestivum, tomato (Lycopersicon esculentum), rapeseed (Brassica napus) and potato (Solanum tuberosum) any one of the plant cells. 제 3 항에 있어서, 상기 식물세포는 오리자 사티바(Oryza sativa L.)인 것을 특징으로 하는 형질전환된 식물세포(기탁번호 KCTC 10618BP ).The transformed plant cell (Accession No. KCTC 10618BP ) according to claim 3, wherein the plant cell is Oryza sativa L .. 제 3 항의 식물세포를 현탁배양하는 공정을 포함하는 재조합 hCTLA4-Ig 융합단백질 생산방법.Method for producing a recombinant hCTLA4-Ig fusion protein comprising the step of suspending the plant cell of claim 3. 제 5 항에 있어서, 상기 현탁배양은 Chu N6 또는 AA 배지나 식물세포배양에 널리 쓰이는 MS (Murashige and Skoog) 배지 등을 기본배지로 하여 탄소원으로 10 ~ 60 g/L의 자당, 생장조절제로 0.1 ~ 2.0 mg/L 2,4-D와 0.01 ~ 2.0 mg/L 키네틴(kinetin), 그리고 선별을 위해 하이그로마이신(hygromycin)을 함유하는 배지를 이용하는 것을 특징으로 하는 재조합 hCTLA4-Ig 융합단백질 생산 방법.According to claim 5, The suspension culture is Chu N6 or AA medium or MS (Murashige and Skoog) medium widely used in plant cell culture, such as 10 ~ 60 g / L sucrose, growth regulator 0.1 as a carbon source as a basic medium Method for producing a recombinant hCTLA4-Ig fusion protein characterized by using a medium containing ~ 2.0 mg / L 2,4-D and 0.01 to 2.0 mg / L kinetin, and hygromycin for selection .
KR1020040038098A 2004-05-28 2004-05-28 4- 4- Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them KR100542605B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020040038098A KR100542605B1 (en) 2004-05-28 2004-05-28 4- 4- Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them
PCT/KR2005/001582 WO2005116221A1 (en) 2004-05-28 2005-05-27 Hctla4-ig fusion protein-coding gene, recombinant vector comprising the same, and process for producing hctla4-ig fusion protein using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040038098A KR100542605B1 (en) 2004-05-28 2004-05-28 4- 4- Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them

Publications (2)

Publication Number Publication Date
KR20050112715A true KR20050112715A (en) 2005-12-01
KR100542605B1 KR100542605B1 (en) 2006-01-11

Family

ID=35450898

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040038098A KR100542605B1 (en) 2004-05-28 2004-05-28 4- 4- Recombinant vector containing gene of hCTLA4-Ig fusion protein and manufacturing process of the protein by using them

Country Status (2)

Country Link
KR (1) KR100542605B1 (en)
WO (1) WO2005116221A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260421B1 (en) 2011-09-20 2013-05-09 주식회사에이앤알쎄라퓨틱스 Fusion protein comprising CTLA4 and IL21R and composition for preventing or treating arthritis comprising the same
EP2856159A4 (en) 2012-06-01 2016-04-13 Momenta Pharmaceuticals Inc Methods related to denosumab
US10450361B2 (en) 2013-03-15 2019-10-22 Momenta Pharmaceuticals, Inc. Methods related to CTLA4-Fc fusion proteins
EP2996772B1 (en) 2013-05-13 2018-12-19 Momenta Pharmaceuticals, Inc. Methods for the treatment of neurodegeneration
EP3058084A4 (en) 2013-10-16 2017-07-05 Momenta Pharmaceuticals, Inc. Sialylated glycoproteins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844095A (en) * 1991-06-27 1998-12-01 Bristol-Myers Squibb Company CTLA4 Ig fusion proteins
US6750334B1 (en) * 1996-02-02 2004-06-15 Repligen Corporation CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor

Also Published As

Publication number Publication date
WO2005116221A1 (en) 2005-12-08
KR100542605B1 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
US6303341B1 (en) Method for producing immunoglobulins containing protection proteins in plants and their use
US20100189717A1 (en) Plant Recombinant Human CTLA4IG and a Method for Producing the Same
JP4610334B2 (en) Production of peptides and proteins by accumulating in protein granules from the endoplasmic reticulum of plants
WO1996021012A9 (en) Methods for producing immunoglobulins containing protection proteins in plants and their use
JPH07501941A (en) Receptor for oncostatin M and leukemia inhibitory factor
US20060162026A1 (en) Expressing TGF-beta proteins in plant plastids
US20080115244A1 (en) Method for producing immunoglobulins containing protection proteins and their use
KR20070085291A (en) System and method for production of antibodies in plant cell culture
Lee et al. Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures
EP1399572A2 (en) Gene expression and production of tgf-b proteins including bioactive mullerian inhibiting substance from plants
JP2002515020A (en) TNF-α convertase
WO2005116221A1 (en) Hctla4-ig fusion protein-coding gene, recombinant vector comprising the same, and process for producing hctla4-ig fusion protein using the same
CN106434589A (en) Chicken glutathione S-transferase A3 (GSTA3), prokaryotic expression and purification method thereof
KR102453605B1 (en) Novel Peptide Tag, Antibodies Binding to the Same and Uses thereof
Masumura et al. Production of biologically active human interferon-α in transgenic rice
KR100891975B1 (en) Method for Producing Recombinant Protein using Plant Secretion System
CZ309487B6 (en) Method of preparing barley plants producing antimicrobial peptides
KR20170013174A (en) Method for producing Polyclonal antibody against recombinant protein of mistletoe lectin B chain
KR20170013181A (en) Method for producing Polyclonal antibody against recombinant protein of mistletoe lectin A chain
KR100534458B1 (en) Production of Transformed Plants Expressing Thyroid Stimulating Hormone Receptor
AU773602B2 (en) Methods for producing immunoglobulins containing protection proteins in plants and their use
KR20220011373A (en) N-glycosylation mutated rice, method for manufacturing thereof, and method for manufacturing rice for protein production using the same
Synapse Determination of Biologically Active Forms of Proteolytic Enzymes
KR20050028129A (en) Bovine lactoferricin expressed in plants
Vojta et al. Biotechnology Reports

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20121210

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee