KR20050112692A - The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous(Ⅱ) and ferric(Ⅲ) chloride solutions generated by piezoelectric nozzle - Google Patents

The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous(Ⅱ) and ferric(Ⅲ) chloride solutions generated by piezoelectric nozzle Download PDF

Info

Publication number
KR20050112692A
KR20050112692A KR1020040037873A KR20040037873A KR20050112692A KR 20050112692 A KR20050112692 A KR 20050112692A KR 1020040037873 A KR1020040037873 A KR 1020040037873A KR 20040037873 A KR20040037873 A KR 20040037873A KR 20050112692 A KR20050112692 A KR 20050112692A
Authority
KR
South Korea
Prior art keywords
iron
chloride
iron oxide
solution
iii
Prior art date
Application number
KR1020040037873A
Other languages
Korean (ko)
Other versions
KR100614977B1 (en
Inventor
이승준
김병윤
김종득
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020040037873A priority Critical patent/KR100614977B1/en
Publication of KR20050112692A publication Critical patent/KR20050112692A/en
Application granted granted Critical
Publication of KR100614977B1 publication Critical patent/KR100614977B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명은 (a) 염화철(Ⅱ)와 염화철(Ⅲ)을 물에 용해시켜 초음파처리하여 균일하게 혼합하는 단계; (b) 단계a의 용해액을 소정의 크기를 갖도록 10∼100 마이크로의 직경을 갖는 작은 압전소자 노즐을 통해 분사하여 액적화하고, 상기 액적을 반응촉매로 되는 알칼리용액에 적하하는 단계; (c) 단계b의 알칼리용액을 초음파처리로 교반하고 반응시켜 액적내에 산화철마그네타이트를 형성하는 단계; 및 (d) 단계c에서 형성된 산화철마그네타이트를 산화시켜 산화철 마그헤마이트를 형성하는 단계를 포함하는 단분산 산화철 나노입자의 제조방법을 제공한다.The present invention comprises the steps of: (a) dissolving iron (II) chloride and iron (III) chloride in water and sonicating uniformly; (b) spraying the dissolved solution of step a through a small piezoelectric element nozzle having a diameter of 10 to 100 microns so as to have a predetermined size, and dropping the droplets into an alkaline solution serving as a reaction catalyst; (c) stirring and reacting the alkaline solution of step b by sonication to form iron oxide magnetite in the droplets; And (d) oxidizing the iron oxide magnetite formed in step c to form iron oxide maghemite.

Description

압전소자 노즐에 의한 염화철 (Ⅱ) 과 염화철(Ⅲ)의 미세액적 반응기에서의 단분산 산화철 나노입자의 제조방법{The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous(Ⅱ) and ferric(Ⅲ) chloride solutions generated by piezoelectric nozzle} The preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous (II) and ferric (III) in a microdroplet reactor of iron (II) chloride and (III) chloride by piezoelectric element nozzles chloride solutions generated by piezoelectric nozzle}

본 발명은 단분산 산화철 나노입자의 제조방법에 관한 것으로, 보다 상세하게는 10nm이하의 좁은 입자분포를 가질 수 있으며, 산화철 나노입자의 제조 후에도 입자간의 엉김현상이 없어 균일한 분산이 가능한 산화철 나노입자의 제조방법에 관한 것이다.The present invention relates to a method for producing mono-dispersed iron oxide nanoparticles, more specifically, may have a narrow particle distribution of less than 10nm, iron oxide nanoparticles that can be uniformly dispersed even after the production of iron oxide nanoparticles without entanglement between particles It relates to a manufacturing method of.

일반적으로 산화철은 자연에서 매우 다양한 형태로 산출되며 주로 제철 및 철강산업에 이용되어 왔으며 자연산 혹은 합성 산화철이 비금속산업에도 다양하게 이용되어 왔다. 또한, 산화철의 화학적 전자기적 특성을 이용하여 입자 형태로 합성하여 전자재료 및 의료분야, 바이오산업 분야 등 넓은 용도로 사용되고 있다. 산화철은 철과 산소의 화합물로써 크게 산화철(Ⅱ)ㆍ산화철(Ⅲ)ㆍ사산화삼철 등이 있는데, 산화철(Ⅱ)(산화제일철, 화학식 FeO)은 일산화철 또는 이산화철이라고도 하며 산화철(Ⅲ)을 수소로 환원시키거나, 공기를 차단하고 옥살산철을 가열하면 생기지만, 순수한 것은 얻기 어렵다. 공기 속에서 가열하면 산화철(Ⅲ)이 되는데 저온에서 만든 것은 반응성이 풍부하고, 또 강한 자성(磁性)을 보이며, 수소에 의하여 환원되어 철을 생성한다. 또한, 산화철(Ⅲ)(산화제이철, 화학식 Fe2O3)은 삼산화이철 또는 삼이산화철이라고도 하고 결정구조에 따라 헤마타이트(이하 헤마타이트, hematite, a-Fe2O3) 와 마그헤마이트(이하 마그헤마이트, maghemite, r-Fe2 O3)로 구분되며, 적갈색 분말로 햇빛, 공기, 수분, 열 등에 대하여 상당히 안정하며, 한번 가열한 것은 잘 녹지 않는다. 산화철(Ⅲ)은 철을 공기 속에서 가열하면 생성된다. 예전에는 황산철을 구워서 만들었으나, 최근에는 철강공업이나 도금공업의 폐액(廢液)에서 생긴 황산철 또는 염화철을 원료로 하여 만든다. 제조법에 따라 적색인 것에서 황색ㆍ갈색ㆍ자색ㆍ흑색 등을 띠는데, 빛깔이 다른 원인으로서는 입자의 크기, 혼입물의 종류, 결정격자의 완전성 등을 들 수 있다. 공업적으로는 벵갈라로 불리우는 적색안료로서, 또 유리ㆍ귀금속ㆍ다이아몬드의 연마재로서 사용되고, 순도가 높은 것은 반도체로 사용되며, 또한 마그넷, 자기(磁氣)테이프의 원료로도 쓰인다. 그리고 사산화삼철은 마그네타이트(이하 마그네타이트, magnetite, Fe3O4)라고 하며, 흑색의 무거운 분말로, 천연으로는 자철석으로서 산출된다.In general, iron oxide is produced in a variety of forms in nature and has been mainly used in the steel and steel industry, and natural or synthetic iron oxide has been used in a variety of non-metal industry. In addition, by using the chemical electromagnetic properties of iron oxide synthesized in the form of particles are used in a wide range of applications, such as electronic materials, medical, bio-industry. Iron oxide is a compound of iron and oxygen, and iron (II) oxide, iron (III) oxide and triiron tetraoxide are largely included. Iron (II) oxide (ferrous oxide, formula FeO) is also called iron monoxide or iron dioxide, and iron oxide (III) is hydrogen It is produced by reducing it to or by blocking the air and heating iron oxalate, but it is difficult to obtain pure one. When heated in air, it becomes iron (III) oxide, which is made at low temperature, is rich in reactivity and shows strong magnetism. It is reduced by hydrogen to produce iron. In addition, iron (III) oxide (ferric oxide, the formula Fe 2 O 3 ) is also called ferric trioxide or iron trioxide, depending on the crystal structure hematite (hereinafter hematite, hematite, a-Fe 2 O 3 ) and maghemite (hereinafter referred to as Maghemite, maghemite, r-Fe 2 O 3 ) is a reddish brown powder, which is fairly stable against sunlight, air, moisture, heat, etc. Iron (III) oxide is produced by heating iron in air. In the past, it was made by baking iron sulfate, but recently it is made from iron sulfate or iron chloride produced from the waste liquid of the steel industry or plating industry as a raw material. According to the manufacturing method, the color may be yellow, brown, purple, or black, but the color may be different from the particle size, the type of the mixed matter, and the completeness of the crystal lattice. It is industrially used as a red pigment called Bengala, and used as an abrasive for glass, precious metals and diamonds, and a high purity is used as a semiconductor, and also as a raw material for magnets and magnetic tapes. And ferric tetraoxide is called magnetite (hereinafter magnetite, magnetite, Fe 3 O 4 ), a black heavy powder, naturally produced as magnetite.

또한, 산화철을 전자재료 및 바이오산업에 응용하기 위해 다양한 방법으로 나노 및 마이크로 크기의 입자 형태로 제조되고 있는데, 현재 나노 및 마이크로 크기의 산화철 입자 제조는 염화철(II)(FeCl2ㆍ4H2O)와 염화철(III)(FeCl3 ㆍ6H2O)을 고온화학 용액법으로 반응시켜 합성하고, 아이온 펜타카르보닐(이하 펜타카르보닐, iron pentacarbonyl, Fe(CO)5)을 고온화학 용액법으로 반응시켜 합성하거나 초음파법과 화학침전법 등을 이용하여 합성되어지고 있다. 그러나, 이와 같은 공정방법으로 제조된 나노 및 마이크로 크기의 산화철 입자는 그 입자의 크기에 있어서 넓은 분포도를 가지고 있고, 10nm(이하 나노) 이하의 크기로 입자의 제조가 용이하지 않고, 제조시 산화철 입자간의 엉김현상으로 분산매에 분산이 용이하지 않다는 문제점을 가지고 있다. 이는 입자를 제조하는 공정에서 입자의 크기를 조절하고, 반응상을 조절하는 데에 어려움이 있기 때문이다.In addition, iron oxides are manufactured in nano and micro sized particle forms in various ways for application to electronic materials and bio industry. Currently, nano and micro sized iron oxide particles are manufactured using iron (II) chloride (FeCl 2 · 4H 2 O). And iron (III) chloride (FeCl 3 · 6H 2 O) are reacted by high temperature chemical solution method, and ion pentacarbonyl (hereinafter, pentacarbonyl, iron pentacarbonyl, Fe (CO) 5 ) is reacted by high temperature chemical solution method. It is synthesize | combined by the ultrasonic wave method, the chemical precipitation method, etc. However, nano and micro-sized iron oxide particles produced by such a process method has a wide distribution in the size of the particles, and it is not easy to manufacture the particles to a size of 10 nm (hereinafter referred to as nano) or less, and the iron oxide particles at the time of manufacture Due to the entanglement of the liver, it has a problem that it is not easy to disperse in the dispersion medium. This is because it is difficult to control the size of the particles and control the reaction phase in the process of producing the particles.

한편, 본 발명과 유사한 것으로서 한국특허등록 10-0014271-0000호, 한국특허공개 1997-0066732호, 한국특허공개 2002-0063116호가 있으나, 이는 산화철입자를 제조하는 공정방법과 제조 후 산화철입자의 크기에 있어서 본 발명의 기술적 구성과는 그 내용을 달리하고 있고, 미국특허출원 US496972호가 있으나 이는 제조 공정방법과 입자의 종류에 있어서 본 발명의 기술적 구성과는 그 내용을 달리하고 있고, 한국특허공개 10-2004-0011099호는 잉크젯 헤드를 사용하는 잉크젯 프린터나 잉크젯 프린터를 포함하는 복합기 등에 관한 것으로서, 특히 잉크젯 노즐의 상태에 따른 원고인쇄 방법 및 장치에 관한 것으로 본 발명의 산화철입자를 제조하는 공정방법과 제조 후 산화철입자의 크기 제어를 주로 하는 기술적 구성과는 그 내용을 달리하고 있다. On the other hand, as similar to the present invention, there are Korean Patent Registration No. 10-0014271-0000, Korean Patent Publication No. 1997-0066732, and Korean Patent Publication No. 2002-0063116, which are based on the process method of preparing the iron oxide particles and the size of the iron oxide particles after production There is a different content from the technical configuration of the present invention, there is a US patent application US496972 but this is different from the technical configuration of the present invention in the manufacturing process method and the type of particles, 2004-0011099 relates to an inkjet printer using an inkjet head, a multifunction device including an inkjet printer, and the like, and more particularly, to a method and a device for printing a document according to the state of an inkjet nozzle. The contents are different from the technical configuration mainly controlling the size of the post iron oxide particles.

본 발명은 상기 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, The present invention has been made to solve the problems of the prior art,

본 발명의 목적은 나노 크기의 산화철 입자 제조시 염화철(II)과 염화철(III)을 상온에서 초음파에 의한 교반으로 물에 용해시켜 혼합한 후, 염화철(II)과 염화철(III)이 용해된 용해액을 압전소자 노즐을 통해 액적의 형태로 알칼리 용액에 떨어뜨리고, 초음파를 가하여 교반 반응시켜 10nm이하의 좁은 입자분포를 가질 수 있으며, 산화철 나노입자의 제조 후에도 입자간의 엉김현상이 없어 균일한 분산이 가능한 산화철 나노입자의 제조방법을 제공함에 있다. An object of the present invention is to prepare a nano-sized iron oxide particles dissolved iron (II) chloride and iron (III) in water by ultrasonic stirring at room temperature, and then mixed, and then dissolved iron (II) chloride and iron (III) chloride dissolved The liquid is dropped into the alkaline solution in the form of droplets through a piezoelectric element nozzle and stirred by ultrasonic wave to have a narrow particle distribution of 10 nm or less, and even after the production of the iron oxide nanoparticles, there is no entanglement between particles, resulting in uniform dispersion. The present invention provides a method for producing iron oxide nanoparticles.

본 발명은 (a) 염화철(Ⅱ)와 염화철(Ⅲ)을 물에 용해시켜 초음파처리하여 균일하게 혼합하는 단계; (b) 단계a의 용해액을 소정의 크기를 갖도록 10∼100 마이크로의 직경을 갖는 작은 압전소자 노즐을 통해 분사하여 액적화하고, 상기 액적을 반응촉매로 되는 알칼리용액에 적하하는 단계; (c) 단계b의 알칼리용액을 초음파처리로 교반하고 반응시켜 액적내에 산화철마그네타이트를 형성하는 단계; 및 (d) 단계c에서 형성된 산화철마그네타이트를 산화시켜 산화철 마그헤마이트를 형성하는 단계를 포함하는 단분산 산화철 나노입자의 제조방법을 제공한다.The present invention comprises the steps of: (a) dissolving iron (II) chloride and iron (III) chloride in water and sonicating uniformly; (b) spraying the dissolved solution of step a through a small piezoelectric element nozzle having a diameter of 10 to 100 microns so as to have a predetermined size, and dropping the droplets into an alkaline solution serving as a reaction catalyst; (c) stirring and reacting the alkaline solution of step b by sonication to form iron oxide magnetite in the droplets; And (d) oxidizing the iron oxide magnetite formed in step c to form iron oxide maghemite.

본 발명에 사용되는 미세액적 반응기는 위와 같이 마이크로 크기의 액적으로써, 초음파로 적당한 에너지를 가하여 염화철(II)와 염화철(III)를 반응시킴으로써 미세액적 내에서 나노 입자를 침전시키는 것에 의해 균일한 나노 입자를 얻을 수 있는 방법을 제공한다. 상기 본 발명의 방법에 의하면 입자의 크기를 균일하게 조정할 수 있고, 그에 따라 균일한 입자 크기 분포를 얻을 수 있으며, 입자생성 효율이 높고 생성입자의 분산성이 좋을 뿐만 아니라, 대량생산이 용이하고, 환경친화적이라는 장점 또한 얻을 수 있다.  The microdroplet reactor used in the present invention is a microsized droplet as described above, and uniformly by precipitating nanoparticles in the microdroplets by reacting iron (II) chloride with iron (III) chloride by applying appropriate energy with ultrasonic waves. It provides a method for obtaining nanoparticles. According to the method of the present invention, it is possible to uniformly adjust the size of the particles, thereby obtaining a uniform particle size distribution, high particle production efficiency and good dispersibility of the produced particles, easy to mass production, The benefits of being environmentally friendly can also be obtained.

상기 단계a에서 염화철(Ⅱ)와 염화철(Ⅲ)의 몰비는 특별히 한정되지는 아니하나 바람직하게는 염화철(II) 1몰(mol)과 염화철(III) 2몰(mol)의 비율(염화철(II)/염화철(III)=0.5)로 조절하는 것이 좋다. 몰비가 증가하거나 감소하게 되면 화학반응상 생성되는 침전물이 반응에 영향을 줄 수 있으므로 상기 몰비로 조절하는 것이 좋다.The molar ratio of iron (II) chloride and iron (III) chloride in step a is not particularly limited, but preferably a ratio of 1 mol (mol) of iron (II) chloride and 2 mol (mol) of iron (III) chloride (iron chloride (II) ) / Iron (III) = 0.5). If the molar ratio is increased or decreased, the precipitate produced in the chemical reaction may affect the reaction.

상기 염화철(II)과 염화철(III)을 물에 혼합하는 경우 전체 염화철의 함량은 10∼20중량부로 하는 것이 좋다.When the iron (II) chloride and iron (III) chloride are mixed in water, the total iron chloride content is preferably 10 to 20 parts by weight.

상기에서 단계a에서의 초음파처리는 염화철(II)과 염화철(III)을 균일하게 물에서 혼합하기 위한 것인 한 특별한 한정을 요구하지는 아니하지만, 바람직하게는 공지의 초음파처리장치를 이용하여 20∼50kHz, 50∼100W의 초음파가 사용되어질 수 있다. 초음파 처리과정은 15∼60℃에서 20∼40분 동안 수행되어질 수 있다. The sonication in step a above does not require any special limitation as long as it is to uniformly mix iron (II) chloride and iron (III) chloride in water, but preferably 20 to 20 using a known ultrasonic treatment apparatus. Ultrasound of 50 kHz, 50-100 W can be used. The sonication process may be performed at 15 to 60 ° C. for 20 to 40 minutes.

단계b에서 염화철(II)과 염화철(III)이 균일하게 혼합된 용해액을 액적화하는 데에는 압전소자 노즐(이하, 압전노즐이라 한다)이 이용된다. 본 발명에서 이용된 미세 압전노즐을 포함하는 액적 제조장치는 압전변환(壓電變換)장치(이하 압전변환기)를 통해서 용액을 진동시키면서 상기 용액이 마이크로 크기의 직경을 갖는 작은 노즐을 통하여 액적의 형태로 방출되도록 구성된다. 상기 노즐을 통하여 분사되는 액적은 마이크로 크기의 직경을 갖는 미세 액적으로서 노즐직경, 진동수, 용액조성을 조절하면 균일한 크기의 마이크로 액적으로 형성될 수 있다.In step b, a piezoelectric element nozzle (hereinafter referred to as a piezoelectric nozzle) is used to droplet the dissolved solution in which the iron (II) chloride and the iron (III) chloride are uniformly mixed. The droplet manufacturing apparatus including the fine piezoelectric nozzle used in the present invention is a droplet form through a small nozzle having a micro-sized diameter while vibrating the solution through a piezoelectric transducer (hereinafter referred to as a piezoelectric transducer). It is configured to be discharged to. Droplets sprayed through the nozzle may be formed as micro droplets having a uniform size by adjusting the nozzle diameter, frequency, and solution composition as fine droplets having a diameter of a micro size.

이를 보다 구체적으로 설명하면, 미세전자 노즐을 통해 용해액을 분사하면 얇은 실린더 모양의 물줄기가 흐르게 되며, 이 때 이 노즐 끝을 압전변환기를 통해 진동시켜 주면, 이 때 야기되는 주기적인 불안정이 실린더 모양의 물줄기를 균일한 크기의 일련의 방울로 변환시킨다. 이 때 노즐지름의 크기에 따라 방울의 크기에 영향을 주게 되며, 이를 통해 균일한 크기의 입자들을 얻을 수 있다. 일반적으로, 노즐지름의 크기가 증가할수록 산화철 나노입자의 크기가 다소 증가된 입자를 얻을 수 있다.In more detail, when a solution is injected through a microelectron nozzle, a thin cylinder-like stream of water flows. At this time, when the tip of the nozzle is vibrated through a piezoelectric transducer, periodic instability caused at this time is cylindrical. The stream of water is transformed into a series of drops of uniform size. At this time, the size of the nozzle is affected by the size of the nozzle diameter, thereby obtaining particles of uniform size. In general, as the size of the nozzle diameter increases, the size of the iron oxide nanoparticles may be slightly increased.

이와 같이 본 발명에서 압전소자 노즐은 염화철(Ⅱ)과 염화철(Ⅲ)의 혼합용액을 미세액적으로 분쇄하고, 이후 상기 액적 내에서 소정의 반응을 거쳐 궁극적으로 얻어지는 산화철 나노입자의 크기를 조절하는 중심적인 역할을 수행한다. 이러한 압전소자 노즐의 지름은 특별히 한정되지는 아니하나, 바람직하게는 10∼100 ㎛(이하, 마이크로) 중에서 선택되어질 수 있다. 노즐의 지름이 10 마이크로 미만인 경우에는 공기 중 또는 용액내의 미세 이물질에 의해 노즐내에 흐르는 용액의 흐름에 영향을 받을 수 있으며, 노즐의 지름이 100 마이크로를 초과하는 경우에는 노즐을 통해 분사되는 용액이 거대 방울화되는 문제가 생길 수 있다. As described above, the piezoelectric element nozzle in the present invention grinds a mixed solution of iron (II) chloride and iron (III) chloride into fine droplets, and then adjusts the size of the iron oxide nanoparticles ultimately obtained through a predetermined reaction in the droplets. It plays a central role. The diameter of the piezoelectric element nozzle is not particularly limited, but may be preferably selected from 10 to 100 μm (hereinafter, micro). If the diameter of the nozzle is less than 10 micro, it may be affected by the flow of the solution in the nozzle by air or fine foreign matter in the solution.If the diameter of the nozzle exceeds 100 micro, the solution sprayed through the nozzle is large. Dropping problems can occur.

상기 단계b의 액적화 단계에서 액적형성은 바람직하게는 압전변환기의 진동수 15∼25kHz, 분사속도 0.006∼0.02㎖/초의 조건으로 압전소자 노즐을 통해 용해액을 분사하는 방법이 사용될 수 있다. 진동수가 상기 범위를 벗어나는 경우에는 노즐 끝을 자극하는 압전변환기에 야기되는 주기적인 최적 진동조건의 범위를 벗어나게 되므로 실린더 모양의 물줄기를 균일한 크기의 일련의 방울로 변환시키는 것이 용이하지 않게 되며, 분사속도가 상기 범위를 벗어나게 되는 경우에는 분사되는 용액의 최적 흐름현상을 벗어나는 조건으로 되어 넓은 분포를 가지는 입자가 생성되어지는 문제가 생길 수 있다.In the droplet formation step of step b, droplet formation may be preferably performed by spraying the solution through the piezoelectric element nozzle under the condition of the frequency of the piezoelectric transducer of 15 to 25 kHz and the injection speed of 0.006 to 0.02 ml / sec. When the frequency is out of the above range, it is out of the range of periodic optimum vibration caused by the piezoelectric transducer that stimulates the nozzle tip, and thus it is not easy to convert the cylindrical body of water into a series of droplets of uniform size. If the speed is out of the above range may be a condition that is out of the optimum flow phenomenon of the sprayed solution may cause a problem that particles having a wide distribution is produced.

상기 단계b의 알칼리용액은 반응촉매로서 제공되는 것이며, 특별히 한정되는 것은 아니지만 입자생성의 용이성과 입자크기에 있어서 거대입자와 넓은 입자분포를 가지는 문제를 함께 해결하기 위하여 바람직하게는 pH 12∼14인 알칼리 용액으로 한다. 이러한 알칼리 용액의 예로는 수산화나트륨 또는 암모늄하이드록사이드 용액이 있다.The alkaline solution of step b is provided as a reaction catalyst, but is not particularly limited. In order to solve the problem of having a large particle and a wide particle distribution in the ease of particle formation and particle size, the pH is preferably 12 to 14. An alkaline solution is used. Examples of such alkaline solutions are sodium hydroxide or ammonium hydroxide solutions.

단계c는 알칼리용액을 초음파로 처리하여 균일하게 분산된 액적내에서 반응을 수행하는 과정이다. 액적내에서 염화철(Ⅱ)과 염화철(Ⅲ)의 혼합물은 반응을 일으켜 흑색의 산화철 마그네타이트로 된다. 이와 같은 반응은 바람직하게는 공지의 초음파처리장치를 이용하여 20∼50kHz, 50∼100W의 초음파가 사용되어질 수 있으며, 초음파 처리과정은 15∼60℃에서 20∼60분 동안 수행되어질 수 있다.Step c is a process of performing the reaction in a uniformly dispersed droplet by treating the alkaline solution with ultrasonic waves. In the droplets, a mixture of iron (II) chloride and iron (III) chloride reacts to form a black iron oxide magnetite. Such a reaction may be preferably using ultrasonic waves of 20 to 50 kHz, 50 to 100 W using a known ultrasonic treatment apparatus, and the ultrasonic treatment may be performed at 15 to 60 ° C. for 20 to 60 minutes.

상기 과정을 거쳐 얻어진 산화철마그네타이트는 세척한 다음 100∼300℃하에서 열처리에 의한 산화과정을 수행하면 적갈색의 산화철 마그헤마이트가 생성된다. 이와 같은 과정으로 제조되는 산화철 마그헤마이트는 사용되는 노즐의 크기를 조절하는 간단한 과정에 의해 10nm 이하의 균일한 단분산 나노입자로서 제조될 수 있다.The iron oxide magnetite obtained through the above process is washed and then subjected to an oxidation process by heat treatment at 100 to 300 ° C. to produce reddish brown iron oxide magnetite. Iron oxide maghemite prepared by such a process can be prepared as uniform monodisperse nanoparticles of 10 nm or less by a simple process of adjusting the size of the nozzle used.

이하 본 발명의 내용을 실시예에 의해 보다 상세하게 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, and the scope of the present invention should not be construed as being limited to these embodiments.

<실시예 1><Example 1>

상온에서 염화철(Ⅱ) 1몰(mol)과 염화철(Ⅲ) 2몰(mol)의 비율(염화철(Ⅱ)/염화철(Ⅲ)=0.5)인 800mg 과 2160mg을 30분 동안 초음파(Branson Co., U.S.A, Bransonic 1510, 20KHz, 70W)하에서 물 10㎖에 용해시켜 혼합하였다.At room temperature, the ratio of 1 mol (mol) of iron (II) chloride and 2 mol (mol) of iron (III) chloride (iron (II) chloride / iron (III) chloride = 0.5) was obtained by using ultrasonic (Branson Co., USA, Bransonic 1510, 20KHz, 70W), dissolved in 10ml of water and mixed.

얻어진 용해액을 압전변환기(Agilent, model 33120A)를 진동수 20 KHz, 분사속도 0.01 ㎖/초로 50 마이크로의 지름을 갖는 압전노즐(micro-piezoelectric nozzle, MicroFab Technologies Inc., U.S.A)을 통해 pH 13.5 인 1.2M 수산화나트륨 용액으로 떨어뜨리고, 30분 동안 초음파(Branson Co., U.S.A, Bransonic 1510, 20KHz, 70W) 처리하여 교반 반응시켰다. The resulting solution was subjected to a piezoelectric transducer (Agilent, model 33120A) using a micro-piezoelectric nozzle (MicroFab Technologies Inc., USA) having a diameter of 50 microns at a frequency of 20 KHz and a spray rate of 0.01 ml / sec. The solution was dropped into M sodium hydroxide solution, and stirred for 30 minutes by ultrasonication (Branson Co., USA, Bransonic 1510, 20KHz, 70W).

반응액을 물로 세척하고, 250∼300℃에서 1∼2시간 동안 열처리한 결과 3∼5나노 크기의 좁은 입자분포를 가지며, 4.3 나노의 평균입자 크기를 가지는 단분산 산화철 마그네타이트 또는 마그헤마이트 나노 입자를 제조하였다. The reaction solution was washed with water and heat-treated at 250 to 300 ° C. for 1 to 2 hours. The monodisperse iron oxide magnetite or maghemite nanoparticles having a narrow particle size of 3 to 5 nanometers and an average particle size of 4.3 nanometers were obtained. Was prepared.

한편 제조된 산화철 나노입자의 결정구조 분석을 위해 엑스레이분석(이하 엑스레이, XRD, X-ray Diffraction, 한국 KAIST XRD 분석센타)를 이용하였고, 이 결과를 엑스레이 표준 패턴 문헌표(Powder Diffraction file, JCPOS card no. 19-0629(magnetite), 25-1402(maghemite))와 비교하여 하기의 표 1에 나타내었다.Meanwhile, X-ray analysis (hereinafter referred to as X-ray, XRD, X-ray Diffraction, and KAIST XRD Analysis Center in Korea) was used to analyze the crystal structure of the manufactured iron oxide nanoparticles, and the results were obtained from the X-ray standard pattern document table (Powder Diffraction file, JCPOS card). No. 19-0629 (magnetite), 25-1402 (maghemite)) is shown in Table 1 below.

<표 1> 제조된 산화철 나노 입자의 결정구조 분석Table 1 Crystal Structure Analysis of the Prepared Iron Oxide Nanoparticles

bulkFe3O4 bulkFe 3 O 4 bulkγ-Fe2O3 bulkγ-Fe 2 O 3 Fe3O4 Fe 3 O 4 r-Fe2O3 r-Fe 2 O 3 d(A)intensityd (A) intensity d(A)intensityd (A) intensity d(A)intensityd (A) intensity d(A)intensityd (A) intensity (JCPOS19-0629)(JCPOS19-0629) (JCPOS25-1402)(JCPOS25-1402) (마그네타이트)(Magnetite) (마그헤마이트)(Maghemite) 2.9672.967 2.9502.950 2.9612.961 2.9502.950 2.5322.532 2.5142.514 2.5322.532 2.5132.513 2.0992.099 2.0862.086 2.0992.099 2.0862.086 1.7141.714 1.7011.701 1.7091.709 1.7011.701 1.6161.616 1.6041.604 1.6131.613 1.6051.605 1.4851.485 1.4741.474 1.4801.480 1.4741.474

<실시예 2><Example 2>

상온에서 염화철(Ⅱ) 1몰(mol)과 염화철(Ⅲ) 2몰(mol)의 비율(염화철(Ⅱ)/염화철(Ⅲ)=0.5)인 400mg 과 1080mg을 30분 동안 초음파(Branson Co., U.S.A, Bransonic 1510, 20KHz, 70W) 하에서 물 5 ㎖에 용해시켜 혼합하였다. 용해액을 압전변환기를 진동수 20 kHz, 분사속도는 0.01 ㎖/초로 100 마이크로의 지름을 갖는 압전소자 노즐을 통해 pH 13.5 인 1.2M 수산화나트륨 용액으로 떨어뜨리고, 30분 동안 초음파(Branson Co., U.S.A, Bransonic 1510, 20KHz, 70W) 처리하여 교반 반응시켰다.At room temperature, a ratio of 1 mol (mol) of iron (II) chloride and 2 mol (mol) of iron (III) chloride (iron (II) chloride / iron (III) chloride = 0.5) was obtained by ultrasonic (Branson Co., USA, Bransonic 1510, 20KHz, 70W), dissolved in 5 ml of water and mixed. The solution was dropped into a 1.2 M sodium hydroxide solution at pH 13.5 through a piezoelectric element nozzle with a diameter of 20 kHz at a frequency of 20 kHz and a spray rate of 0.01 mL / sec, followed by ultrasonication (Branson Co., USA) for 30 minutes. , Bransonic 1510, 20KHz, 70W) was treated and stirred.

반응액을 물로 세척하고, 250∼300℃에서 1∼2시간 동안 열처리한 결과 8∼10나노 크기의 좁은 입자분포를 가지며, 9.1 나노의 평균입자 크기를 가지는 단분산 산화철 마그네타이트 또는 마그헤마이트 나노 입자를 제조하였다. (표 2)The reaction solution was washed with water, and heat-treated at 250 to 300 ° C. for 1 to 2 hours. The monodisperse iron oxide magnetite or maghemite nanoparticles having a narrow particle size distribution of 8 to 10 nanometers and an average particle size of 9.1 nanometers were obtained. Was prepared. Table 2

한편 단분산 산화철 나노입자의 평균입자 크기는 투과전자 현미경(TEM, 모델 CM20, 미국 philips사)과 산화철 나노입자의 마그네틱특성분석을 통한 이론적 계산법 TB = KV/25kB을 이용하여 측정하고 계산하여 그 결과를 하기의 표 2에 나타내었다. 이때 TB는 차단온도(blocking temperature), K는 이방성상수(anisotropy constant), V는 나노입자의 부피(volume of nanoparticle), kB는 볼츠만상수(Boltzmann's constant)를 의미한다.Meanwhile, the average particle size of monodisperse iron oxide nanoparticles was measured and calculated using a transmission electron microscope (TEM, model CM20, philips, USA) and the theoretical calculation method through magnetic characteristics analysis of iron oxide nanoparticles T B = KV / 25k B The results are shown in Table 2 below. At this time, T B is the blocking temperature, K is the anisotropy constant, V is the volume of nanoparticles, k B is Boltzmann's constant.

<표 2> 마이크로 일렉트릭 노즐의 지름에 따른 산화철 나노입자의 크기Table 2 Sizes of iron oxide nanoparticles according to the diameter of the micro electric nozzle

노즐지름Nozzle Diameter 산화철 나노입자의 분포 단위:nm(%)Distribution unit of iron oxide nanoparticles: nm (%) 평균입자크기Average particle size 50 마이크로50 micro 2.6(4.9%)2.6 (4.9%) 3.2(35.2)3.2 (35.2) 3.8(40.3)3.8 (40.3) 4.4(13.9)4.4 (13.9) 5.0(5.7)5.0 (5.7) 4.3nm4.3 nm 100 마이크로100 micro 7.8(6.1%)7.8 (6.1%) 8.5(13.0)8.5 (13.0) 8.7(23.8)8.7 (23.8) 9.3(32.8)9.3 (32.8) 9.7(16.0)9.7 (16.0) 10.0(8.3)10.0 (8.3) 9.1nm9.1 nm

<실시예 3><Example 3>

알칼리 용액으로 1N-암모늄하이드록사이드(NH4OH, Ammonium hydroxide, 시그마알드리지)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 단분산 산화철 나노 입자를 제조하였다.Monodisperse iron oxide nanoparticles were prepared in the same manner as in Example 1, except that 1N-ammonium hydroxide (NH 4 OH, Ammonium hydroxide, Sigma Aldridge) was used as the alkaline solution.

본 발명에 의하면 10nm이하의 좁은 입자분포를 가지는 산화철 나노입자를 제조할 수 있다. 또한 산화철 나노입자의 제조후에도 입자간의 엉김현상이 없어 균일하게 분산된 산화철 나노입자의 제조가 가능하다.According to the present invention, iron oxide nanoparticles having a narrow particle distribution of 10 nm or less can be produced. In addition, even after the production of the iron oxide nanoparticles there is no entanglement between particles it is possible to produce a uniformly dispersed iron oxide nanoparticles.

도 1은 본 발명에 따른 단분산 산화철 나노입자의 투과전자현미경 사진이다.1 is a transmission electron micrograph of the monodisperse iron oxide nanoparticles according to the present invention.

Claims (7)

(a) 염화철(Ⅱ)와 염화철(Ⅲ)을 물에 용해시켜 초음파처리하여 균일하게 혼합하는 단계; (b) 단계a의 용해액을 소정의 크기를 갖도록 10∼100 마이크로의 직경을 갖는 작은 압전소자 노즐을 통해 분사하여 액적화하고, 상기 액적을 반응촉매로 되는 알칼리용액에 적하하는 단계; (c) 단계b의 알칼리용액을 초음파처리로 교반하고 반응시켜 액적내에 산화철마그네타이트를 형성하는 단계; 및 (d) 단계c에서 형성된 산화철마그네타이트를 산화시켜 산화철 마그헤마이트를 형성하는 단계를 포함하는 단분산 산화철 나노입자의 제조방법(a) dissolving iron (II) chloride and iron (III) chloride in water and sonicating to homogeneously; (b) spraying the dissolved solution of step a through a small piezoelectric element nozzle having a diameter of 10 to 100 microns so as to have a predetermined size, and dropping the droplets into an alkaline solution serving as a reaction catalyst; (c) stirring and reacting the alkaline solution of step b by sonication to form iron oxide magnetite in the droplets; And (d) oxidizing the iron oxide magnetite formed in step c to form iron oxide maghemite. 제 1항에 있어서, 단계a에서의 초음파처리단계는 20∼50kHz, 50∼100W의 초음파가 사용되어짐을 특징으로 하는 제조방법 The method according to claim 1, wherein the ultrasonic treatment in step a uses ultrasonic waves of 20 to 50 kHz and 50 to 100 W. 제 1항에 있어서, 단계a에서 염화철(Ⅱ)와 염화철(Ⅲ)의 몰비는 1:2로 함을 특징으로 하는 제조방법The method according to claim 1, wherein the molar ratio of iron (II) chloride and iron (III) chloride in step a is 1: 2. 제 1항에 있어서, 단계b에서 용해액은 10∼100 마이크로의 지름을 가지는 압전소자노즐을 통해 분사하는 방법에 의해 액적화함을 특징으로 하는 제조방법The method according to claim 1, wherein in the step b, the solution is dropleted by spraying through a piezoelectric element nozzle having a diameter of 10 to 100 microns. 제 1항 또는 제 4항에 있어서, 단계b의 액적화 단계에서 액적형성은 압전변환기의 진동수 15∼25kHz, 분사속도 0.006∼0.02㎖/초의 조건으로 압전소자 노즐을 통해 용해액을 분사하는 방법으로 형성함을 특징으로 하는 제조방법5. The method according to claim 1 or 4, wherein the droplet formation in the dropletization step of step b is performed by injecting a solution through the piezoelectric element nozzle under conditions of a frequency of 15 to 25 kHz and a spray rate of 0.006 to 0.02 ml / sec of the piezoelectric transducer. Forming method characterized in that 제 1항에 있어서, 단계b의 알칼리용액은 pH 12∼14인 용액임을 특징으로 하는 제조방법The method according to claim 1, wherein the alkaline solution of step b is a solution having a pH of 12 to 14. 제 1항에 있어서, 단계b의 알칼리용액은 수산화나트륨 또는 암모늄하이드록사이드 용액임을 특징으로 하는 제조방법 The method according to claim 1, wherein the alkaline solution of step b is sodium hydroxide or ammonium hydroxide solution.
KR1020040037873A 2004-05-27 2004-05-27 The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle KR100614977B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040037873A KR100614977B1 (en) 2004-05-27 2004-05-27 The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040037873A KR100614977B1 (en) 2004-05-27 2004-05-27 The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle

Publications (2)

Publication Number Publication Date
KR20050112692A true KR20050112692A (en) 2005-12-01
KR100614977B1 KR100614977B1 (en) 2006-08-25

Family

ID=37287537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040037873A KR100614977B1 (en) 2004-05-27 2004-05-27 The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle

Country Status (1)

Country Link
KR (1) KR100614977B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165695A1 (en) * 2011-05-27 2012-12-06 한국지질자원연구원 Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles
KR20230006243A (en) * 2021-07-02 2023-01-10 한국원자력연구원 Method for preparing biomimic iron oxide nanoparticles and the iron oxide prepared by the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962286B1 (en) 2008-05-06 2010-06-11 한국식품연구원 A Manufacturing Method of Magnetic Gold Nanoparticle for Detecting Food-borne Pathogens and, Detecting Method Food-borne Pathogens of using a Magnetic Gold Nanoparticle
KR101127864B1 (en) 2009-10-21 2012-03-21 한국수력원자력 주식회사 The method for preparation of monodisperse iron oxide nanoparticles using electron beam irradiation and monodisperse iron oxide nanoparticles thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165695A1 (en) * 2011-05-27 2012-12-06 한국지질자원연구원 Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
KR101330997B1 (en) * 2011-05-27 2013-11-20 한국지질자원연구원 Mixed aggregate of magnetic iron oxide and layer structured manganese oxide, Synthesis method for the same and water treatment method using the same
AU2011369593B2 (en) * 2011-05-27 2014-09-25 Korea Institute Of Geoscience And Mineral Resources (Kigam) Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
US9174196B2 (en) 2011-05-27 2015-11-03 Korea Institute Of Geoscience And Mineral Resources (Kigam) Synthesis method for magnetite and birnessite aggregate-form mixture
WO2014116064A1 (en) * 2013-01-25 2014-07-31 주식회사 엘지화학 Method of producing iron oxide nanoparticles
US9755231B2 (en) 2013-01-25 2017-09-05 Lg Chem, Ltd. Method of preparing iron oxide nanoparticles
KR20230006243A (en) * 2021-07-02 2023-01-10 한국원자력연구원 Method for preparing biomimic iron oxide nanoparticles and the iron oxide prepared by the same

Also Published As

Publication number Publication date
KR100614977B1 (en) 2006-08-25

Similar Documents

Publication Publication Date Title
Sivakumar et al. Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe (CO) 5
Wahab et al. Dye degradation property of cobalt and manganese doped iron oxide nanoparticles
CN101723655B (en) Preparation method of Mn-Zn ferrite cobalt-doped nano material
Etemadifar et al. Green synthesis of superparamagnetic magnetite nanoparticles: effect of natural surfactant and heat treatment on the magnetic properties
CN104690295B (en) The method for preparing monodisperse superfine particle
KR100614977B1 (en) The Preparation method of monodispersed iron oxide nanoparticles from microdroplets of ferrous? and ferric? chloride solutions generated by piezoelectric nozzle
Chakraborty et al. Synthesis and functionalization of MnFe2O4 nano− hollow spheres for novel optical and catalytic properties
CN107848836B (en) Method for producing oxide particles
Khodadadi et al. Effect of PVA/PEG-coated Fe3O4 nanoparticles on the structure, morphology and magnetic properties
CN1986426A (en) Preparing process of nano Mn-Zn ferrite material
Safari et al. Supported polymer magnets with high catalytic performance in the green reduction of nitroaromatic compounds
Qi et al. Synthesis and characterization of water-soluble magnetite nanocrystals via one-step sol-gel pathway
Khedr et al. Synthesis, magnetic properties and photocatalytic activity of CuFe2O4/MgFe2O4 and MgFe2O4/CuFe2O4 core/shell nanoparticles
Yamada et al. Iron-based nanoparticles and their Mössbauer spectra
CN106587164B (en) Preparation method of gamma-FeOOH nano powder
JPH0656429A (en) Production of plate-like iron oxide particulate powder
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
Ismail et al. Compatibility of Concentrated NaOH as a Precipitation Agent in the Synthesis of Maghemite (γ-Fe2O3) Nanoparticles via Co-precipitation Method
Nakamura et al. Preparation of monodispersed haematite particles by two-step hydrolysis of ferric chloride aqueous solutions
Theerdhala et al. Synthesis of shape controlled ferrite nanoparticles by sonochemical technique
Khiriya et al. Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JP2008254969A (en) FLAKE LIKE IRON OXIDE PARTICULATE, FLAKE LIKE Fe BASE METAL PARTICULATE, AND METHOD FOR PRODUCING THEM
JP3049698B2 (en) Method for producing plate-like iron oxide fine particle powder
Smith et al. Chemical Processing and Magnetic Properties of Ferrite Nanoparticles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100802

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee