KR20050110882A - Method of oxidation resistance of metal nanoparticles by surface treatment - Google Patents

Method of oxidation resistance of metal nanoparticles by surface treatment Download PDF

Info

Publication number
KR20050110882A
KR20050110882A KR1020040035836A KR20040035836A KR20050110882A KR 20050110882 A KR20050110882 A KR 20050110882A KR 1020040035836 A KR1020040035836 A KR 1020040035836A KR 20040035836 A KR20040035836 A KR 20040035836A KR 20050110882 A KR20050110882 A KR 20050110882A
Authority
KR
South Korea
Prior art keywords
metal nanoparticles
surface treatment
nanoparticles
cobalt
oxidation
Prior art date
Application number
KR1020040035836A
Other languages
Korean (ko)
Other versions
KR100535340B1 (en
Inventor
장희동
서용재
황대원
김헌창
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR10-2004-0035836A priority Critical patent/KR100535340B1/en
Publication of KR20050110882A publication Critical patent/KR20050110882A/en
Application granted granted Critical
Publication of KR100535340B1 publication Critical patent/KR100535340B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/04Treatment of selected surface areas, e.g. using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 금속 나노입자의 표면처리에 의한 산화방지 방법에 관한 것으로, 그 목적은 금속나노입자가 대기 중에서 산소와 접촉시 급격한 산화로 인한 폭발을 방지하고 안정한 상태를 유지시토록 금속 나노입자의 코팅방법 중 하나인 인산화합물에 의한 표면처리를 이용하여 코발트, 니켈과 같은 금속 나노입자의 산화방지방법을 제공하는데 있다. The present invention relates to a method for preventing oxidation by surface treatment of metal nanoparticles, the object of which is to prevent the explosion due to rapid oxidation when the metal nanoparticles contact with oxygen in the atmosphere and to maintain a stable coating of the metal nanoparticles The present invention provides a method for preventing oxidation of metal nanoparticles such as cobalt and nickel by using a surface treatment by a phosphoric acid compound, which is one of the methods.

본 발명의 구성은 인산화합물을 이용하여 금속 나노입자의 표면처리하는 방법에 있어서, 금속 나노입자와의 몰비로서 2-20배의 질산아연과 0.2배의 인산아연, 2-4배의 인산이 용해된 수용액에 금속나노입자를 투여하여 입자 표면에 불용성의 인산화합물을 생성시켜 금속 나노입자의 산화를 방지처리하는 것을 그 기술적 사상의 특징으로 한다.According to the present invention, in the method of surface treatment of metal nanoparticles using a phosphate compound, 2-20 times zinc nitrate, 0.2 times zinc phosphate, and 2-4 times phosphoric acid are dissolved in a molar ratio with the metal nanoparticles. It is characterized by the technical idea that metal nanoparticles are administered to the prepared aqueous solution to form an insoluble phosphate compound on the surface of the particles to prevent oxidation of the metal nanoparticles.

Description

금속 나노입자의 표면처리에 의한 산화방지 방법{Method of oxidation resistance of metal nanoparticles by surface treatment} Method of oxidation resistance by surface treatment of metal nanoparticles {Method of oxidation resistance of metal nanoparticles by surface treatment}

본 발명은 금속 나노입자의 코팅방법 중 하나인 인산화합물에 의한 표면처리를 이용하여 코발트, 니켈 나노입자의 산화를 방지시키는 방법에 관한 것이다. The present invention relates to a method for preventing oxidation of cobalt and nickel nanoparticles by using a surface treatment with a phosphate compound which is one of coating methods of metal nanoparticles.

금속 나노입자란 일반적으로 입자크기가 100 나노미터(nm) 이하의 분말을 말하며 단위무게 당 높은 비표면적과 높은 활성으로 인해 신소재로서 많이 활용되고 있다. Metal nanoparticles generally refer to powders having a particle size of less than 100 nanometers (nm) and are widely used as new materials due to their high specific surface area and high activity per unit weight.

이중에서, 코발트 나노입자는 고속도강·영구자석 등의 자성재료, 내열·내식강 등으로 사용되고, 특히 초경합금 및 다이아몬드공구 제조에 있어 필수적으로 사용되는 중요한 원료소재이다. Among them, cobalt nanoparticles are used as magnetic materials, such as high-speed steel and permanent magnets, heat-resistant and corrosion-resistant steels, and are important raw materials used in the manufacture of cemented carbide and diamond tools.

그리고, 니켈 나노입자는 재료의 미세조직을 정교하게 제어하는 기계적, 자기적, 광학적 특성을 가지고 있어서 LTCC(저온소성세라믹), MLCC(적층세라믹콘덴서) 등 IT 관련산업과 각종 전자제품, 그리고 금속피막을 녹슬지 않게 하는 코팅제 등 산업전반에 다양하게 사용되고 있고, 미래의 핵심산업소재로 부각되고 있다. In addition, nickel nanoparticles have mechanical, magnetic, and optical properties that precisely control the microstructure of materials, so that IT-related industries such as LTCC (low-temperature plastic ceramic) and MLCC (laminated ceramic capacitor), various electronic products, and metal coatings It is widely used in various industries such as coatings to prevent rust and is emerging as a core industrial material of the future.

이러한 금속 나노입자들의 제조를 위해 물리·화학적인 방법들이 여러 연구자들에 의해 개발이 되어왔다. 그러나, 금속 나노입자는 입자크기가 매우 작아 단위 무게당 표면적이 일반적인 미립자에 비해 넓고 표면 활성에너지가 높아 공기 중에서 쉽게 산화되는 단점을 가지고 있다. 산화된 금속 나노입자들은 촉매로서의 활성과 센서로서의 감응도가 현저히 감소하게 되고 신소재로서 활용성이 떨어지게 된다. 따라서, 표면처리를 통해서 산화방지특성을 부여시킴으로서 대기 중에서 안정한 금속 나노입자의 개발이 진행되고 있다.Physical and chemical methods have been developed by various researchers for the production of these metal nanoparticles. However, metal nanoparticles have a disadvantage in that the particle size is very small and the surface area per unit weight is wider than that of general fine particles and the surface active energy is easily oxidized in air. The oxidized metal nanoparticles have a significant decrease in activity as a catalyst and as a sensor, and as a new material, they are less useful. Therefore, the development of stable metal nanoparticles in the air by providing anti-oxidation properties through the surface treatment is in progress.

금속 나노입자의 산화방지특성을 부여시키는 기술에 대한 공지기술은 공개된 것이 없으나 평균입자크기가 수 미크론인 미분체에 대해 국내특허 특1996-0021296(명칭: 자성금속분말의 표면처리방법), 특1997-0023007(명칭: 올레익산을 이용한 자성분말의 표면처리 방법) 및 미국특허 278839(명칭: Rapidly expanding metallic mixture treated to prevent oxidation thereof at room temperature, 등록일: 2003. 5. 8)가 공개되어 있다.There is no publicly known technique for imparting anti-oxidation properties of metal nanoparticles, but Korean Patent No. 1996-0021296 (name: surface treatment method of magnetic metal powder), specially, for fine powder having an average particle size of several microns. 1997-0023007 (name: surface treatment method of magnetic powder using oleic acid) and US Patent 278839 (name: Rapidly expanding metallic mixture treated to prevent oxidation about at room temperature, registered date: May 8, 2003).

상기 국내특허 특1996-0021296은 자기기록매체용 자성금속분말의 표면처리 하는 방법으로 산화 방지를 위해 라우르산으로 처리하는 방법이며, 특1997-0023007은 올레익산을 이용한 자성분말의 산화방지를 위한 표면처리 방법이며, 미국특허 278839는 금속 및 금속화합물의 산화 방지를 위해 소수성의 오일을 사용하여 표면처리하는 방법이다. The Korean Patent No. 1996-0021296 is a method of surface treatment of magnetic metal powder for magnetic recording medium, and the method of treatment with lauric acid for oxidation prevention. Special 1997-0023007 is for preventing oxidation of magnetic powder using oleic acid. Surface treatment method, US Patent 278839 is a method of surface treatment using a hydrophobic oil to prevent oxidation of metals and metal compounds.

그러나 입자크기가 100 nm 이하인 금속 나노입자의 산화 방지를 위한 표면처리기술에 대한 내용은 공개되지 않고 있다. However, the contents of surface treatment technology for preventing oxidation of metal nanoparticles having a particle size of 100 nm or less are not disclosed.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 금속나노입자가 대기 중에서 산소와 접촉시 급격한 산화로 인한 폭발을 방지하고 안정한 상태를 유지시토록 금속 나노입자의 코팅방법 중 하나인 인산화합물에 의한 표면처리를 이용하여 코발트, 니켈과 같은 금속 나노입자의 산화방지방법을 제공하는데 있다. An object of the present invention for solving the above problems is to prevent explosion due to rapid oxidation when the metal nanoparticles contact with oxygen in the air and to maintain a stable state by the phosphoric acid compound which is one of the coating method of the metal nanoparticles The present invention provides a method for preventing oxidation of metal nanoparticles such as cobalt and nickel using surface treatment.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 금속 나노입자의 산화방지특성을 부여하기 위하여 기상환원반응(에어로졸 공정)에 의해 제조된 순수한(순도 99.9%) 코발트, 니켈 나노입자를 대상 원료물질로 선정하여 인산(H3PO4), 인산아연(Zn3(PO4)2 ), 질산아연(Zn(NO3)2)의 혼합용액에 넣어 교반한 후 여과, 건조시켜서 표면처리 함으로써 달성할 수 있으며, 질산아연(Zn(NO3)2)을 주요 변수로 선정하여 이들 값을 변화시킴으로써 산화방지특성을 크게 향상시킨 방법을 그 기술적 특징으로 한다.The present invention to achieve the object as described above and to solve the problems of the prior art is pure (purity 99.9%) prepared by the gas phase reduction reaction (aerosol process) in order to give the antioxidant properties of the metal nanoparticles Cobalt and nickel nanoparticles were selected as target materials and stirred in a mixed solution of phosphoric acid (H 3 PO 4 ), zinc phosphate (Zn 3 (PO 4 ) 2 ), and zinc nitrate (Zn (NO 3 ) 2 ). It can be achieved by filtration, drying and surface treatment. The technical characteristics of the method are that zinc nitrate (Zn (NO 3 ) 2 ) is selected as the main variable and these values are changed to greatly improve the antioxidant properties.

구체적으로 본 발명은 인산화합물을 이용하여 금속 나노입자의 표면을 처리하는 방법에 있어서, Specifically, the present invention is a method for treating the surface of the metal nanoparticles using a phosphate compound,

금속 나노입자와의 몰비로서 2-20배의 질산아연과 0.2배의 인산아연, 2-4배의 인산이 용해된 수용액에 금속나노입자를 투여하여 입자 표면에 불용성의 인산화합물을 생성시켜 금속 나노입자의 산화를 방지하는 처리방법을 그 기술적 특징으로 한다.Metal nanoparticles are administered to an aqueous solution in which 2-20 times zinc nitrate, 0.2 times zinc phosphate, and 2-4 times phosphoric acid are dissolved in a molar ratio with the metal nanoparticles to form an insoluble phosphate compound on the particle surface. The technical features of the treatment method for preventing the oxidation of the particles.

상기 산화방지 처리방법에 적용되는 금속 나노입자는 코발트, 니켈이며, 이러한 금속 나노입자는 금속염화물인 CoCl2 또는 NiCl2 중에서 선택된 어느하나를 기상환원반응에 의해 제조한 입자크기 40-130 나노미터의 금속 나노입자를 사용한다.The metal nanoparticles applied to the anti-oxidation treatment method are cobalt and nickel, and the metal nanoparticles have a particle size of 40-130 nanometers prepared by vapor phase reduction of any one selected from the metal chloride CoCl 2 or NiCl 2 . Metal nanoparticles are used.

또한 상기와 같이 금속 나노입자 표면에 불용성의 인산화합물을 생성시 금속 나노입자를 투여한 혼합용액을 초음파가 조사되는 교반기에서 완전 분산된 상태로 교반하여 생성 시킨다.In addition, when the insoluble phosphate compound is generated on the surface of the metal nanoparticles as described above, the mixed solution to which the metal nanoparticles are administered is generated by stirring in a fully dispersed state in an agitator irradiated with ultrasonic waves.

또한 상기 교반단계 후 여과를 하고 초순수로 세척 후 상온에서 건조시켜 표면 처리를 완성한다.In addition, after the stirring step is filtered and washed with ultrapure water and dried at room temperature to complete the surface treatment.

상기 표면 처리방법의 수치 한정이유는 다음과 같다.The reason for the numerical limitation of the surface treatment method is as follows.

질산아연은 나노입자와의 몰비로서 2-20배를 사용하는데 몰비가 2배보다 적으면 질산아연이 물에 용해되어 생성된 PO4 3- 이온 농도가 적어져 인산코발트(CoPO 4)의 양이 작아져 코팅이 효율적으로 안되는 문제점이 있고, 20배보다 크면 과다한 인산코발트의 존재로 인해 생성된 입자들이 응집되는 문제점이 있다.Zinc nitrate uses 2-20 times as molar ratio with nanoparticles. When the molar ratio is less than 2 times, zinc nitrate dissolves in water, resulting in less PO 4 3- ion concentration, resulting in less amount of cobalt phosphate (CoPO 4 ). There is a problem that the coating is not efficient because it is small, and larger than 20 times, there is a problem that the particles produced due to the presence of excess cobalt phosphate aggregates.

인산아연은 나노입자와의 몰비로서 0.23배를 사용하는데 PO4 3- 이온의 보충 및 인산코발트(CoPO4)의 생성 촉진을 위해 요구되는 양이다.Zinc phosphate uses 0.23 times as molar ratio with the nanoparticles, which is the amount required to replenish PO 4 3- ions and to promote the production of cobalt phosphate (CoPO 4 ).

인산은 나노입자와의 몰비로서 2-4배를 사용하는데 몰비가 2배보다 작으면 Co2+ 이온의 생성량이 작아 인산코발트(CoPO4)의 양이 작아져 코팅이 효율적으로 안되는 문제점이 있고, 4배보다 크면 많으면 Co2+ 이온의 생성량이 과다하여 코발트 입자가 작아지는 문제점이 있다.Phosphoric acid uses 2-4 times as molar ratio with nanoparticles, but if the molar ratio is less than 2 times, the amount of Co 2+ ions generated is small and the amount of cobalt phosphate (CoPO 4 ) is small. If it is larger than 4 times, there is a problem in that the amount of Co 2+ ions produced is excessive and the cobalt particles become small.

이하 본 발명 코발트, 니켈 나노입자를 표면처리 함에 있어서 투입되는 질산아연(Zn(NO3)2)의 양을 조절하여 생성된 금속 나노입자의 산화방지특성을 평가한 결과인 실시예 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the composition of the embodiment and its function as a result of evaluating the anti-oxidation characteristics of the metal nanoparticles produced by adjusting the amount of zinc nitrate (Zn (NO 3 ) 2 ) introduced in the surface treatment of the cobalt and nickel nanoparticles of the present invention If described in detail in conjunction with the accompanying drawings as follows.

도 1은 본 발명의 실험방법 및 절차를 개략적으로 나타낸 것으로서, 이를 설명하면 인산(H3PO4), 인산아연(Zn3(PO4)2), 그리고 질산아연(Zn(NO3)2)이 상온에서 용해된 혼합용액을 준비한다. 그리고 나서, 기상환원반응에 의해 미리 제조되어 준비된 코발트, 니켈과 같은 금속 나노입자를 그 혼합용액에 첨가시키고 초음파로 분산시킨다. 마지막으로 분산된 용액을 여과하고 초순수로 여러번 세척한 다음 상온에서 건조시키는 과정으로 구성된다.Figure 1 schematically shows the experimental method and procedure of the present invention, if it is described phosphoric acid (H 3 PO 4 ), zinc phosphate (Zn 3 (PO 4 ) 2 ), and zinc nitrate (Zn (NO 3 ) 2 ) Prepare the mixed solution dissolved at this temperature. Then, metal nanoparticles, such as cobalt and nickel, prepared and prepared in advance by vapor phase reduction reaction, are added to the mixed solution and dispersed by ultrasonic waves. Finally, the dispersed solution is filtered, washed several times with ultrapure water, and then dried at room temperature.

이하 본 발명의 바람직한 실시예이다.Hereinafter is a preferred embodiment of the present invention.

<실시예 1> 코발트 나노입자 표면처리Example 1 Surface Treatment of Cobalt Nanoparticles

본 실시예는 코발트 나노입자를 인산화합물에 의한 표면처리시 혼합용액에 투입되는 질산아연(Zn(NO3)2) 등의 화합물의 조성을 변화시켜 생성되는 코발트 나노입자의 산화방지 특성향상을 조절하고자 하는 것이다.This embodiment is to control the improvement of the antioxidant properties of cobalt nanoparticles produced by changing the composition of a compound such as zinc nitrate (Zn (NO 3 ) 2 ) that is added to the mixed solution when the surface treatment of the cobalt nanoparticles with a phosphate compound It is.

코발트 나노입자의 표면처리 실험의 실시예는 다음과 같다.Examples of the surface treatment experiment of the cobalt nanoparticles are as follows.

표면처리 실험에 사용된 코발트 나노입자는 코발트염화물(CoCl2)로부터 기상환원반응에 의해 제조되었으며 평균입자크기가 50 나노미터(nm)였다.The cobalt nanoparticles used in the surface treatment experiments were prepared by gas phase reduction from cobalt chloride (CoCl 2 ) and had an average particle size of 50 nanometers (nm).

상기의 코발트 나노입자 0.005 몰(mol)(0.3 그램)을 인산 0.015 몰, 인산아연 0.001 몰, 그리고 질산아연 0.001~ 0.010 몰이 각각 용해된 혼합용액에 투여한다. The 0.005 mol (0.3 grams) of cobalt nanoparticles are administered to a mixed solution in which 0.015 mol of phosphoric acid, 0.001 mol of zinc phosphate, and 0.001 to 0.010 mol of zinc nitrate are dissolved.

금속 나노입자를 투여한 혼합용액을 초음파가 조사되는 교반기에서 완전 분산된 상태로 20분간 교반한 다음, 여과하고 초순수로 3회 세척 후 상온에서 건조시킨다. The mixed solution to which the metal nanoparticles were administered was stirred for 20 minutes in a fully dispersed state in a stirrer irradiated with ultrasonic waves, filtered, washed three times with ultrapure water, and dried at room temperature.

질산아연의 농도를 0.001 몰, 0.005 몰, 0.010 몰로 변화시켜 실험함으로써 각각의 특성을 비교한다. Change the concentration of zinc nitrate to 0.001 mol, 0.005 mol and 0.010 mol to compare the characteristics.

코발트 나노입자의 표면처리 메카니즘은 다음과 같이 해석하였다.The surface treatment mechanism of cobalt nanoparticles was analyzed as follows.

코발트 나노입자를 준비된 혼합용액에 투입하여 오랜 시간 동안 교반하면, 그 혼합용액은 약한 붉은색을 띠게 되는데, 이는 그 혼합용액 속에 Co2+ 이온이 있음을 가리킨다. 즉 다시 말해, Co 이온이 혼합용액 속에 용해되어 있다고 할 수 있다.When cobalt nanoparticles are added to the prepared mixed solution and stirred for a long time, the mixed solution becomes light red, indicating that Co 2+ ions are present in the mixed solution. In other words, it can be said that Co ions are dissolved in the mixed solution.

이런 실험적 고찰을 통해서, 인산화합물에의한 코발트 나노입자의 표면처리 과정은 다음의 세가지 단계로 제안된다:Through these experimental considerations, the surface treatment of cobalt nanoparticles by phosphate compounds is proposed in three steps:

단계 1: 수용액에서 인산과 인산아연의 이온화 과정Step 1: Ionization of Phosphoric Acid and Zinc Phosphate in Aqueous Solution

인산의 이온화 과정을 보면,If we look at the ionization process of phosphoric acid,

H3PO4 = H2PO4 - + H+ H 3 PO 4 = H 2 PO 4 - + H +

H2PO4- = HPO4 2- + H+ H 2 PO 4- = HPO 4 2- + H +

HPO4 2- = PO4 3- + H+ HPO 4 2- = PO 4 3- + H +

인산아연의 이온화 과정을 보면,In the ionization process of zinc phosphate,

H2PO4- = HPO4 2- + H+ H 2 PO 4- = HPO 4 2- + H +

HPO4 2- = PO4 3- + H+ HPO 4 2- = PO 4 3- + H +

단계 2: Co 원자의 용해과정 Step 2: Dissolution of Co Atoms

4H+ + NO3 - + Co = NO + Co2+ + H2O 4H + + NO 3 - + Co = NO + Co 2+ + H 2 O

단계 3: 불용성 인산코발트의 생성 Step 3: Generation of Insoluble Cobalt Phosphate

PO4 3- 이온은 코발트 분말로부터 새로 생성된 Co2+ 이온과 반응해서 코발트 입자 표면에 불용성 물질인 인산코발트가 생성된다.PO 4 3- ions react with the newly generated Co 2+ ions from the cobalt powder to produce insoluble matter cobalt phosphate on the surface of the cobalt particles.

3Co2+ + 2PO4 3- = Co3(PO4)2 3Co 2+ + 2PO 4 3- = Co 3 (PO 4 ) 2

도 2에는 코발트 나노입자를 사용하여 질산아연의 농도 증가에 따른 코발트 나노입자의 표면처리 후의 입자형상과 크기를 투과전자현미경사진(TEM)으로 나타낸 것이다. Figure 2 shows the particle shape and size after surface treatment of cobalt nanoparticles with increasing concentration of zinc nitrate using cobalt nanoparticles as transmission electron micrograph (TEM).

(A)는 표면처리를 하지 않은 코발트 나노입자(50nm)로서, 구형의 형상이며 큐빅(cubic)형의 결정형이고 자성에 의해 사슬(chain) 형태로 서로 연결되어 있음을 알 수 있었다. (A) is a cobalt nanoparticle (50nm) without the surface treatment, it can be seen that the spherical shape, cubic (crystalline) of cubic (cubic) form is connected to each other in a chain (chain) form by magnetism.

질산아연의 농도가 0.001, 0.005, 0.010 몰 인 경우의 TEM 사진을 각각 (B), (C), (D)에 나타내었는데, 표면처리 결과 코팅된 분말의 형상이 일부 응집된 부분도 존재하나 코팅이 되었음이 확인되었으며, 질산아연의 농도가 증가할수록 표면처리에 의해 입자 크기가 커짐을 확인할 수 있었다.TEM images of zinc nitrate concentrations of 0.001, 0.005, and 0.010 moles are shown in (B), (C) and (D), respectively. It was confirmed that this was, as the concentration of zinc nitrate was found to increase the particle size by the surface treatment.

도 3은 코발트 나노입자의 인산화합물에 의한 표면처리 후의 결정형을 알아보기 위해서 결정형 분석을 나타낸 것인데, 이를 통하여 코발트 나노입자의 3개의 고유 피크(peak)를 확인하였고, CoO 와 Co2O 피크가 없음을 알 수 있었다. 또한, 질산아연의 농도가 증가할수록 피크의 감도(intensity)가 감소함을 알 수 있는데, 이는 질산아연의 농도 증가에 따라 표면처리가 더 많이 되었음을 나타낸다.Figure 3 shows the crystal form analysis to determine the crystal form after the surface treatment by the phosphate compound of the cobalt nanoparticles, through which three inherent peaks (peak) of the cobalt nanoparticles were confirmed, there is no CoO and Co 2 O peak And it was found. In addition, it can be seen that as the concentration of zinc nitrate increases, the intensity of the peak decreases, indicating that more surface treatment is performed as the concentration of zinc nitrate increases.

도 4는 질산아연의 농도변화에 따른 열중량분석(TGA) 결과를 나타내고 있는데, 이를 통해서 표면처리를 하지 않은 코발트 나노입자는 약 270℃에서 TGA 패턴이 급격히 꺾이기 시작해서 무게변화가 심함을 알 수 있었다. 이는 산화율이 급속히 진행된다는 것을 의미하고 공기 중에서 불안정함을 나타낸다. Figure 4 shows the results of thermogravimetric analysis (TGA) according to the change in the concentration of zinc nitrate, through which the cobalt nanoparticles without surface treatment began to sharply bend the TGA pattern at about 270 ℃, the weight change is severe. Could. This means that the oxidation rate proceeds rapidly and is unstable in air.

이에 반해 표면처리를 한 것들은 질산아연의 농도가 증가할수록 산화가 시작되는 온도가 상승하고 산화율이 감소함을 알 수 있었다. TGA 패턴을 보면 질산아연의 농도가 증가할수록 산화되는 동안의 기울기가 완만해지고 무게변화도 작아짐을 확인할 수 있었다. On the other hand, the surface treatments showed that as the concentration of zinc nitrate increases, the temperature at which oxidation starts and the oxidation rate decreased. The TGA pattern showed that as the concentration of zinc nitrate increased, the slope during oxidation was reduced and the weight change was smaller.

<실시예 2> 니켈 나노입자 표면처리Example 2 Nickel Nanoparticle Surface Treatment

본 실시예는 니켈 나노입자를 인산화합물에 의한 표면처리시 혼합용액에 첨가되는 질산아연 등의 화합물의 조성을 변화시켜 생성되는 금속 나노입자의 산화방지특성향상을 조절하고자 하는 것이다. This embodiment is intended to control the improvement of the antioxidant properties of the metal nanoparticles produced by changing the composition of a compound such as zinc nitrate added to the mixed solution when the nickel nanoparticles are surface treated with a phosphate compound.

니켈 나노입자의 표면처리 실험의 실시예는 위에 상기한 코발트 나노입자의 표면처리 실험과 동일하다.Examples of the surface treatment experiment of the nickel nanoparticles are the same as the surface treatment experiment of the cobalt nanoparticles described above.

표면처리 실험에 사용된 니켈 나노입자는 염화니켈(NiCl2)로부터 기상환원반응에 의해 제조되었으며 평균입자크기가 40 나노미터 이었다.Nickel nanoparticles used in the surface treatment experiments were prepared by a gas phase reduction reaction from nickel chloride (NiCl 2 ) and had an average particle size of 40 nanometers.

니켈 나노입자의 경우도 표면처리를 하지 않은 것은 구형의 형상이며 자성에 의해 사슬 형태로 서로 연결되어 있음을 알 수 있었다. 투과전자현미경(TEM) 분석결과 코발트 나노입자와 마찬가지로 질산아연의 농도가 증가할수록 코발트 나노입자가 표면처리 되면서 입자크기가 커짐이 확인되었다.In the case of nickel nanoparticles, the surface treatment was not spherical and it was found that they were connected to each other in a chain form by magnetism. As a result of transmission electron microscope (TEM) analysis, as the concentration of zinc nitrate increases, the particle size of the cobalt nanoparticles increases as the concentration of zinc nitrate increases.

도 5는 니켈 나노입자를 사용했을 경우 표면처리시 질산아연의 농도변화에 따른 열중량분석결과를 보여준다. 코발트 나노입자의 표면처리와 마찬가지로 질산아연의 농도가 증가할수록 무게변화가 작아짐을 나타내는데, 이는 곧 산화율 감소를 보여준다. 그러나, 코발트 나노입자를 사용했을 때만큼 산화가 시작되는 온도 상승은 크게 두드러지지 않았다. Figure 5 shows the results of thermogravimetric analysis according to the change in the concentration of zinc nitrate when surface treatment using nickel nanoparticles. As with the surface treatment of cobalt nanoparticles, as the concentration of zinc nitrate increases, the weight change becomes smaller, which indicates a decrease in oxidation rate. However, the rise in temperature at which oxidation starts as much as when using cobalt nanoparticles was not so noticeable.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기와 같이 본 발명은 인산화합물을 이용하여 금속 나노입자의 표면처리함으로써 특히 코발트, 니켈 나노입자의 산화방지특성을 향상시켜 대기 중에서 안정한 금속 나노입자로서의 특성을 갖도록 하는 효과를 가진 것으로 산업상 이용이 크게 기대되는 발명이다. As described above, the present invention has the effect of improving the antioxidant properties of cobalt and nickel nanoparticles by surface treatment of metal nanoparticles using a phosphate compound to have properties as stable metal nanoparticles in the air. It is the invention which is expected greatly.

도 1은 본 발명에 따른 표면코팅 실험방법 및 절차 개략도이고,1 is a schematic view of the surface coating test method and procedure according to the present invention,

도 2는 본 발명에 따른 질산아연(Zn(NO3)2)의 일정조성에서 생성된 코발트 나노입자의 전자현미경 사진이며,2 is an electron micrograph of the cobalt nanoparticles produced in a certain composition of zinc nitrate (Zn (NO 3 ) 2 ) according to the present invention,

도 3은 본 발명에 따른 질산아연의 조성 변화에 따라 생성된 코발트 나노입자의 결정형 분석결과를 보인 그래프이고, 3 is a graph showing the results of the crystalline analysis of cobalt nanoparticles produced according to the composition change of zinc nitrate according to the present invention,

도 4는 본 발명에 따른 질산아연의 조성 변화에 따라 생성된 코발트 나노입자의 열중량 분석결과를 보인 그래프이며, Figure 4 is a graph showing the thermogravimetric analysis of the cobalt nanoparticles produced in accordance with the composition change of zinc nitrate according to the present invention,

도 5는 본 발명에 따른 질산아연의 조성 변화에 따라 생성된 니켈 나노입자의 열중량 분석결과를 보인 그래프이다.Figure 5 is a graph showing the thermogravimetric analysis of the nickel nanoparticles produced according to the composition change of zinc nitrate according to the present invention.

Claims (4)

인산화합물을 이용하여 금속 나노입자의 표면을 처리하는 방법에 있어서,In the method of treating the surface of the metal nanoparticles using a phosphoric acid compound, 금속 나노입자와의 몰비로서 2-20배의 질산아연과 0.2배의 인산아연, 2-4배의 인산이 용해된 수용액에 금속나노입자를 투여하여 입자 표면에 불용성의 인산화합물을 생성시켜 금속 나노입자의 산화를 방지처리하는 것을 특징으로 하는 금속 나노입자의 표면처리에 의한 산화방지 방법.Metal nanoparticles are administered to an aqueous solution in which 2-20 times zinc nitrate, 0.2 times zinc phosphate, and 2-4 times phosphoric acid are dissolved in a molar ratio with the metal nanoparticles to form an insoluble phosphate compound on the particle surface. The oxidation prevention method by surface treatment of the metal nanoparticle characterized by preventing the oxidation of particle | grains. 제 1항에 있어서,The method of claim 1, 상기 금속 나노입자는 코발트 또는 니켈중에서 선택된 어느 하나인 것을 특징으로 하는 금속 나노입자의 표면처리에 의한 산화방지 방법.The metal nanoparticle is an oxidation prevention method by the surface treatment of the metal nanoparticles, characterized in that any one selected from cobalt or nickel. 제 2항에 있어서,The method of claim 2, 상기 금속나노 입자는 금속염화물인 CoCl2 또는 NiCl2 중에서 선택된 어느하나를 기상환원반응에 의해 제조한 코발트 또는 니켈중에서 선택된 어느 하나인 것을 특징으로 하는 금속 나노입자의 표면처리에 의한 산화방지 방법.The metal nanoparticles are any one selected from cobalt or nickel prepared by the gas phase reduction reaction of any one selected from the metal chloride CoCl 2 or NiCl 2 by the oxidation treatment method of the surface of the metal nanoparticles. 제 3항에 있어서, The method of claim 3, wherein 상기 금속 나노입자의 평균 크기는 40-130 나노미터 범위의 것을 사용하는 것을 특징으로 하는 금속 나노입자의 표면처리에 의한 산화방지 방법. The average size of the metal nanoparticles is in the range of 40-130 nanometers, characterized in that the oxidation treatment method by the surface treatment of the metal nanoparticles.
KR10-2004-0035836A 2004-05-20 2004-05-20 Method of oxidation resistance of metal nanoparticles by surface treatment KR100535340B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2004-0035836A KR100535340B1 (en) 2004-05-20 2004-05-20 Method of oxidation resistance of metal nanoparticles by surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0035836A KR100535340B1 (en) 2004-05-20 2004-05-20 Method of oxidation resistance of metal nanoparticles by surface treatment

Publications (2)

Publication Number Publication Date
KR20050110882A true KR20050110882A (en) 2005-11-24
KR100535340B1 KR100535340B1 (en) 2005-12-09

Family

ID=37286264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-0035836A KR100535340B1 (en) 2004-05-20 2004-05-20 Method of oxidation resistance of metal nanoparticles by surface treatment

Country Status (1)

Country Link
KR (1) KR100535340B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427855B2 (en) 2008-12-22 2013-04-23 Samsung Electronics Co., Ltd. Semiconductor nanocrystal composite
US9606281B2 (en) 2012-09-07 2017-03-28 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101183180B1 (en) * 2007-01-24 2012-09-14 주식회사 엘지화학 Au-FREE ELECTROCONDUCTIVE PARTICLES AND ANISOTROPIC-ELECTROCONDUCTIVE ADHESIVE USING THE SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427855B2 (en) 2008-12-22 2013-04-23 Samsung Electronics Co., Ltd. Semiconductor nanocrystal composite
US9606281B2 (en) 2012-09-07 2017-03-28 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display device including the same
US9933658B2 (en) 2012-09-07 2018-04-03 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display device including the same
US10732458B2 (en) 2012-09-07 2020-08-04 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display device including the same

Also Published As

Publication number Publication date
KR100535340B1 (en) 2005-12-09

Similar Documents

Publication Publication Date Title
Wang et al. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis
Andreescu et al. A simple route for manufacturing highly dispersed silver nanoparticles
Tong et al. Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity
Zhu et al. Microwave-assisted preparation of inorganic nanostructures in liquid phase
Bharath et al. Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors
Sierra-Ávila et al. Synthesis of copper nanoparticles using mixture of allylamine and polyallylamine
Kalita et al. Synergistic effect of iron and copper in hydroxyapatite nanorods for Fenton-like oxidation of organic dye
Mehata Surface plasmon resonance allied applications of silver nanoflowers synthesized from Breynia vitis-idaea leaf extract
Yang et al. Synthesis and physical characteristics of ZnAl2O4 nanocrystalline and ZnAl2O4/Eu core-shell structure via hydrothermal route
Pradhan et al. Enhanced photodegradation of dyes and mixed dyes by heterogeneous mesoporous Co–Fe/Al 2 O 3–MCM-41 nanocomposites: nanoparticles formation, semiconductor behavior and mesoporosity
Barhoum et al. Recent trends in nanostructured particles: synthesis, functionalization, and applications
Al-Shawafi et al. Size controlled ultrafine CeO 2 nanoparticles produced by the microwave assisted route and their antimicrobial activity
Ikram et al. Novel Ta/chitosan-doped CuO nanorods for catalytic purification of industrial wastewater and antimicrobial applications
KR100535340B1 (en) Method of oxidation resistance of metal nanoparticles by surface treatment
Guo et al. Al 2 O 3/yttrium compound core–shell structure formation with burst nucleation: a process driven by electrostatic attraction and high surface energy
KR20230104343A (en) Method for manufacturing tungsten carbide particles and tungsten carbide particles prepared therefrom
Chen et al. Irradiation-and thermoinduced synthesis of Ag nanoparticles within amphiphilic carbosilane-thioether dendrimers
Shalaby et al. Silver nano-rods: Simple synthesis and optimization by experimental design methodology
Onoda et al. Synthesis and pigmental properties of nickel phosphates by the substitution with tetravalent cerium cation
Wang et al. A room temperature solution-phase process to synthesize pure phase single-crystalline hexagonal cobalt hydroxide nanoplates
CN110405226B (en) Water-soluble silver micro-nanocrystal and controllable preparation method thereof
JP6406752B2 (en) Method for producing iron nitride powder
Ayati et al. Application of molybdophosphoric acid as reducing agent/stabilizer in the synthesis of gold nanoparticles under UV irradiation
Zayed et al. Preparation and Characterization of Novel Zinc Aluminate Nano Powders Doped with Copper (II), Loaded and Non-loaded with Carbon Spheres Using Co-Precipitation Method and Its Environmental Application
Toparli et al. Iron-Nickel-Cobalt (Fe-Ni-Co) Alloy Particles Prepared by Ultrasonic Spray Pyrolysis and Hydrogen Reduction (USP-HR) Method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 19

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 9