KR20050103170A - Electrochemical electrode and instrumentation for low glucose concentration - Google Patents

Electrochemical electrode and instrumentation for low glucose concentration Download PDF

Info

Publication number
KR20050103170A
KR20050103170A KR1020050093660A KR20050093660A KR20050103170A KR 20050103170 A KR20050103170 A KR 20050103170A KR 1020050093660 A KR1020050093660 A KR 1020050093660A KR 20050093660 A KR20050093660 A KR 20050093660A KR 20050103170 A KR20050103170 A KR 20050103170A
Authority
KR
South Korea
Prior art keywords
glucose
electrode
concentration
hydrogen peroxide
electrochemical
Prior art date
Application number
KR1020050093660A
Other languages
Korean (ko)
Inventor
이동훈
김홍석
송지혜
정홍식
김희찬
Original Assignee
(주) 테크포엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 테크포엠 filed Critical (주) 테크포엠
Priority to KR1020050093660A priority Critical patent/KR20050103170A/en
Publication of KR20050103170A publication Critical patent/KR20050103170A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)

Abstract

전기화학적 방법을 이용하여 저농도 글루코스를 검출하기 위한 전극 제조법과 측정법은 생체의 중요 에너지원인 글루코스를 정량적으로 측정하고자하는 기기의 성능과 신뢰도를 좌우하는 중요한 기술이다. 통상적으로 글루코스 농도 정량화는 선택적 효소 반응을 통해 전기화학적으로 이루어진다. 글루코스는 글루코스산화효소와의 선택적 반응을 통해 반응생성물로 과산화수소와 글루콘산을 형성하고, 이 과산화수소를 전기화학적으로 산화시킬 때 발생하는 산화전류를 측정하여 글루코스의 농도를 간접적으로 결정한다. 본 발명에서는 저농도의 과산화수소에 민감한 백금과 탄소로 이루어진 효율적 전극 제조법과 이 전극을 사용한 흐름형 전기화학 미소셀을 이용한 측정 장치를 이용하여 1 ppm 미만의 저농도 글루코스를 정량적으로 결정하였다. Electrode preparation and measurement method for detecting low concentration glucose using electrochemical methods is an important technique that determines the performance and reliability of the device to quantitatively measure glucose, which is an important energy source of the living body. Typically, glucose concentration quantification is done electrochemically through selective enzymatic reactions. Glucose forms hydrogen peroxide and gluconic acid as reaction products through selective reaction with glucose oxidase, and indirectly determines the concentration of glucose by measuring the oxidation current generated when the hydrogen peroxide is electrochemically oxidized. In the present invention, a low concentration of glucose of less than 1 ppm was quantitatively determined using an efficient electrode production method consisting of platinum and carbon sensitive to low concentrations of hydrogen peroxide and a measuring device using a flow type electrochemical microcell using the electrode.

Description

저농도 글루코스 측정용 전기화학 전극 제조 및 측정 장치{Electrochemical Electrode and Instrumentation for Low Glucose Concentration} Electrochemical Electrode and Instrumentation for Low Glucose Concentration

본 발명은 인체의 주요 성분인 글루코스(Glucsoe)를 정량적으로 분석하는 방법 중의 하나인 전기화학적 방법에 필요한 전극 제조 및 측정 방법을 제시한다.The present invention provides an electrode manufacturing and measuring method required for the electrochemical method which is one of the methods for quantitatively analyzing glucose (Glucsoe) which is the main component of the human body.

일반적으로 글루코스 분자의 정량은 컬럼을 이용한 액체크로마토그래피법(LC)이나 이온크로마토그래피(IC)법을 이용하여 정성 및 정량 분석이 가능하다. 이들 분석법은 글루코스 분자와 컬럼에 충진된 물질의 상호 인력 작용에 통해 글루코스의 이동차가 발생하는 방법으로 정성 및 정량을 한다. 이들 크로마토그래피법의 단점은 글루코스를 포함한 시료에 다른 이온들이 존재할 때 글루코스와 비슷한 위치에서 다른 이온의 물질도 글루코스와 비슷한 거동을 보이는 경우가 많아 간섭현상으로 인해 글루코스 분자만을 선택적으로 분리를 하지 못해 정성과 정량 측정에 어려움이 많은 단점이 있다. 특히 생체 물질 중에 존재하는 글루코스는 많은 무기 이온과 함께 존재하는 경우가 많아 간섭효과가 매우 커, 무기 이온을 제거하는 특별한 전처리가 필요한 단점이 있고, 이들 염은 선택적 제거가 매우 어려워 크로마토그래피법으로 100ppm 미만 농도의 정성과 정량을 동시에 이루기에는 많은 어려움이 있다.In general, the quantification of glucose molecules can be qualitatively and quantitatively analyzed using liquid chromatography (LC) or ion chromatography (IC) using a column. These assays are qualitative and quantitative in the way that glucose transport differences occur through the interaction of glucose molecules with the column-filled material. The disadvantage of these chromatographic methods is that when other ions are present in the sample containing glucose, substances of other ions are also similar to glucose in the position similar to glucose, so that only the glucose molecules cannot be selectively separated due to interference. There are many disadvantages in over-quantification. In particular, the glucose present in the biological material is often present with many inorganic ions, so the interference effect is very large, and a special pretreatment for removing inorganic ions is required.These salts are difficult to selectively remove, so that they are 100 ppm by chromatography. There are many difficulties in achieving both qualitative and quantitative below concentrations.

이러한 크로마토그래피법의 단점을 보완한 것이 효소를 이용한 전기화학적인 방법으로 산화전류를 측정해 글루코스 분자만의 농도를 결정하는 것이다.Complementing the disadvantage of the chromatographic method is the determination of the concentration of glucose molecules only by measuring the oxidation current by an electrochemical method using an enzyme.

Glucose + Glucose oxidase + O2 ---> Gluconic acid + H2O2 (1)Glucose + Glucose oxidase + O 2 ---> Gluconic acid + H 2 O 2 (1)

Gluconic acid + H2O2 ---> 2H+ + O2 + 2e- E = + 400 - 700 mVGluconic acid + H 2 O 2 ---> 2H + + O 2 + 2e - E = + 400-700 mV

글루코스분자는 글루코스산화효소(Glucose Oxidase)와 반응하여 글루콘산(Gluconic acid)과 과산화수소(Hydrogen peroxide)로 전환되며, 이 과산화수소는 400에서 700 mV의 산화전압하에서 산화 전류를 발생하게 된다. 산화전류의 크기를 정전기위(Potentiostat)로 측정하여 글루코스의 농도를 간접적으로 결정하게 된다. 이들 전기화학에 필요한 전극은 크게 작업전극(working electrode, WE), 상대전극(counter electrode, CE)과 기준전극(reference electrode, RE)의 3개의 전극들로 구성된다. 반응 (1)에 사용하는 산화전위는 은/염화은(Ag/AgCl)을 기준전극으로 사용될 때를 기준으로 한 것이다. 일반적으로 작업전극과 상대전극은 안정성이 우수한 백금이나 탄소 전극을 시용한다. 이러한 전기 화학적 방법은 글루코스가 포함된 시료의 기타 무기염의 영향을 받지 않기 때문에 크로마토그래피 법에 비해 농도 결정이 우수하지만, 감도가 100ppm 정도로 저농도의 글루코스를 분석하기에는 많은 어려움이 있다. 따라서 저농도의 글루코스를 외부영향이 없이 신속하게 정량적으로 측정하기 위한 전기화학 전극의 처리법이나 측정하는 장치는 향후 글루코스 측정용 바이오센서 등의 원천 기술로 사용이 가능하기 때문에 발명이 요구되는 의의는 매우 크다고 할 수 있다.Glucose molecules react with Glucose Oxidase, converting them into Gluconic acid and Hydrogen peroxide, which produce oxidation currents under oxidation voltages of 400 to 700 mV. The magnitude of the oxidation current is measured by the potentiostat to determine the concentration of glucose indirectly. The electrodes required for these electrochemistry are largely composed of three electrodes, a working electrode (WE), a counter electrode (CE) and a reference electrode (RE). The oxidation potential used in reaction (1) is based on the use of silver / silver chloride (Ag / AgCl) as the reference electrode. In general, the working electrode and the counter electrode use a platinum or carbon electrode with excellent stability. This electrochemical method is superior to the chromatographic method because it is not affected by other inorganic salts of the sample containing glucose, but it is difficult to analyze glucose at low concentrations of about 100 ppm. Therefore, the electrochemical electrode treatment method and measuring device to measure low concentration glucose quickly and quantitatively without external influence can be used as a source technology such as biosensor for glucose measurement. can do.

글루코스 분자가 들어있는 시료의 분석에서 글루코스를 선택적 효소반응을 통해 과산화수소로 전환시켜 전기화학적으로 분석하는 방식에서 전극의 조성은 아주 중요하다. 통상적으로 작업전극과 상대전극으로는 백금이나 탄소가 많이 사용되지만 각각은 특성이 있다. 백금은 글루코스에서 효소에 의해 전화된 과산화수소를 산화전위하에서 산화전류를 검출하는 능력은 우수하지만 비교적 많은 노이즈를 보인다. 탄소전극의 경우 노이즈는 작지만 검출 능력이 미흡하여 저농도의 글루코스를 정량 분석을 하기에는 적합하지 않다 (대한민국특허 공개 10-2003-0047970). 본 발명에서는 백금전극과 탄소전극의 단점을 보완한 50%wt탄소/50%wt백금 전극을 이용하여 프린팅 법에 의해 작업전극과 상대전극을 제작하여 3상 계의 전기화학적 마이크로셀 (microcel)을 제작하여 흐름형 분석 장치의 검출기로 사용하여 만들어서 고농도의 무기염에 혼재하는 1ppm 미만의 저농도 글루코스를 정량적으로 측정이 가능하게 함에 있다.In the analysis of samples containing glucose molecules, the composition of the electrode is very important in the method of electrochemically analyzing glucose by converting it into hydrogen peroxide through selective enzymatic reaction. Generally, platinum and carbon are used as the working electrode and the counter electrode, but each has characteristics. Platinum is relatively good at detecting the oxidation current under oxidation potential of hydrogen peroxide converted by enzymes in glucose. In the case of the carbon electrode, the noise is small but the detection ability is insufficient, so it is not suitable for quantitative analysis of low concentration of glucose (Korea Patent Publication 10-2003-0047970). In the present invention, by using a 50% wt carbon / 50% wt platinum electrode to compensate for the shortcomings of the platinum electrode and the carbon electrode, a working electrode and a counter electrode were manufactured by a printing method to produce a three-phase electrochemical microcell. It is possible to quantitatively measure low concentration glucose below 1ppm mixed with high concentration inorganic salt by making it as detector of flow analysis device.

도 1은 1ppm미만의 저농도의 글루코스 정량분석이 가능한 흐름형 전기화학 측정장치이다. 장치는 용리액 (a), 시료주입기 (b), 미량 유동 펌프 (C), 검출기로 사용되는 전기화학 미소셀 (d)과 정전위기 (e)의 5 부분으로 구성된다. 용리액은 전기화학적 반응이 일어날 수 있는 전해질역할이 가능하며 전기화학 반응에 참여하여 신호를 발생시키지 않는 무기염이 들어있는 수용성 액체이다. 시료주입기는 0.26 ml의 샘플링 루프를 포함하고 있다. 무기염속에 들어있는 글루코스 시료는 글루코스산화효소와 반응시켜 과산화수소로 전환되게 전처리한 다음에 시료주입기의 샘플링 루프에 도입하였다. 미량 유동 펌프는 용리액과 시료를 정량적으로 이송하여 작업, 기준 그리고 상대전극으로 구성된 3상계 전기화학적 미소셀로 도달시키는 역할을 한다. 이송된 전처리된 시료는 전기화학적 미소셀에서 과산화수소의 산화반응을 통해 산화 전류를 발생시키고 그 신호의 크기를 통해 저농도 글루코스분자의 농도 결정이 가능하게 한다.1 is a flow type electrochemical measuring device capable of quantitative analysis of glucose at a low concentration of less than 1 ppm. The apparatus consists of five parts: an eluent (a), a sample injector (b), a microfluidic pump (C), an electrochemical microcell (d) used as a detector, and an electrostatic potential (e). Eluents are water-soluble liquids that contain an inorganic salt that can act as an electrolyte in which an electrochemical reaction can occur and does not generate a signal by participating in an electrochemical reaction. The sample injector contains a 0.26 ml sampling loop. Glucose samples in inorganic salts were pretreated to react with glucose oxidase and converted to hydrogen peroxide, and then introduced into the sampling loop of the sample injector. Microfluidic pumps serve to quantitatively transfer eluents and samples to a three-phase electrochemical microcell consisting of a work, reference and counter electrode. The transferred pretreated sample generates an oxidation current through the oxidation reaction of hydrogen peroxide in the electrochemical microcell, and the signal magnitude allows determination of the concentration of low concentration glucose molecules.

<실시예><Example>

본 발명에 사용된 용리액 (a)은 전해질로 흔히 사용되는 0.1M-인산염과 77mM-염화나트륨(NaCl) 용액이다. D-글루코스(Aldrich. Co.)를 이용하여 0.5, 1.0과 2.0 ppm 표준용액을 제조하였다. 이때 표준용액 제조에 사용된 용매는 용리액과 동일한 0.1M-인산염과 77mM 염화나트륨을 포함한 전해질을 사용했다. 시료주입기 (b)에 표준용액을 주입하기 전에 전기화학적 미소셀에 반응하는 과산화수소로 시료 속에 포함된 글루코스를 전환시키기 위해 0.4ml-포준시료는 0.1ml-글루코스 산화효소(Sigma, 50 unit/ml, USA)를 사용하여 선택적 효소반응을 통해 전처리 되었다. 전처리된 시료는 미량 유동 펌프(유속 0.3 ml/min) 를 통해 전기화학적 미소셀로 이송이 된다. 이때 전기화학 미소셀에서 산화 전위에서 과산화수소가 산화되면서 발생하는 전류를 정전위기(Elbio Co. Korea)를 통해 검출하게 된다. 사용된 전기화학 미소셀은 작업전극, 기준전극, 상대전극으로 구성되어진다. 이때 작업전극과 상대전극은 백금과 탄소 잉크 (Ercon Co.USA)를 50%wt:50%wt의 비로 섞어 프린팅법으로 두께 0.1 mm로 인쇄하였다. 이때 전극을 섭씨 120도의 열풍을 이용하여 20초간 건조하여 전극을 완성했다. 각 전극의 면적은 2.2 mm × 1.6 mm 이었다. 기준전극은 Ag/AgCl 잉크(Ercon Co. USA)를 이용하여 프린팅법으로 기준전극과 같은 크기로 인쇄하였다. 이때 사용된 산화전압은 Ag/AgCl 전극을 기준으로 600mV 였고 총 전기화학 미소셀의 부피는 0.015 ml였다. 이 흐름형 전기화학 측정 장치를 이용하여 검출된 무기염을 포함한 표준용액의 검량선을 도 2에 나타내었다. 정전위기에서 측정된 신호는 그림 내부에 박스로 나타내었다. 글루코스의 농도 결정은 시간x산화전류를 통한 적분을 통한 면적계산으로 이루어 졌고, 0.5 ppm미만의 글루코스 농도도 측정이 가능한 것을 알 수 있다.Eluent (a) used in the present invention is a 0.1 M-phosphate and 77 mM sodium chloride (NaCl) solution commonly used as an electrolyte. 0.5, 1.0 and 2.0 ppm standard solutions were prepared using D-glucose (Aldrich. Co.). At this time, the solvent used for preparing the standard solution was the same electrolyte containing 0.1M-phosphate and 77mM sodium chloride as the eluent. Before injecting the standard solution into the sample injector (b), the 0.4 ml-conjugated sample was converted to 0.1 ml-glucose oxidase (Sigma, 50 unit / ml, USA) and pretreatment via selective enzymatic reaction. The pretreated sample is transferred to an electrochemical microcell via a micro flow pump (flow rate 0.3 ml / min). At this time, the current generated by the oxidation of hydrogen peroxide at the oxidation potential in the electrochemical microcell is detected through an electrostatic crisis (Elbio Co. Korea). The electrochemical microcells used were composed of working electrode, reference electrode and counter electrode. At this time, the working electrode and the counter electrode were mixed with platinum and carbon ink (Ercon Co. USA) in a ratio of 50% wt: 50% wt and printed with a thickness of 0.1 mm by a printing method. At this time, the electrode was dried for 20 seconds using hot air at 120 degrees Celsius to complete the electrode. The area of each electrode was 2.2 mm x 1.6 mm. The reference electrode was printed in the same size as the reference electrode by printing using Ag / AgCl ink (Ercon Co. USA). The oxidation voltage used was 600 mV based on the Ag / AgCl electrode and the volume of the total electrochemical microcell was 0.015 ml. The calibration curve of the standard solution containing the inorganic salt detected using this flow type electrochemical measuring apparatus is shown in FIG. The signal measured at the electrostatic potential is shown as a box inside the figure. Determination of glucose concentration was made by calculating the area through integration through time x oxidation current, it can be seen that glucose concentration of less than 0.5 ppm can be measured.

본 발명의 흐름형 전기화학 측정 장치와 작업전극의 제조법을 통해 1 ppm미만의 글루코스 농도도 전기화학적 방법으로 결정이 가능함을 보였다. 특히 무기염이 많이 포함된 많은 생체 시료들 속의 글루코스 농도도 측정이 가능한 장점이 있다.It was shown that the glucose concentration of less than 1 ppm can be determined by the electrochemical method through the manufacturing method of the flow type electrochemical measuring apparatus and the working electrode of the present invention. In particular, glucose concentrations in many biological samples containing inorganic salts can also be measured.

도 1은 흐름형 전기화학 측정 장치로1 is a flow type electrochemical measuring device

a는 용리액 (Eluent)a is eluent

b는 시료주입기(Injector)b is the injector

c는 미량 유동 펌프(Peristaltic pump)c is a peristaltic pump

d는 전기화학 미소셀(Electrochemical micro cell)d is an electrochemical micro cell

e는 정전위기(Potentiostat)e is the potentiostat

CE : 상대전극, RE : 기준전극, WE : 작업전극.CE: counter electrode, RE: reference electrode, WE: working electrode.

도 2는 흐름형 전기화학 측정 장치를 이용한 신호와 글루코스의 검량선이다.2 is a calibration curve of signals and glucose using a flow type electrochemical measuring apparatus.

Claims (2)

도 1의 구성을 지니는 흐름형 전기화학 미소셀 검출기를 이용한 무기이온의 간섭을 최소화한 1ppm미만의 저농도 글루코스 측정 장치Low concentration glucose measurement device of less than 1ppm minimizing the interference of inorganic ions using the flow type electrochemical microcell detector having the configuration of FIG. 청구항 1에 있어서, 흐름형 전기화학 미소셀의 작업 전극과 상대전극이 백금 잉크와 탄소 잉크가 중량비 50 : 50 혼합 잉크를 사용하여 프린팅 법으로 형성된 전극.The electrode according to claim 1, wherein the working electrode and the counter electrode of the flow type electrochemical microcell are formed of a printing method using a platinum ink and a carbon ink in a weight ratio of 50:50 mixed ink.
KR1020050093660A 2005-10-06 2005-10-06 Electrochemical electrode and instrumentation for low glucose concentration KR20050103170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050093660A KR20050103170A (en) 2005-10-06 2005-10-06 Electrochemical electrode and instrumentation for low glucose concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050093660A KR20050103170A (en) 2005-10-06 2005-10-06 Electrochemical electrode and instrumentation for low glucose concentration

Publications (1)

Publication Number Publication Date
KR20050103170A true KR20050103170A (en) 2005-10-27

Family

ID=37281202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050093660A KR20050103170A (en) 2005-10-06 2005-10-06 Electrochemical electrode and instrumentation for low glucose concentration

Country Status (1)

Country Link
KR (1) KR20050103170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166904A (en) * 2020-10-30 2022-03-11 中国科学院烟台海岸带研究所 Method for detecting nitrate ions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166904A (en) * 2020-10-30 2022-03-11 中国科学院烟台海岸带研究所 Method for detecting nitrate ions
CN114166904B (en) * 2020-10-30 2023-11-28 中国科学院烟台海岸带研究所 Method for detecting nitrate ions

Similar Documents

Publication Publication Date Title
Guilbault et al. Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes
Ngamchuea et al. Understanding electroanalytical measurements in authentic human saliva leading to the detection of salivary uric acid
Wang et al. Non-enzymatic amperometric glucose biosensor based on nickel hexacyanoferrate nanoparticle film modified electrodes
Van Staden et al. Flow-injection analysis systems with different detection devices and other related techniques for the in vitro and in vivo determination of dopamine as neurotransmitter. A review
Gamboa et al. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples
Oliveira et al. Determination of ascorbic acid in commercial tablets using pencil drawn electrochemical paper-based analytical devices
Abass et al. Development of an amperometric sulfite biosensor based on sulfite oxidase with cytochrome c, as electron acceptor, and a screen-printed transducer
Šelešovská et al. Sensitive Voltammetric Sensor Based on Boron‐Doped Diamond Electrode for Determination of the Chemotherapeutic Drug Methotrexate in Pharmaceutical and Biological Samples
Gholivand et al. Simultaneous voltammetric determination of captopril and hydrochlorothiazide on a graphene/ferrocene composite carbon paste electrode
Gross et al. Nitrite/nitrate detection in serum based on dual-plate generator–collector currents in a microtrench
Vasjari et al. Amino acid determination using screen-printed electrochemical sensors
Luo et al. Selective and sensitive determination of uric acid at DNA-modified graphite powder microelectrodes
Levent et al. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples
CN105784814A (en) Sensor based on concentration cell principle
US20040026266A1 (en) Electrochemical biosensor
Araújo et al. A novel miniaturized electroanalytical device integrated with gas extraction for the voltammetric determination of sulfite in beverages
Mohammadi et al. Determination of mercury (II) by invertase enzyme inhibition coupled with batch injection analysis
Hayashi et al. Selective detection of l-glutamate using a microfluidic device integrated with an enzyme-modified pre-reactor and an electrochemical detector
Norouzi et al. Ultrasensitive flow-injection electrochemical method using fast fourier transform square-wave voltammetry for detection of vitamin B1
Dantas et al. Amperometric determination of hydrogen peroxide using a copper microelectrode
Mori et al. Amperometric detection with microelectrodes in flow injection analysis: theoretical aspects and application in the determination of nitrite in saliva
Peña et al. Determination of Fe (III) in wine samples using a ruthenium oxide hexacyanoferrate modified microelectrode
Hsu et al. An electrochemical cell coupled with disposable screen-printed electrodes for use in flow injection analysis
Sun et al. Concentration cell-based potentiometric analysis for point-of-care testing with minimum background
Moody et al. Peroxidase enzyme sensor for on-line monitoring of disinfection processes in the food industry

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application