KR20050097719A - Method of lactic acid production using fibrous biomass - Google Patents

Method of lactic acid production using fibrous biomass Download PDF

Info

Publication number
KR20050097719A
KR20050097719A KR1020040022948A KR20040022948A KR20050097719A KR 20050097719 A KR20050097719 A KR 20050097719A KR 1020040022948 A KR1020040022948 A KR 1020040022948A KR 20040022948 A KR20040022948 A KR 20040022948A KR 20050097719 A KR20050097719 A KR 20050097719A
Authority
KR
South Korea
Prior art keywords
lactic acid
fermentation
carrier
fibrous biomass
chitosan
Prior art date
Application number
KR1020040022948A
Other languages
Korean (ko)
Other versions
KR100569738B1 (en
Inventor
윤현희
최실호
Original Assignee
윤현희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤현희 filed Critical 윤현희
Priority to KR1020040022948A priority Critical patent/KR100569738B1/en
Publication of KR20050097719A publication Critical patent/KR20050097719A/en
Application granted granted Critical
Publication of KR100569738B1 publication Critical patent/KR100569738B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames

Abstract

본 발명은 섬유성 바이오매스를 당화액을 이용하여 젖산을 제조하는 방법에 관한 것으로, 보다 구체적으로는, (a) 섬유성 바이오매스를 당화효소의 최적온도에서 당화시켜 당화액을 제조하는 단계 및 (b) 미생물 발효조에 키토산-글루타르알데하이드 담체에 고정화된 젖산생성 미생물을 충진하고, 상기 당화액을 공급하여 온도 약42℃에서 발효를 수행하되, 상기 당화액과 상기 발효액을 순환시키면서 젖산 발효를 수행하는 단계를 포함하는 섬유성 바이오매스로부터 젖산을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing lactic acid using a saccharified solution of fibrous biomass, and more specifically, (a) preparing a saccharified solution by saccharifying the fibrous biomass at an optimal temperature of a glycosylase; (b) a lactic acid-producing microorganism immobilized on a chitosan-glutaraldehyde carrier is filled in a microbial fermentation tank, and the saccharified liquid is supplied to perform fermentation at a temperature of about 42 ° C., while lactic acid fermentation is performed while circulating the saccharified liquid and the fermented broth. It relates to a method for producing lactic acid from fibrous biomass comprising the step of performing.

본 발명에 따르면, 당화반응조와 발효조의 최적온도를 달리하여 당화과정과 젖산발효과정의 수율을 높이는 것이 가능할 뿐만 아니라, 젖산생성 미생물을 키토산-글루타르알데하이드 담체에 고정화하여 기존의 젖산 제조방법 보다 내산성, 내열성 및 내구성이 뛰어난 담체를 제공하여 젖산의 생산성을 증가시키는 것이 가능하다.According to the present invention, it is possible not only to increase the yield of the saccharification process and the lactic acid foot effect tablet by changing the optimum temperature of the saccharification reaction tank and the fermentation tank, but also by immobilizing the lactic acid-producing microorganisms on the chitosan-glutaraldehyde carrier, which is more acid resistant than the conventional lactic acid production method. It is possible to increase the productivity of lactic acid by providing a carrier excellent in heat resistance and durability.

Description

섬유성 바이오매스를 이용한 젖산의 제조방법{Method of Lactic Acid Production Using Fibrous Biomass} Method of manufacturing lactic acid using fibrous biomass {Method of Lactic Acid Production Using Fibrous Biomass}

본 발명은 섬유성 바이오매스를 당화액을 이용하여 젖산을 제조하는 방법에 관한 것으로, 보다 구체적으로는, 섬유성 바이오매스를 당화시켜 당화액을 제조하는 단계 및 미생물 발효조에 키토산-글루타르알데하이드 담체에 고정화된 젖산생성 미생물을 충진하고, 상기 당화액을 공급하여 발효를 수행하되, 상기 당화액과 상기 발효액을 순환시키면서 젖산 발효를 수행하는 단계를 포함하는 섬유성 바이오매스로부터 젖산을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lactic acid using a saccharified solution of fibrous biomass, and more particularly, to a saccharified solution by saccharifying fibrous biomass and a chitosan-glutaraldehyde carrier in a microbial fermenter. In the method for producing lactic acid from the fibrous biomass comprising the step of filling the lactic acid-producing microorganism immobilized on, supplying the saccharified liquid and performing fermentation, while performing lactic acid fermentation while circulating the saccharified liquid and the fermentation broth. It is about.

젖산은 식품, 제약, 화장품, 화학, 금속, 전자, 페인트, 잉크, 직물, 염색, 피혁 공업 등에 폭넓게 응용되는 산업적으로 중요한 유기산이다. 또한 젓산은 무색, 무취이며 부드러운 신맛이 있고 물에 잘 용해되는 저휘발성 물질로서 인체에 독성이 없어 향미제, 산미제, 보존제, 흡습제, 보습제, 피부미백제, pH 조절제, 용매, 정맥주사액, 투석액, 치석제거제, 칼슘보강제, 빈혈치료제, 여드름치료제, 무좀치료제, 세정제 등의 다양한 용도로 폭넓게 응용되고 있을 뿐만아니라, 석유화학에서 유도되는 폴리에틸렌, 폴리프로필렌, 폴리스틸렌 등과 같은 난분해성 플라스틱의 환경친화적인 대체고분자물질로서 전세계적으로 관심이 대두되고 있는 생분해성 플라스틱 폴리락타이드의 원료로서 젖산의 수요가 크게 증가하고 있기 때문에 간단한 에스테르화, 수소화, 탈수, 축합반응 등에 의해 젖산에스테르, 아세트알데히드, 프로필렌글리콜, 프로필렌옥시드, 아크릴산, 2,3 펜탄디온, 락타이드 등과 같이 공업적으로 중요한 화합물로 전환할 수 있는 화학공업의 차세대 대체 화학원료로서도 중요한 유기산이다.Lactic acid is an industrially important organic acid that is widely applied in food, pharmaceutical, cosmetics, chemistry, metals, electronics, paint, ink, textile, dyeing and leather industries. In addition, lactic acid is a colorless, odorless, soft, sour, low-volatile substance that dissolves well in water, so it is not toxic to human body, so it is not toxic to human body, flavoring agent, acidulant, preservative, moisture absorbent, moisturizer, skin whitening agent, pH adjusting agent, solvent, intravenous injection solution, It is widely applied to various applications such as tartar remover, calcium adjuvant, anemia treatment, acne treatment, athlete's foot treatment, and cleaning agent, and is an environmentally friendly alternative polymer of hardly degradable plastic such as polyethylene, polypropylene and polystyrene derived from petrochemical. As the raw material of biodegradable plastic polylactide, which is attracting worldwide attention as a substance, the demand for lactic acid is greatly increased, so it is easy to use lactic acid ester, acetaldehyde, propylene glycol, propylene by simple esterification, hydrogenation, dehydration, and condensation reaction. Same as oxide, acrylic acid, 2,3 pentanedione, lactide, etc. As a next-generation alternative chemical raw material for the chemical industry that can be converted into industrially important compounds is an important organic acids.

젖산은 미생물발효 혹은 화학적 합성방법으로 제조되고 있으며, 인체에 무해한 엘형젖산은 발효에 의해서만 제조할 수 있어, 현재 전체 젖산 생산의 절반이 상이 미생물 발효방법으로 제조되고 있다. Lactic acid is produced by microbial fermentation or chemical synthesis method, L-lactic acid, which is harmless to human body, can be produced only by fermentation, and at present, half of the total lactic acid production is produced by microbial fermentation method.

한편, 미생물발효에 사용되는 고가의 배지를 대체하기 위한 많은 연구들이 수행되어 왔으며, 목질계자원을 효소처리하여 셀룰로오즈를 당화시켜 얻은 포도당을 함유한 당화액을 젖산 발효배지에 첨가하는 발명이 보고된 바 있다(대한민국 특허공개 2003-0008187).On the other hand, many studies have been conducted to replace the expensive medium used for fermentation of microorganisms, and the invention of adding glucose-containing saccharified liquid obtained by saccharifying cellulose by enzymatic treatment of wood-based resources has been reported. (Korean Patent Publication 2003-0008187).

또한, 셀룰로오스를 다량함유하고 있는 섬유성 바이오매스를 젖산발효의 원료로 이용한 회분식 발효에서 젖산을 생산한 보고가 있다(Schmidt S. and Padukone N., 1997 J.Indust. Microbiol. and Biotechnol. 18:10-14).In addition, there have been reports of the production of lactic acid in batch fermentation using fibrous biomass containing cellulose as a raw material for lactic acid fermentation (Schmidt S. and Padukone N., 1997 J.Indust. Microbiol. And Biotechnol. 18: 10-14).

그러나, 상기의 방법들은 셀룰로오스를 효소처리하는 당화공정과 미생물을 이용하는 발효공정이 두단계로 나뉘어져 있으며, 당화공정의 경우 생성물인 포도당의 저해작용으로 인하여 반응속도가 매우 느리고, 따라서 많은 양의 효소가 소모되는 단점이 있었으며, 발효공정은 젖산발효균의 젖산 생산성이 낮은 단점이 있다.However, the methods described above are divided into two stages, a saccharification process for enzymatically treating cellulose and a fermentation process using microorganisms. In the case of the saccharification process, the reaction rate is very slow due to the inhibition of glucose as a product, and thus a large amount of enzyme There was a disadvantage to be consumed, the fermentation process has a low lactic acid productivity of lactic acid fermentation bacteria.

본 발명자들은 상기 문제점을 해결하기 위하여, 당화공정과 발효공정의 산물을 서로 순환시켜 효소처리조의 당화액 내의 포도당의 농도를 낮추고, 미생물반응조에 젖산균을 고정화시킨 담체를 충진시킨 젖산 제조방법을 발명한 바 있다(대한민국 특허공개 2002-0096432).In order to solve the above problems, the present inventors invented a method for producing lactic acid in which a product of a saccharification process and a fermentation process is circulated with each other to lower the concentration of glucose in the saccharification solution of an enzyme treatment tank and a carrier having a carrier fixed with lactic acid bacteria in a microbial reaction tank. (Korean Patent Publication 2002-0096432).

그러나, 상기 젖산 제조장치는 칼슘/알지네이트 담체에 젖산균을 고정화하여 미생물 발효에 이용하였는데, 이 경우, 고정된 젖산균과 기질이 반응한 생성물에 의해 그 부피가 계속 팽창하여, 담체가 손상되거나 파열되어 담체의 재사용이 불가능하고, 오랜 시간 반응시켰을 때 미생물의 고정화도가 급격히 떨어지는 등의 문제점이 있었다.However, the lactic acid production apparatus was used for fermentation of microorganisms by immobilizing lactic acid bacteria on a calcium / alginate carrier. In this case, the volume of the lactic acid bacteria reacted with the substrate continued to expand, resulting in damage or rupture of the carrier. It is not possible to reuse, and when reacted for a long time there was a problem such as a sharp drop in the degree of immobilization of microorganisms.

이에, 본 발명자들은 내구성과 내열성이 강한 키토산 담체에 젖산 발효시의 내산성을 증대시키기 위하여 글루타르알데히드로 가교결합시킨 키토산 담체에 고정된 젖산생성 미생물로 충진한 미생물발효조에 섬유성 바이오매스의 당화액을 공급하면서 발효시킨 결과, 오랜기간 높은 수율의 젖산을 생산할 수 있는 것을 확인하고 본 발명을 완성하게 되었다. Therefore, the inventors of the present invention provide a saccharified solution of fibrous biomass in a microbial fermentation tank filled with lactic acid-producing microorganisms immobilized on a chitosan carrier crosslinked with glutaraldehyde in order to increase acid resistance at the time of lactic acid fermentation on a chitosan carrier having high durability and heat resistance. As a result of fermentation while supplying, it was confirmed that the high yield of lactic acid can be produced for a long time and completed the present invention.

결국, 본 발명의 주된 목적은 섬유성 바이오매스로부터 젖산발효의 생산성을 극대화하기 위한 젖산 제조방법을 제공하는데 있다. After all, the main object of the present invention is to provide a lactic acid production method for maximizing the productivity of lactic acid fermentation from fibrous biomass.

상기 목적을 달성하기 위하여, 본 발명은 (a) 당화 반응조에 섬유성 바이오매스와 당화효소를 충진하고 상기 당화효소의 최적온도에서 상기 섬유성 바이오매스를 당화시켜 당화액을 제조하는 단계 및 (b) 미생물 발효조에 키토산-글루타르알데하이드 담체에 고정화된 젖산생성 미생물을 충진하고, 상기 당화액을 공급하여 온도 약42℃에서 발효를 수행하되, 상기 당화액과 상기 발효액을 순환시키면서 젖산 발효를 수행하는 단계를 포함하는 섬유성 바이오매스로부터 젖산을 제조하는 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) filling the saccharification tank with fibrous biomass and glycosylase and glycosylating the fibrous biomass at the optimum temperature of the saccharification enzyme to prepare a saccharified solution and (b ) A lactic acid-producing microorganism immobilized on a chitosan-glutaraldehyde carrier is filled in a microbial fermentation tank, and the saccharified liquid is supplied to carry out fermentation at a temperature of about 42 ° C., but the lactic acid fermentation is performed while circulating the saccharified liquid and the fermented broth. It provides a method for producing lactic acid from a fibrous biomass comprising the step.

본 발명에 있어서, 상기 당화효소는 셀룰라제이고, 키토산-글루타르알데하이드 담체에 고정화된 것을 특징으로 할 수 있고, 상기 젖산생성 미생물은 락토바실러스 델부르키(Lactobacillus delbruekii NRRL-B445)인 것을 특징으로 할 수 있다.In the present invention, the glycosylase is a cellulase and may be immobilized on a chitosan-glutaraldehyde carrier, and the lactic acid producing microorganism is Lactobacillus delbruekii (NRRL-B445) can do.

본 발명의 젖산 제조장치는 당화와 발효가 별도의 두개의 반응조에서 동시에 일어나는 2조식 젖산발효장치로서 섬유성 바이오매스가 당화효소에 의해 당화가 진행되는 충진탑형식의 당화 반응조(1)와 상기 당화 반응조에서 당화된 포도당이 포함된 반응용액을 공급받아 젖산발효를 진행하는 미생물 발효조(2)로 구성되며 상기 당화와 발효과정은 동시에 일어나도록 되어 있다. The lactic acid production apparatus of the present invention is a two-row lactic acid fermentation apparatus in which saccharification and fermentation occur simultaneously in two separate reaction tanks. It is composed of a microbial fermentation tank (2) for receiving a reaction solution containing glycated glucose in the reaction vessel to proceed with lactic acid fermentation and the saccharification and fermentation process is to occur at the same time.

본 발명의 당화 반응조(1)는 폐휴지나 폐신문지 등 섬유성 바이오매스로 충진되어 있으며, 상기 효소당화 반응조에 당화효소를 첨가하여 상기 당화효소의 최적 반응 조건에서 당화반응을 진행시키며, 상기 당화효소는 키토산-글루타르알데하이드 담체에 고정화하여 사용할 수 있다.The saccharification reaction tank (1) of the present invention is filled with fibrous biomass such as waste paper waste paper or waste paper, and by adding a saccharification enzyme to the enzyme saccharification reaction tank, the saccharification reaction proceeds under the optimum reaction conditions of the saccharification enzyme. The enzyme can be used by immobilization on chitosan-glutaraldehyde carrier.

상기 당화 반응조에서 당화가 진행되면서 증가되는 포도당의 농도는 미생물 발효조로 당화액이 빠져나가고, 발효액이 들어오는 과정에서 희석됨으로서, 반응산물에 의한 효소반응의 저해작용이 일어나지 않아 기존의 당화공정보다 적은량의 효소로 다량의 포도당을 생산할 수 있다. As the concentration of glucose in the saccharification reaction tank increases, the saccharification liquid is released into the microbial fermentation tank and is diluted during the fermentation broth. As a result, the inhibitory effect of the enzymatic reaction by the reaction product does not occur. Enzymes can produce large amounts of glucose.

본 발명의 미생물 발효조(2)는 생산되는 젖산의 수율을 높이고, 젖산발효 미생물이 반응조 내에 유지되도록 하기 위하여, 젖산을 생산하는 미생물이 고정된 키토산 담체가 충진되어 있으며, 포도당을 제외한 배지를 첨가하고, 당화반응을 거친 당화액을 순환펌프(3)로부터 공급받아 포도당원으로 사용하여 발효의 최적 조건에서 발효를 수행할 수 있다.In order to increase the yield of lactic acid produced, and to maintain the lactic acid fermentation microorganism in the reactor, the microbial fermentation tank 2 of the present invention is filled with a chitosan carrier to which lactic acid-producing microorganisms are fixed, and a medium except glucose is added. In addition, the saccharified solution that has undergone saccharification reaction can be supplied from the circulation pump (3) and used as a glucose source to perform fermentation under optimum conditions of fermentation.

또한, 본 발명의 젖산 제조장치는 젖산발효 미생물이 담체에 고정화되어 있어, 균체를 제거하는 공정이 없이 간단하게 생성된 젖산을 분리해 낼 수 있다.In addition, the lactic acid production apparatus of the present invention is a lactic acid fermentation microorganism is immobilized on the carrier, it is possible to simply separate the generated lactic acid without the process of removing the cells.

본 발명의 미생물 반응기에 사용한 키토산-글루타르알데하이드 담체는 기존의 알지네이트 담체가 고정된 미생물과 기질이 반응한 생성물에 의해 그 부피가 계속 팽창하여, 담체가 손상되거나 파열되어 담체의 재사용이 불가능하여, 미생물의 고정화도가 급격히 떨어지는 등의 문제점을 극복하고자 발명된 것으로, 공정과정 중 살균시 가해지는 열에 대한 내열성과 발효과정의 물리적 변화에 대한 내구성 및 발효산물인 젖산에 대한 내산성 등을 갖춘 담체로서 미생물 고정화 및 효소고정화에 사용할 수 있다.The chitosan-glutaraldehyde carrier used in the microbial reactor of the present invention is continuously expanded in volume by a product in which an existing alginate carrier is immobilized with a microorganism to which the alginate carrier is fixed. It is invented to overcome problems such as the rapid drop in the degree of fixation of microorganisms, microorganisms as a carrier having heat resistance to heat applied during sterilization during the process, durability against physical changes in the fermentation process and acid resistance to the fermentation product lactic acid Can be used for immobilization and enzyme immobilization.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

특히 하기 실시예에서는 섬유성 바이오매스 당화용 가수분해효소로 셀룰라제만을 사용하였으나, 통상의 목초의 당화에 사용되는 β-글루코시다제를 사용할 수 있다. 또한 젖산발효 미생물로 락토바시러스 델부르키를 사용하였으나, 통상의 젖산발효에 사용되는 엔테로코코스 속이나 락토바실러스 속의 미생물을 사용할 수 있는 것은 당업계의 통상의 지식을 가진 자에게 있어서 자명할 것이다.In particular, in the following examples, only the cellulase was used as the hydrolase for fibrous biomass saccharification, but β-glucosidase used for the saccharification of ordinary grasses may be used. In addition, although Lactobacillus delBurki was used as the lactic acid fermentation microorganism, it would be obvious to those skilled in the art that microorganisms of the genus Enterococcus or Lactobacillus used for normal lactic acid fermentation can be used.

실시예 1. 내산성을 가지는 키토산-글루타르알데하이드 담체의 제조Example 1 Preparation of Chitosan-Glutaraldehyde Carrier Having Acid Resistance

본 발명의 키토산 담체는 먼저 키토산을 분쇄한후 2~4wt% 아세트산에 용해시켜 약 2~5%키토산이 함유된 점도성 있는 용액을 만든 다음, 비드케스팅, 가교결합, 냉동건조의 3단계를 통하여 형성된다. 가교결합은 키토산에 존재하는 아민기에 의하여 이루어지며, 젖산 생산 균주를 수용하기에 알맞은 내산성을 갖게 하기 위하여 이중기능기 시약인 글루타르알데하이드(glutaraldehyde)와 가교결합시켜 키토산-글루타르알데하이드 담체를 제작하였다.The chitosan carrier of the present invention is first pulverized chitosan and then dissolved in 2 to 4wt% acetic acid to make a viscous solution containing about 2 to 5% chitosan, and then through three steps of bead casting, crosslinking and freeze drying. Is formed. Crosslinking is made by the amine group present in chitosan, and chitosan-glutaraldehyde carrier was prepared by crosslinking with glutaraldehyde, a bifunctional reagent, in order to have acid resistance suitable for accommodating the lactic acid producing strain. .

실시예 2. 키토산-글루타르알데하이드 담체를 이용한 젖산제조Example 2 Preparation of Lactic Acid Using Chitosan-Glutaraldehyde Carrier

본 실시예에서는 실시예 1의 키토산 담체에 고정화된 미생물을 충진시킨 미생물 발효조를 이용하여 본 발명의 2조식 젖산 제조장치로 젖산을 생산하였다. In this embodiment, lactic acid was produced by the two-lactic acid production apparatus of the present invention by using a microbial fermenter filled with microorganisms immobilized on the chitosan carrier of Example 1.

폐신문지를 세절하여 황산용액에 24시간 침적시킨 후, 210℃에서 10분간 증기 폭쇄하여 전처리한 폐신문지 30g을 직경 20mm, 길이 300cm의 유리관 형태의 당화 반응조에 충진시키고 폐신문지의 셀룰로오스를 포도당으로 분해하는 셀룰라제 Celluclast 1.5L을 25IFPU/gsubstrate의 농도로 첨가하였다.After shredding the waste paper and immersing it in sulfuric acid solution for 24 hours, 30 g of waste paper was pretreated by steam blasting at 210 ° C for 10 minutes and filled into a glass tube-type saccharification reactor 20 mm in diameter and 300 cm in length. Cellullast 1.5L of cellulase was added at a concentration of 25IFPU / g substrate .

본 실시예에서 사용한 젖산생산 균주는 락토바실러스 델부르키(Lactobacillus delbruekii NRRL-B445)로서 엘리카배지(Elliker broth, Difco, USA)를 사용하여 37℃에서 36시간 배양하여 종균배양액으로 사용하였으며, 종균배양액을 원심분리한 균체를 상기 기술한 키토산 담체로 고정화하여 사용하였다.The lactic acid producing strain used in this example was Lactobacillus delbruekii NRRL-B445, which was incubated at 37 ° C. for 36 hours using Elika broth (Elliker broth, Difco, USA) and used as a seed culture medium. The cultured cells were centrifuged with the chitosan carrier described above and used.

본 실시예의 미생 물반응조는 1L의 발효반응기를 사용하여 락토바실러스 델부루키가 고정화된 키토산-글루타르알데하이드 담체를 5%(v/v)로 충진하였으며, 반응기에 주입한 배지에는 포도당을 제외시켰으며 사용한 배지의 조성은 표 1과 같다.The microbial reactor of this example was filled with 5% (v / v) of the chitosan-glutaraldehyde carrier with Lactobacillus delburuki immobilized using a 1 L fermentation reactor, and glucose was excluded from the medium injected into the reactor. The composition of the used medium is shown in Table 1.

미생물 발효조의 배양배지 조성Culture medium composition of microbial fermenter 배지성분Medium g/Lg / L 배지성분Medium g/Lg / L 효모추출물Yeast extract 1515 MgSO4·7H2OMgSO 4 7 H 2 O 0.50.5 K2HPO4 K 2 HPO 4 0.50.5 MnSO4·7H2OMnSO 4 7H 2 O 0.050.05 KH2PO4 KH 2 PO 4 0.50.5 암모늄사이트레이트Ammonium citrate 1One CH3COONa·3H2OCH 3 COONa3H 2 O 1One FeSO4·7H2OFeSO 4 7H 2 O 0.030.03

당화 반응조는 셀룰라제의 최적온도인 50℃로 조절하여 당화를 수행하였으며, 동시에 미생물 발효조의 온도는 락토바실러스 델부르키가 젖산을 생산하는 데 있어서 최적 온도조건인 42℃로 조절하여 가동시켰다. 두 반응조 사이에 연결된 순환파이프(4)를 통해 당화액과 발효액을 순환시켰으며 순환펌프(3)를 이용하여 15㎖/분의 유속으로 당화액과 발효액의 순환이 이루어지도록 하였다.The saccharification reactor was saccharified by adjusting the cellulase to an optimum temperature of 50 ° C., and at the same time, the temperature of the microbial fermenter was adjusted to 42 ° C., which is the optimal temperature for Lactobacillus del Burki to produce lactic acid. The saccharified liquid and the fermentation broth were circulated through a circulation pipe 4 connected between the two reactors, and the saccharified liquid and the fermentation broth were circulated at a flow rate of 15 ml / min using the circulation pump 3.

발효용액의 pH는 암모니아 수를 이용하여 pH 5.0으로 유지하였다. 미생물반응조 내의 균체의 유실정도는 반응 60시간 후 발효액을 수거하여 건조중량을 측정하였다.The pH of the fermentation solution was maintained at pH 5.0 using ammonia water. The degree of loss of cells in the microbial reactor was measured by drying the fermentation broth after 60 hours of reaction.

비교예. 알지네이트 담체를 이용한 젖산제조 Comparative example. Preparation of lactic acid using alginate carrier

본 비교예에서는 기존의 알지네이트 담체에 고정화된 미생물로 충진시킨 미생물반응조를 이용하여 본 발명의 2조식 젖산 제조장치로 젖산을 생산하였다. In this comparative example, lactic acid was produced by the two-lactic acid lactic acid production apparatus of the present invention using a microbial reaction tank filled with a microorganism immobilized on an existing alginate carrier.

실시예 2와 동일한 방법으로 배양된 종균을 칼슘/알지네이트로 고정화하여 미생물 발효조에 5%(v/v)로 충진하고, 효소 가수분해와 미생물 발효조의 조건은 실시예 2의 방법과 동일하게 하였다. 반응 60시간 후 미생물반응조 내의 발효액을 수거하여 세균의 건조중량을 측정하여 세균 유실정도를 측정하였다.The seed culture incubated in the same manner as in Example 2 was immobilized with calcium / alginate to fill the microbial fermenter at 5% (v / v), and the conditions of enzyme hydrolysis and microbial fermenter were the same as in Example 2. After 60 hours of reaction, the fermentation broth in the microbial reactor was collected and the dry weight of the bacteria was measured to determine the degree of bacterial loss.

담체 종류별 따른 젖산 제조성능 비교Comparison of Lactic Acid Production Performance by Carrier Type 본 발명 (실시예 2)Invention (Example 2) 알지네이트 담체를 이용한 젖산 제조(비교예)Preparation of Lactic Acid Using Alginate Carrier (Comparative Example) 유실균체량(60시간 후)(g/L)Lost cell mass (after 60 hours) (g / L) 0.470.47 5.35.3 젖산 생산량(60시간 후)(g/L)Lactic acid production (after 60 hours) (g / L) 6868 4646 젖산 생산성(g/L/h)Lactic Acid Productivity (g / L / h) 0.590.59 0.420.42

표 2에서 보듯이, 본 발명에 따른 키토산-글루타르알데하이드 담체를 사용한 경우, 기존 알지네이드를 담체를 이용한 경우보다 안정하여 담체로부터의 균체의 유실율이 매우 낮고, 이에 따라 젖산 생산능과 생산성이 향상된 것을 알 수 있다. As shown in Table 2, when the chitosan-glutaraldehyde carrier according to the present invention is used, the loss of the cells from the carrier is very low, which is more stable than that of the conventional alginide using the carrier, thereby improving lactic acid production capacity and productivity. It can be seen that.

이상 기술한 바와 같이, 본 발명은 키토산-글루타르알데하이드 담체에 고정된 젖산발효 미생물을 이용하여 섬유성 바이오매스로부터 젖산을 효율적으로 제조하는 장치 및 방법을 제공하는 효과가 있다. 본 발명에 따르면, 당화반응조와 발효조의 최적온도를 달리하여 당화과정과 젖산발효과정의 수율을 높이는 것이 가능할 뿐만 아니라, 젖산생성 미생물을 키토산-글루타르알데하이드 담체에 고정화하여 기존의 젖산 제조방법 보다 내산성, 내열성 및 내구성이 뛰어난 담체를 제공하여 젖산의 생산성을 증가시키는 것이 가능하다.As described above, the present invention has the effect of providing an apparatus and method for efficiently producing lactic acid from fibrous biomass using lactic acid fermentation microorganisms immobilized on chitosan-glutaraldehyde carriers. According to the present invention, it is possible not only to increase the yield of the saccharification process and the lactic acid foot effect tablet by changing the optimum temperature of the saccharification reaction tank and the fermentation tank, but also by immobilizing the lactic acid-producing microorganisms on the chitosan-glutaraldehyde carrier, which is more acid resistant than the conventional lactic acid production method. It is possible to increase the productivity of lactic acid by providing a carrier excellent in heat resistance and durability.

도 1은 본 발명에 따른 2조식 젖산제조장치의 개략도이다.1 is a schematic view of a two-tissue lactic acid production apparatus according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1. 당화 반응조 2. 미생물 발효조1. Saccharification reactor 2. Microbial fermentation tank

3. 순환펌프 4. 순환파이프3. Circulation pump 4. Circulation pipe

5. 섬유성 바이오매스 6. 키토산담체에 고정화된 젖산생성 미생물5. Fibrous biomass 6. Lactic acid producing microorganisms immobilized on chitosan carrier

Claims (3)

다음의 단계를 포함하는 섬유성 바이오매스로부터 젖산을 제조하는 방법:A process for preparing lactic acid from fibrous biomass comprising the following steps: (a) 당화 반응조에 섬유성 바이오매스와 당화효소를 충진하고 상기 당화효소의 최적온도에서 상기 섬유성 바이오매스를 당화시켜 당화액을 제조하는 단계; 및(a) filling a saccharification reactor with fibrous biomass and saccharase and preparing a saccharified solution by saccharifying the fibrous biomass at an optimal temperature of the saccharase; And (b) 미생물 발효조에 키토산-글루타르알데하이드 담체에 고정화된 젖산생성 미생물을 충진하고, 상기 당화액을 공급하여 온도 약42℃에서 발효를 수행하되, 상기 당화액과 상기 발효액을 순환시키면서 젖산 발효를 수행하는 단계.(b) a lactic acid-producing microorganism immobilized on a chitosan-glutaraldehyde carrier is filled in a microbial fermentation tank, and the saccharified liquid is supplied to perform fermentation at a temperature of about 42 ° C., while lactic acid fermentation is performed while circulating the saccharified liquid and the fermented broth. Steps to perform. 제1항에 있어서, 당화효소는 셀룰라제이고, 키토산-글루타르알데하이드 담체에 고정화된 것을 특징으로 하는 방법.The method of claim 1 wherein the glycosylase is cellulase and is immobilized on a chitosan-glutaraldehyde carrier. 제1항에 있어서, 젖산생성 미생물은 락토바실러스 델부르키(Lactobacillus delbruekii NRRL-B445)인 것을 특징으로 하는 방법.The method of claim 1, wherein the lactic acid producing microorganism is Lactobacillus delbruekii NRRL-B445.
KR1020040022948A 2004-04-02 2004-04-02 Method of Lactic Acid Production Using Fibrous Biomass KR100569738B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040022948A KR100569738B1 (en) 2004-04-02 2004-04-02 Method of Lactic Acid Production Using Fibrous Biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040022948A KR100569738B1 (en) 2004-04-02 2004-04-02 Method of Lactic Acid Production Using Fibrous Biomass

Publications (2)

Publication Number Publication Date
KR20050097719A true KR20050097719A (en) 2005-10-10
KR100569738B1 KR100569738B1 (en) 2006-04-11

Family

ID=37277447

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040022948A KR100569738B1 (en) 2004-04-02 2004-04-02 Method of Lactic Acid Production Using Fibrous Biomass

Country Status (1)

Country Link
KR (1) KR100569738B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492128B2 (en) 2006-10-26 2013-07-23 Xyleco, Inc. Processing biomass
KR101297927B1 (en) * 2013-04-25 2013-08-19 숙명여자대학교산학협력단 Method for immobilization of trypsin on chitosan non-woven using glutaraldehyde

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8846356B2 (en) 2006-10-26 2014-09-30 Xyleco, Inc. Processing biomass
US8597921B2 (en) 2006-10-26 2013-12-03 Xyleco, Inc. Processing biomass
US8603787B2 (en) 2006-10-26 2013-12-10 Xyleco, Inc. Processing biomass
US8609384B2 (en) 2006-10-26 2013-12-17 Xyleco, Inc. Processing biomass
US8709768B2 (en) 2006-10-26 2014-04-29 Xyleco, Inc. Processing biomass
US8492128B2 (en) 2006-10-26 2013-07-23 Xyleco, Inc. Processing biomass
US8852905B2 (en) 2006-10-26 2014-10-07 Xyleco, Inc. Processing biomass
US8900839B2 (en) 2006-10-26 2014-12-02 Xyleco, Inc. Processing biomass
US9023628B2 (en) 2006-10-26 2015-05-05 Xyleco, Inc. Processing biomass
US9347661B2 (en) 2006-10-26 2016-05-24 Xyleco, Inc. Processing biomass
US10287730B2 (en) 2006-10-26 2019-05-14 Xyleco, Inc. Processing biomass
US10704196B2 (en) 2006-10-26 2020-07-07 Xyleco, Inc. Processing biomass
KR101297927B1 (en) * 2013-04-25 2013-08-19 숙명여자대학교산학협력단 Method for immobilization of trypsin on chitosan non-woven using glutaraldehyde

Also Published As

Publication number Publication date
KR100569738B1 (en) 2006-04-11

Similar Documents

Publication Publication Date Title
Maslova et al. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF)
Djukić-Vuković et al. Towards sustainability of lactic acid and poly-lactic acid polymers production
John et al. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives
Wee et al. Biotechnological production of lactic acid and its recent applications
Ghaffar et al. Recent trends in lactic acid biotechnology: a brief review on production to purification
Abdel-Rahman et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits
Vijayakumar et al. Recent trends in the production, purification and application of lactic acid
Yankov Fermentative lactic acid production from lignocellulosic feedstocks: from source to purified product
Zhang et al. Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae
BRPI0612207A2 (en) method for ethanol production
KR20030016249A (en) Method for producing polylactic acid and corresponding device
Merrylin et al. Production of organic acids and enzymes/biocatalysts from food waste
Ma et al. Production of gluconic acid and its derivatives by microbial fermentation: Process improvement based on integrated routes
US7217545B2 (en) Method for production of lactic acid
US10619148B2 (en) Immobilized cell and preparation method thereof
Abdel-Rahman et al. Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies
Thongchul Production of lactic acid and polylactic acid for industrial applications
KR100569738B1 (en) Method of Lactic Acid Production Using Fibrous Biomass
JP5629876B2 (en) Lactic acid production method by non-sterile fermentation
US7083955B2 (en) Preparation of lactic acid from a pentose-containing substrate
Purane et al. Gluconic acid production from golden syrup by Aspergillus niger strain using semiautomatic stirred-tank fermenter
CN109536565A (en) A method of succinic acid is produced using the sugared high temperature anaerobic bacterium of pyrolysis and Actinobacillus succinogenes mixed fungus fermentation
Danner et al. Bacillus stearothermophilus for thermophilic production of L-lactic acid
Li et al. Microbial lactic acid production from renewable resources
Ranjit et al. Lactic acid production from free and polyurethane immobilized cells of Rhizopus oryzae MTCC 8784 by direct hydrolysis of starch and agro-industrial waste.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130207

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150312

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 11