KR20050086042A - Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same - Google Patents
Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same Download PDFInfo
- Publication number
- KR20050086042A KR20050086042A KR1020040012370A KR20040012370A KR20050086042A KR 20050086042 A KR20050086042 A KR 20050086042A KR 1020040012370 A KR1020040012370 A KR 1020040012370A KR 20040012370 A KR20040012370 A KR 20040012370A KR 20050086042 A KR20050086042 A KR 20050086042A
- Authority
- KR
- South Korea
- Prior art keywords
- semiconductor chip
- ingan
- layer
- current blocking
- optical pumping
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 46
- 230000003287 optical effect Effects 0.000 title claims abstract description 37
- 238000005086 pumping Methods 0.000 claims abstract description 50
- 230000000903 blocking effect Effects 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000010521 absorption reaction Methods 0.000 claims description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 3
- 239000010980 sapphire Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 3
- 239000000463 material Substances 0.000 abstract description 9
- 239000007787 solid Substances 0.000 description 5
- 239000005001 laminate film Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- QWVYNEUUYROOSZ-UHFFFAOYSA-N trioxido(oxo)vanadium;yttrium(3+) Chemical compound [Y+3].[O-][V]([O-])([O-])=O QWVYNEUUYROOSZ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
- H01L33/145—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18302—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2227—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
- H01S5/2228—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence quantum wells
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 광 펌핑 반도체 칩 및 그를 이용한 수직 외부 공동 표면 방출 레이저 시스템에 관한 것으로, 광 펌핑 반도체 칩은 기판 상부에 제 1 전류 방지층(Current blocking layer)이 형성되어 있고; 상기 제 1 전류 방지층 상부에 복수개의 InGaN 흡수층들이 적층되어 있고; 그 InGaN 흡수층들 사이 각각에는 상기 흡수층들보다 In이 더 많이 조성된 InGaN 양자우물층이 개재되어 있고; 상기 흡수층들의 최상위 흡수층 상부에 제 2 전류 방지층이 형성되어 있으며; 상기 제 2 전류 방지층 상부에 DDR(Distributed Bragg Reflection)미러가 형성되어 이루어진다. The present invention relates to an optical pumping semiconductor chip and a vertical external cavity surface emitting laser system using the optical pumping semiconductor chip, the optical pumping semiconductor chip having a first current blocking layer formed on the substrate; A plurality of InGaN absorbing layers are stacked on the first current blocking layer; Between each of the InGaN absorbing layers is an InGaN quantum well layer having a larger amount of In than the absorbing layers; A second current blocking layer is formed on an uppermost absorbing layer of the absorbing layers; Distributed Bragg Reflection (DDR) mirrors are formed on the second current blocking layer.
따라서, 본 발명은 InGaN으로 광 펌핑 반도체 칩의 흡수층과 양자 우물층을 형성하여, 종래의 제 2 차 고조파 물질을 사용하지 않고, 가시광 레이저를 구현할 수 있는 효과가 발생한다. Accordingly, the present invention forms an absorbing layer and a quantum well layer of the optical pumping semiconductor chip with InGaN, so that a visible light laser can be realized without using a conventional second harmonic material.
Description
본 발명은 광 펌핑 반도체 칩 및 그를 이용한 수직 외부 공동 표면 방출 레이저 시스템에 관한 것으로, 보다 상세하게는 InGaN으로 광 펌핑 반도체 칩의 흡수층과 양자 우물층을 형성하여, 종래의 제 2 차 고조파 물질을 사용하지 않고, 가시광 레이저를 구현할 수 있는 광 펌핑 반도체 칩 및 그를 이용한 수직 외부 공동 표면 방출 레이저 시스템에 관한 것이다.The present invention relates to an optical pumping semiconductor chip and a vertical external cavity surface emitting laser system using the same. More specifically, the absorption layer and the quantum well layer of the optical pumping semiconductor chip are formed of InGaN to use a conventional second harmonic material. And a light pumping semiconductor chip capable of implementing a visible light laser and a vertical external cavity surface emitting laser system using the same.
일반적으로, 가시 광 레이저를 사용하는 광원은 다수 있으며, 크립톤 혼합 백색 가스 레이저(Krypton and mixed white gas laser), 고출력 반도체 레이저(High power semiconductor laser), 고체 레이저(Solid state laser), 마이크로 레이저(Micro laser) 등이 있다.In general, there are many light sources using a visible light laser, Krypton and mixed white gas laser, High power semiconductor laser, Solid state laser, Micro laser laser).
먼저, 크립톤 혼합 백색 가스 레이저는 전기 광학 변환 효율이 0.1%로 낮고, 밀폐식의 냉각장치(Chiller)가 결합된 수냉식이 필요하며, 가스의 이득이 작고, 공진기 길이가 1m 이상으로 전체 시스템이 매우 크다. First, krypton-mixed white gas lasers require low electro-optic conversion efficiency of 0.1%, water cooling combined with hermetic chillers, small gas gains, and a resonator length of more than 1 m. Big.
이에 반하여, 고체 레이저의 경우 전기 광학 변환 효율이 2% 정도로 기체 레이저에 비하여 효율이 좋으나, 역시 시스템이 크고 수냉각이 필요한 단점이 있으며, 녹색을 제외한 청색과 적색을 구현하기 어렵다. On the contrary, in the case of the solid state laser, the electro-optic conversion efficiency is 2%, and the efficiency is higher than that of the gas laser. However, the solid laser has a disadvantage in that the system is large and requires water cooling.
한편, 고출력 반도체 레이저의 급속한 기술적 진보에 따라, 고출력 반도체 레이저 광원 및 반도체 레이저를 펌핑 광원으로 이용하는 가시광 레이저가 연구되고 있다. On the other hand, in accordance with the rapid technological progress of high power semiconductor lasers, a visible light laser using a high power semiconductor laser light source and a semiconductor laser as a pumping light source has been studied.
이러한, 고출력 반도체 레이저를 레이저 공진기 내에 위치한 고체 레이저 매질에 집속시켜 레이저 발진 조건을 만족시키고, 발진된 레이저광을 제 2차 고조파 물질을 사용하여 파장 변환시켜 녹색과 청색 레이저를 얻을 수 있다. The high power semiconductor laser is focused on a solid laser medium located in the laser resonator to satisfy the laser oscillation condition, and the oscillated laser light may be wavelength-converted using the second harmonic material to obtain green and blue lasers.
이때, 사용하는 고체 레이저 매질은 니오디뮴:바나듐산 이트륨(Nd:YVO4)과 니오디뮴:야그(Nd:YAG)를 가장 많이 사용하고, 제 2 차 고조파 물질은 KTP(KTiOPO4), LBO(LiB3O5), BBO(β-BaB2O4) 등을 가장 많이 사용한다.At this time, the solid laser medium used is the most commonly used niobium: yttrium vanadate (Nd: YVO 4 ) and niodymium: yag (Nd: YAG), the second harmonic material is KTP (KTiOPO 4 ), LBO (LiB 3 O 5 ), BBO (β-BaB 2 O 4 ) and the like are most used.
또한, 최근에는 청색 영역의 고출력 가시광을 얻기 위하여, 광학적인 펌핑(Optical Pumping)을 하고, 제 2 차 고조파 현상을 이용하여 W급의 가시광 레이저를 얻는 연구가 진행되고 있다. Recently, in order to obtain high output visible light in the blue region, optical pumping has been performed, and studies have been conducted to obtain a W-class visible light laser using a second harmonic phenomenon.
광학적인 펌핑을 이용한 방식은 전자와 정공을 주입하기 힘든 반도체 소자에 적용된다. Optical pumping is applied to semiconductor devices that are difficult to inject electrons and holes.
예를 들어, P타입 도펀트의 도핑을 하기 힘든 물질의 경우, 정공의 이동이 어렵고, 저항이 커져 레이저가 제대로 발진하기 힘든 경우이다. For example, a material that is difficult to dop P-type dopant, the hole is difficult to move, the resistance is large, the laser is difficult to oscillate properly.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여, InGaN으로 광 펌핑 반도체 칩의 흡수층과 양자 우물층을 형성하여, 종래의 제 2 차 고조파 물질을 사용하지 않고, 가시광 레이저를 구현할 수 있는 광 펌핑 반도체 칩 및 그를 이용한 수직 외부 공동 표면 방출 레이저 시스템을 제공하는 데 목적이 있다. In order to solve the above problems, the present invention provides an optical pumping semiconductor that can implement a visible light laser without using a second harmonic material by forming an absorption layer and a quantum well layer of an optical pumping semiconductor chip with InGaN. It is an object to provide a chip and a vertical external cavity surface emitting laser system using the same.
상기한 본 발명의 목적들을 달성하기 위한 바람직한 양태(樣態)는, 기판 상부에 제 1 전류 방지층(Current blocking layer)이 형성되어 있고;A preferred aspect for achieving the above objects of the present invention is that a first current blocking layer is formed on the substrate;
상기 제 1 전류 방지층 상부에 복수개의 InGaN 흡수층들이 적층되어 있고; A plurality of InGaN absorbing layers are stacked on the first current blocking layer;
그 InGaN 흡수층들 사이 각각에는 상기 흡수층들보다 In이 더 많이 조성된 InGaN 양자우물층이 개재되어 있고; Between each of the InGaN absorbing layers is an InGaN quantum well layer having a larger amount of In than the absorbing layers;
상기 흡수층들의 최상위 흡수층 상부에 제 2 전류 방지층이 형성되어 있으며;A second current blocking layer is formed on an uppermost absorbing layer of the absorbing layers;
상기 제 2 전류 방지층 상부에 DDR(Distributed Bragg Reflection)미러가 형성되어 이루어진 것을 특징으로 하는 광 펌핑 반도체 칩이 제공된다.Provided is an optical pumping semiconductor chip formed by forming a distributed bragg reflection (DDR) mirror on the second current blocking layer.
상기한 본 발명의 목적들을 달성하기 위한 바람직한 다른 양태(樣態)는, 기판 상부에 제 1 전류 방지층(Current blocking layer)이 형성되어 있고; 상기 제 1 전류 방지층 상부에 복수개의 InGaN 흡수층들이 적층되어 있고; 그 InGaN 흡수층들 사이 각각에는 상기 흡수층들보다 In이 더 많이 조성된 InGaN 양자우물층이 개재되어 있고; 상기 흡수층들의 최상위 흡수층 상부에 제 2 전류 방지층이 형성되어 있으며; 상기 제 2 전류 방지층 상부에 DDR(Distributed Bragg Reflection)미러가 형성되어 이루어진 광 펌핑 반도체 칩과;Another preferred aspect for achieving the above objects of the present invention is that a first current blocking layer is formed on the substrate; A plurality of InGaN absorbing layers are stacked on the first current blocking layer; Between each of the InGaN absorbing layers is an InGaN quantum well layer having a larger amount of In than the absorbing layers; A second current blocking layer is formed on an uppermost absorbing layer of the absorbing layers; An optical pumping semiconductor chip in which a distributed bragg reflection (DDR) mirror is formed on the second current blocking layer;
상기 광 펌핑 반도체 칩의 DBR 미러가 상부면에 접착제로 본딩되어 있는 히트 싱크와;A heat sink in which a DBR mirror of the optical pumping semiconductor chip is bonded with an adhesive on an upper surface thereof;
상기 광 펌핑 반도체 칩으로 광을 펌핑하는 펌핑 소스와;A pumping source for pumping light into the optical pumping semiconductor chip;
상기 펌핑 소스에서 펌핑된 광에 의해 상기 광 펌핑 반도체 칩에서 발진된 광이 상기 DBR 미러와 함께 공진시켜 발생된 레이저광을 외부로 출력하는 출력 미러로 구성된 광 펌핑 반도체 칩을 이용한 수직 외부 공동 표면 방출 레이저 시스템이 제공된다.Vertical external cavity surface emission using an optical pumping semiconductor chip composed of an output mirror for outputting laser light generated by resonating with the DBR mirror by light oscillated with the DBR mirror by light pumped from the pumping source A laser system is provided.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명에 따른 광 펌핑 반도체(Optical Pumped Semiconductor, OPS) 칩의 개략적인 구조를 도시한 단면도로서, 본 발명의 광 펌핑 반도체 칩(20)은 기판(21) 상부에 제 1 전류 방지층(Current blocking layer)(22)을 형성하고, 상기 제 1 전류 방지층(22) 상부에 흡수층(23)과 양자 우물층(24)을 교대로 복수번 적층하고, 최상위 양자 우물층 상부에 최상위 흡수층을 적층하고, 상기 최상위 흡수층 상부에 제 2 전류 방지층(25)과 DDR(Distributed Bragg Reflection) 미러(26)를 순차적으로 형성한다.1 is a cross-sectional view illustrating a schematic structure of an optical pumped semiconductor (OPS) chip according to the present invention, and the optical pumped semiconductor chip 20 of the present invention may include a first current blocking layer on the substrate 21. A current blocking layer 22 is formed, the absorption layer 23 and the quantum well layer 24 are alternately stacked a plurality of times on the first current blocking layer 22, and the uppermost absorption layer is stacked on the top quantum well layer. A second current blocking layer 25 and a distributed bragg reflection (DDR) mirror 26 are sequentially formed on the uppermost absorbing layer.
여기서, 상기 흡수층들(23)은 펌핑 소스에 의해 캐리어를 발생시키는 영역으로, InGaN을 사용하고, 펌핑 소스의 파장보다 작은 에너지 밴드 갭(Energy band gap)을 갖는 것이 흡수에 용이하다.Here, the absorbing layers 23 are regions in which carriers are generated by a pumping source. InGaN is used, and it is easy to absorb the energy band gap having an energy band gap smaller than the wavelength of the pumping source.
그리고, 상기 양자 우물층(24)도 InGaN의 물질을 조성하여 형성하는데, 이렇게, InGaN 흡수층과 InGaN 양자 우물층을 갖는 광 펌핑 반도체 칩은 녹색에서 청색 영역에 해당하는 가시광 레이저를 얻을 수 있다. In addition, the quantum well layer 24 may be formed by forming an InGaN material. In this way, an optically pumped semiconductor chip including an InGaN absorbing layer and an InGaN quantum well layer may obtain a visible light laser corresponding to a green to blue region.
이 때, 상기 흡수층들은 In이 0 ~ 15% 조성된 InGaN층으로 형성하고, 상기 양자 우물층은 In이 17 ~ 30% 조성된 InGaN층으로 형성하는 것이 바람직하다.In this case, it is preferable that the absorption layers are formed of an InGaN layer containing 0 to 15% of In, and the quantum well layer is formed of an InGaN layer containing 17 to 30% of In.
그러므로, 상기 흡수층들(23)에서 광을 흡수해 생성된 캐리어들은 양자 우물층(Quantum well)으로 이동하여 재결합하여 광을 방출하게 된다. Therefore, carriers generated by absorbing light in the absorbing layers 23 move to the quantum well layer and recombine to emit light.
한편, GaN 계열의 물질의 경우, 460nm 파장에서 99%이상의 DBR 미러를 형성하기가 매우 어렵다. On the other hand, in the case of GaN-based materials, it is very difficult to form more than 99% of the DBR mirror at 460nm wavelength.
이러한 단점을 극복하기 위하여, 본 발명에서는 DDR 미러를 SiO2와 TiO2의 적층막 또는 Si와 SiN의 적층막과 같은 유전체 적층막을 사용한다.In order to overcome this drawback, the present invention uses a dielectric laminate film such as a laminate film of SiO 2 and TiO 2 or a laminate film of Si and SiN.
그리고, 본 발명은 광 펌핑 반도체 칩을 제조하기 위한 기판으로, 사파이어(Sapphire)기판, 실리콘 카바이드(SiC) 기판과 질화갈륨(GaN) 기판 중 선택된 어느 하나로 사용할 수 있으며, 여기서, 실리콘 카바이드 기판이 열전도도가 우수하기 때문에 가장 바람직한 모델이다.In addition, the present invention is a substrate for manufacturing an optical pumping semiconductor chip, can be used as any one selected from sapphire (Sapphire) substrate, silicon carbide (SiC) substrate and gallium nitride (GaN) substrate, where the silicon carbide substrate is thermally conductive It is the most preferable model because of its excellent degree.
도 2는 본 발명에 따른 광 펌핑 반도체 칩을 이용한 수직 외부 공동 표면 방출 레이저(Vertical External Cavity Surface Emitting Laser, VECSEL) 시스템의 개략적인 구조를 도시한 도면으로서, 본 발명에 따른 광 펌핑 반도체 칩을 이용한 수직 외부 공동 표면 방출 레이저 시스템은 도 1과 같은 광 펌핑 반도체 칩(20)과; 상기 광 펌핑 반도체 칩(20)의 DBR 미러가 상부면에 접착제로 본딩되어 있는 히트 싱크(10)와; 상기 광 펌핑 반도체 칩(20)으로 광을 펌핑하는 펌핑 소스(30)와; 상기 펌핑 소스(30)에서 펌핑된 광에 의해 상기 광 펌핑 반도체 칩(20)에서 발진된 광이 상기 DBR 미러와 함께 공진시켜 발생된 레이저광을 외부로 출력하는 출력 미러(40)로 구성된다.FIG. 2 is a view illustrating a schematic structure of a vertical external cavity surface emitting laser (VECSEL) system using an optical pumping semiconductor chip according to the present invention, and using the optical pumping semiconductor chip according to the present invention. The vertical external cavity surface emitting laser system comprises an optical pumping semiconductor chip 20 as shown in FIG. 1; A heat sink (10) in which a DBR mirror of the optical pumping semiconductor chip (20) is bonded with an adhesive on an upper surface thereof; A pumping source (30) for pumping light into the optical pumping semiconductor chip (20); The light generated by the light pumping semiconductor chip 20 by the light pumped from the pumping source 30 is composed of an output mirror 40 for outputting the laser light generated by resonating with the DBR mirror to the outside.
이러한, 수직 외부 공동 표면 방출 레이저 시스템은 히트 싱크(10) 상부에 DDR 미러가 대향되도록 본딩된 광 펌핑 반도체(Optical Pumped Semiconductor, OPS)칩(20)으로 펌핑 소스(Pumping source)(30)에서 레이저를 펌핑(Pumping)하면, 상기 OPS칩(20) 내에 DBR(Distributed Bragg Reflection) 미러와 외부의 출력 미러(40) 사이에 공진이 발생되어 레이저가 발진하게 된다. This vertical external cavity surface emitting laser system is a laser at a pumping source 30 with an Optical Pumped Semiconductor (OPS) chip 20 bonded so that a DDR mirror faces the heat sink 10. When pumping, resonance occurs between the distributed bragg reflection (DBR) mirror and the external output mirror 40 in the OPS chip 20 to cause the laser to oscillate.
여기서, 상기 펌핑 소스(30)는 OPS칩에서 얻고자하는 파장보다 짧은 380nm ~420nm의 자외선 계열의 파장을 갖는 레이저는 사용하는 것이 효율적이다. Here, the pumping source 30 is efficient to use a laser having a wavelength of 380nm ~ 420nm ultraviolet ray shorter than the wavelength to obtain in the OPS chip.
도 3은 본 발명에 따라 6개의 Si/SiN층 적층된 DBR 미러의 파장에 따른 반사율을 측정한 그래프로서, 460nm의 파장에 대해 반사율이 99.3%정도이다.3 is a graph measuring reflectance according to wavelengths of DBR mirrors stacked with six Si / SiN layers according to the present invention, and the reflectance is about 99.3% for a wavelength of 460 nm.
이상 상술한 바와 같이, 본 발명은 InGaN으로 광 펌핑 반도체 칩의 흡수층과 양자 우물층을 형성하여, 종래의 제 2 차 고조파 물질을 사용하지 않고, 가시광 레이저를 구현할 수 있는 효과가 있다.As described above, the present invention forms an absorbing layer and a quantum well layer of an optical pumping semiconductor chip with InGaN, thereby implementing a visible light laser without using a conventional second harmonic material.
본 발명은 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the invention has been described in detail only with respect to specific examples, it will be apparent to those skilled in the art that various modifications and variations are possible within the spirit of the invention, and such modifications and variations belong to the appended claims.
도 1은 본 발명에 따른 광 펌핑 반도체(Optical Pumped Semiconductor, OPS) 칩의 개략적인 구조를 도시한 단면도1 is a cross-sectional view showing a schematic structure of an optical pumped semiconductor (OPS) chip according to the present invention
도 2는 본 발명에 따른 광 펌핑 반도체 칩을 이용한 수직 외부 공동 표면 방출 레이저(Vertical External Cavity Surface Emitting Laser, VECSEL) 시스템의 개략적인 구조를 도시한 도면2 illustrates a schematic structure of a vertical external cavity surface emitting laser (VECSEL) system using an optical pumping semiconductor chip according to the present invention.
도 3은 본 발명에 따라 6개의 Si/SiN층 적층된 DBR 미러의 파장에 따른 반사율을 측정한 그래프Figure 3 is a graph measuring the reflectance according to the wavelength of the DBR mirror laminated six Si / SiN layers in accordance with the present invention
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10 : 히트싱크 20 : 광 펌핑 반도체 칩10 heat sink 20 optical pumping semiconductor chip
21 : 기판 22,25 : 전류방지층21: substrate 22, 25: current blocking layer
23 : 흡수층 24 : 양자우물층23: absorber layer 24: quantum well layer
26 : DDR(Distributed Bragg Reflection) 미러26: Distributed Bragg Reflection (DDR) Mirror
30 : 펌핑 소스 40 : 출력미러 30: pumping source 40: output mirror
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040012370A KR20050086042A (en) | 2004-02-24 | 2004-02-24 | Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040012370A KR20050086042A (en) | 2004-02-24 | 2004-02-24 | Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050086042A true KR20050086042A (en) | 2005-08-30 |
Family
ID=37270011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040012370A KR20050086042A (en) | 2004-02-24 | 2004-02-24 | Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050086042A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152665A (en) * | 2016-02-25 | 2017-08-31 | 日本碍子株式会社 | Surface emitting element, external resonator type vertical surface emitting laser, and manufacturing method for surface emitting element |
WO2018141083A1 (en) * | 2017-02-03 | 2018-08-09 | 华为技术有限公司 | Photoelectric conversion apparatus |
CN110382974A (en) * | 2017-02-27 | 2019-10-25 | 弗劳恩霍夫应用研究促进协会 | Glass device unit, its manufacturing method and application thereof |
US10541514B2 (en) | 2016-02-25 | 2020-01-21 | Ngk Insulators, Ltd. | Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device |
-
2004
- 2004-02-24 KR KR1020040012370A patent/KR20050086042A/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152665A (en) * | 2016-02-25 | 2017-08-31 | 日本碍子株式会社 | Surface emitting element, external resonator type vertical surface emitting laser, and manufacturing method for surface emitting element |
US10541514B2 (en) | 2016-02-25 | 2020-01-21 | Ngk Insulators, Ltd. | Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device |
WO2018141083A1 (en) * | 2017-02-03 | 2018-08-09 | 华为技术有限公司 | Photoelectric conversion apparatus |
CN110382974A (en) * | 2017-02-27 | 2019-10-25 | 弗劳恩霍夫应用研究促进协会 | Glass device unit, its manufacturing method and application thereof |
US11431283B2 (en) | 2017-02-27 | 2022-08-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Glazing unit, method for the production thereof and use thereof |
US12040738B2 (en) | 2017-02-27 | 2024-07-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Glazing unit, method for the production thereof and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6879615B2 (en) | FCSEL that frequency doubles its output emissions using sum-frequency generation | |
EP1763116B1 (en) | Mode control waveguide laser | |
Gerster et al. | Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser | |
US20050063441A1 (en) | High density methods for producing diode-pumped micro lasers | |
US6239901B1 (en) | Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate | |
KR100754401B1 (en) | High-power optically end-pumped external-cavity semiconductor laser | |
US20070014325A1 (en) | Optically pumped semiconductor laser | |
US8213470B2 (en) | Intra-cavity frequency doubled microchip laser operating in TEM00 transverse mode | |
Al Nakdali et al. | High-power quantum-dot vertical-external-cavity surface-emitting laser exceeding 8 W | |
US20130250983A1 (en) | Efficient and compact visible microchip laser source with periodically poled nonlinear materials | |
JP2007142394A (en) | External resonator type surface emission of laser capable reusing pump beam | |
JP2011510497A (en) | Photon ring laser and manufacturing method thereof | |
Priante et al. | In-well pumping of a membrane external-cavity surface-emitting laser | |
US20080212630A1 (en) | Laser apparatus | |
JP5324453B2 (en) | Frequency-converted solid-state laser in the cavity for the visible wavelength region | |
US6822988B1 (en) | Laser apparatus in which GaN-based compound surface-emitting semiconductor element is excited with GaN-based compound semiconductor laser element | |
JP2010519756A (en) | Solid state laser device with reduced temperature dependence | |
KR20050086042A (en) | Optical pumped semiconductor chip and vertical external cavity surface emitting laser system using the same | |
US20060153261A1 (en) | Optically-pumped -620 nm europium doped solid state laser | |
US20220209487A1 (en) | Stable uv laser | |
JP5101071B2 (en) | Optically pumped surface emitting semiconductor laser with mode selection device and optical projection device | |
CN102484349A (en) | Method of nonlinear crystal packaging and its application in diode pumped solid state lasers | |
Yu et al. | Compression of the self-Q-switching in semiconductor disk lasers with single-layer graphene saturable absorbers | |
Lidan et al. | Frequency doubling of an InGaAs multiple quantum wells semiconductor disk laser | |
CN1921248A (en) | Optical pumping semiconductor chip and vertical external cavity surface discharge laser system using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |