KR20050083369A - A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof - Google Patents

A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof Download PDF

Info

Publication number
KR20050083369A
KR20050083369A KR1020040011877A KR20040011877A KR20050083369A KR 20050083369 A KR20050083369 A KR 20050083369A KR 1020040011877 A KR1020040011877 A KR 1020040011877A KR 20040011877 A KR20040011877 A KR 20040011877A KR 20050083369 A KR20050083369 A KR 20050083369A
Authority
KR
South Korea
Prior art keywords
dendritic cells
cells
mol
protein
protein polysaccharide
Prior art date
Application number
KR1020040011877A
Other languages
Korean (ko)
Inventor
박영민
김기영
임재영
안순철
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020040011877A priority Critical patent/KR20050083369A/en
Publication of KR20050083369A publication Critical patent/KR20050083369A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/28Other arrangements on doors or windows, e.g. door-plates, windows adapted to carry plants, hooks for window cleaners
    • E06B7/36Finger guards or other measures preventing harmful access between the door and the door frame
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B7/00Special arrangements or measures in connection with doors or windows
    • E06B7/16Sealing arrangements on wings or parts co-operating with the wings
    • E06B7/22Sealing arrangements on wings or parts co-operating with the wings by means of elastic edgings, e.g. elastic rubber tubes; by means of resilient edgings, e.g. felt or plush strips, resilient metal strips
    • E06B7/23Plastic, sponge rubber, or like strips or tubes
    • E06B7/2305Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging
    • E06B7/2307Plastic, sponge rubber, or like strips or tubes with an integrally formed part for fixing the edging with a single sealing-line or -plane between the wing and the part co-operating with the wing
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2800/00Details, accessories and auxiliary operations not otherwise provided for
    • E05Y2800/40Physical or chemical protection
    • E05Y2800/41Physical or chemical protection against finger injury

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

본 발명은 상황버섯(Phellinus linteus)으로부터 수지상세포의 면역활성을 증강시키는 단백다당류(proteoglycan)와 이를 유효성분으로 함유하고 있는 면역증강제에 관한 것으로, 좀더 상세히는 수지상세포의 성숙(maturation)과 수지상세포의 표면인자의 발현, 수지상세포의 싸이토카인(cytokine) 인터류킨(interlecukin, IL)-12의 분비, 수지상세포의 T세포의 증식능과 T세포로부터 IL-2의 생산 등을 증가시키는 상황버섯의 단백다당류 및 이를 유효성분으로 하는 면역증강제로의 용도에 관한 것이다.The present invention relates to a protein polysaccharide (proteoglycan) that enhances the immune activity of dendritic cells from Phellinus linteus and an immunopotentiator containing the same as an active ingredient, more specifically, denaturation and dendritic cells of dendritic cells Protein polysaccharides of situational mushrooms to increase the expression of the surface factor of the cytokine, secretion of cytokine interleukin (IL) -12 of dendritic cells, proliferative capacity of T cells of dendritic cells and production of IL-2 from T cells, and It relates to the use as an immunopotentiator as an active ingredient.

Description

수지상 세포의 면역활성을 증가시키는 상황버섯 유래 단백다당류 및 이를 유효성분으로 하는 면역증강제{A proteoglycan, which is increased in immuno-activity of dendritic cells, from Phellinus linteus and Immunostimulator containing thereof} A proteoglycan, which is increased in immuno-activity of dendritic cells, from Phellinus linteus and Immunostimulator containing amounts, which increase the immune activity of dendritic cells.

본 발명은 상황버섯으로부터 수지상세포의 면역활성을 증강시키는 단백다당류와 이를 유효성분으로 하는 면역증강제에 관한 것으로, 좀더 상세히는 수지상세포의 성숙과 수지상세포의 표면인자의 발현, 수지상세포의 싸이토카인 IL-12의 분비, 수지상세포의 T세포의 증식능과 T세포로부터 IL-2의 생산 등을 증가시키는 상황버섯의 단백다당류 및 면역증강제에 관한 것이다.The present invention relates to a protein polysaccharide that enhances the immune activity of dendritic cells from a situation mushroom and an immunopotentiator using the same. More specifically, the maturation of dendritic cells and the expression of surface factors of dendritic cells and cytokine IL- of dendritic cells It relates to proteinaceous polysaccharides and immunopotentiators of situational mushrooms to increase the secretion of 12, the proliferative capacity of T cells of dendritic cells and the production of IL-2 from T cells.

수지상세포는 가장 강력한 항원제시 세포로서 1차적인 세포성 면역반응을 유발할 수 있는 유일한 세포이며, 골수에서 기원해서 미성숙한 형태로 혈류를 거쳐 체내 모든 기관으로 이동해 간다. 수지상세포는 각 조직에서 주변의 항원을 채집하여 림프기관에 가서 T림프구에 항원을 제시한다. 미성숙한 수지상세포는 CD(cluster determinant)40, CD54, CD86 등의 부신호(accessory signals) 전달에 필요한 CD가 표현되지 않아서 T세포를 활성화시키지는 못하지만 면역반응을 유발하기 위해 꼭 필요한 항원을 포획하기 위하여 이들 미분화 수지상세포는 탐식작용을 할 수 있고, 마이크로피노싸이토시스(macropinocytosis)를 할 수 있으며, C형 렉틴(lectin) 수용체와 유사한 대식세포 만노스(macrophage mannose) 수용체, DEC-205(CD205) 그리고 Fcγ과 Fcε수용체 등의 흡착성 엔도시토시스(adsorptive endocytosis)를 매개하는 수용체들이 세포막에 잘 발현되어 있다. 따라서 다른 항원제시 세포들이 마이크로몰 농도의 항원에 반응하는데 비하여 이들 미분화 수지상세포들은 나노몰농도(nanomolarity) 또는 피코몰농도(picomolarity) 농도의 항원에 대하여 반응할 수 있다. 또한 대식세포의 경우, 탐식된 항원은 리소좀(lysosome)에서 아미노산 상태로까지 분해되어 소량의 MHC-펩타이드(major histocompatibility complexv-peptide) 결합체를 세포표면에 발현하는데 비해서 수지상세포는 탐식된 항원의 분해를 최소로 하여 충분한 양의 MHC-펩타이드 결합체를 세포표면에 발현시켜서 수일간 안정한 상태로 유지시킬 수 있다. 수지상세포가 성숙해감에 따라 면역반응이 유발되는데 이러한 성숙과정은 여러 요소에 의해서 조절된다. 특히 세균이나 염증반응 산물, 세균의 세포벽 성분인 다당류, IL-1, GM-CSF(granulocyte /macrophage-colony stimulating factor), TNF(tumor necrosis factor)-α 등은 모두 수지상세포의 성숙을 촉진한다. 성숙한 수지상세포는 고농도의 NF-κB((nuclear transcription factor)-κB) 군의 전사인자(Rel A/p65, Rel B, Rel C, p50, p52)를 표현하는데 이들 전사인자는 다양한 면역반응과 염증반응에 관여하는 단백질의 유전자가 표현되는 것을 조절한다. TNF-R(CD120a/b), CD40 그리고 TRANCE/RANK(TNF-related activation induced-cytokine/receptor activator of NF-kB) 등의 TNF-수용체 군(family)을 통한 신호전달은 NF-κB를 활성화시키고 수지상세포를 자극하여 면역반응을 유도하게 되므로 병원체나 항원은 TNF-R 군이나 TNF-R-associated factors(TRAFs)의 신호전달경로에 관여하게 된다. 그러므로 백혈병 세포를 수지상세포로 유도, 분화시키는 경우, 수지상세포의 특성상 종래에 자신이 가지고 있던 백혈병과 관련된 항원을 대량 세포 표면에 발현시켜서 T세포에게 항원을 제시함으로서 대개 한 개의 수지상세포가 100~3,000개의 T세포를 활성화시킨다. 이들 각각의 T세포가 자가증식촉진(autocrine growth stimulation)형태로 분지계 팽창 (clonal expansion)이 유발되는 경우, 매우 치료 효과가 강력한 항 백혈병성 T 세포의 반응(antileukemic T-cell responses)을 유도할 수 있을 것이며 실제 만성 골수구성 백혈병(CML)과 급성 골수구성 백혈병(AML) 환자의 말초혈 백혈병성 세포로부터 GM-CSF, IL-4, TNF-α를 사용하여 유도된 수지상세포가 항 백혈병성 T세포의 증식(antileukemic T-cell proliferation)을 촉진하고 이들 T세포의 세포독성을 강화시킨다는 보고도 있다.Dendritic cells are the most potent antigen-presenting cells and are the only cells that can induce a primary cellular immune response. They originate in the bone marrow and travel to all organs through the bloodstream in immature forms. Dendritic cells collect surrounding antigens from each tissue and go to lymphoid organs to present antigens to T lymphocytes. Immature dendritic cells are unable to activate T cells because they do not express CDs necessary for the transmission of accessory signals such as cluster determinant (CD) 40, CD54, and CD86. These undifferentiated dendritic cells are capable of phagocytosis, macropinocytosis, and macrophage mannose receptors, similar to the C-type lectin receptor, DEC-205 (CD 2 0). 5 ) And receptors that mediate adsorptive endocytosis such as Fcγ and Fcε receptors are well expressed in cell membranes. Therefore, these differentiated dendritic cells can respond to nanomolar or picomolarity antigens, whereas other antigen-presenting cells respond to micromolar antigens. In the case of macrophages, the phagocytic antigen is degraded from the lysosome to the amino acid state and expresses a small amount of the major histocompatibility complexv-peptide conjugate on the cell surface. At a minimum, a sufficient amount of MHC-peptide conjugates can be expressed on the cell surface to remain stable for several days. As dendritic cells mature, an immune response is induced, which is regulated by several factors. In particular, bacteria and inflammatory products, polysaccharides that are cell wall components of bacteria, IL-1, granulocyte / macrophage-colony stimulating factor (TNF), and tumor necrosis factor (TNF)-promote all the dendritic cell maturation. Mature dendritic cells express high concentrations of NF-κB (nuclear transcription factor) -κB) transcription factors (Rel A / p65, Rel B, Rel C, p50, p52), which are responsible for various immune responses and inflammation It regulates the expression of the genes of the proteins involved in the reaction. Signaling through TNF-receptor families such as TNF-R (CD120a / b), CD40 and TRANCE / RANK (TNF-related activation induced-cytokine / receptor activator of NF-kB) activates NF-κB By stimulating dendritic cells to induce an immune response, pathogens or antigens are involved in the signaling pathways of TNF-R or TNF-R-associated factors (TRAFs). Therefore, when inducing and differentiating leukemia cells to dendritic cells, one dendritic cell is usually 100 to 3,000 by presenting antigens to T cells by expressing antigens related to their leukemia on the mass cell surface due to the characteristics of dendritic cells. Activates T cells in dogs. If each of these T cells is triggered by clonal expansion in the form of autocrine growth stimulation, it may induce anti-leukemic T-cell responses that are highly therapeutic. In fact, dendritic cells derived from GM-CSF, IL-4, and TNF-α from peripheral blood leukemia cells in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) may be anti-leukemic T cells. It has been reported to promote cell proliferation and enhance the cytotoxicity of these T cells.

현재 대부분의 연구는 수지상세포가 T세포를 활성화시키는데 초점이 맞추어져 있으나 수지상세포는 외부 항원에 대해 면역반응을 유발할 뿐만 아니라 T세포가 자가 항원을 관용하는 것과 유사하게 T세포의 면역관용(immune tolerance)을 초래하기도 한다. 많은 종양환자에게서 종양 항원에 특이적인 T세포 반응이 좀처럼 유발되지 않는데 이것은 아마도 종양세포에 대해서 수지상세포가 반응하지 못하기 때문일 것이다. 대장암이나 기저세포피부암에 침윤되어 있는 수지상세포는 CD80과 CD86을 표현하지 못해서 T세포에 대한 자극활성이 감소된다. 따라서, 수지상세포의 성숙과 수지상세포의 세포표면인자의 활성화는 강력한 항종양효과를 비롯한 면역증진에 절대적으로 필요한 요소이다.Most current research focuses on dendritic cells activating T cells, but dendritic cells not only elicit an immune response to foreign antigens, but also immune tolerance of T cells similar to T cells tolerating their own antigens. ) May also result. Many tumor patients rarely elicit T cell responses specific to tumor antigens, probably because dendritic cells do not respond to tumor cells. Dendritic cells infiltrated with colorectal cancer or basal cell skin cancer are unable to express CD80 and CD86, thereby reducing the stimulatory activity of T cells. Therefore, maturation of dendritic cells and activation of cell surface factors of dendritic cells are absolutely necessary factors for immune promotion, including potent anti-tumor effects.

현재 암환자의 치료를 위하여 가장 일반적으로 사용하고 있는 화학요법은 암의 완전한 퇴치와 전이방지와 같은 만족스러운 치료효과를 얻기가 어려울 뿐만 아니라 유효한 치료용량을 투여할 경우 심각한 부작용을 초래할 수 있다. 최근 화학요법을 보조하기 위하여 동물모델과 암환자에게 면역화학요법이 시도되고 있다. 숙주의 생물학적 반응을 조절할 수 있는 싸이토카인과 세균산물들과 같은 다양한 생물학적 반응조절제(biological response modifiers, BRM)들이 암환자의 면역화학요법에 이용되고 있다. 그러나 현재 암환자의 면역요법에 이용되고 있는 유전자재조합 싸이토카인(IL-2, IL-12 및 IFN(interferon)-γ)의 경우 독성이 심하고 생체내 반감기가 짧아 이용에 한계가 있으며 암환자에 대한 화학요법 및 방사선 요법시 조혈세포사멸로 인한 부작용을 극복하기 위하여 유전자재조합 집락자극인자(colony stimulating factor) 또한 과립구 및 단핵세포만 편파적으로 증식시키는 단점이 있다. 따라서 이러한 부작용을 극복하기 위하여 천연물의 종양에 대한 효과와 이에 따른 경제적인 효과 등으로 외국에서는 새로운 항종양 천연물의 개발과 민간요법에서 사용되는 민간약재가 긍정적이고 성공적인 결과를 얻고 있는 추세이다. 최근 국내에서도 항종양 또는 다양한 생물학적 반응조절제로 알려진 많은 천연산물들을 대상으로 이들에 대한 체계적인 검토가 활발히 수행되고 있다. 독성이 낮은 렌티난(lentinan), 쉬조필란(schizophyllan) 및 OK-432와 같은 다양한 다당체(polysaccharides)을 이용하여 새로운 항암제를 개발하고자 시도하고 있으며, 아울러 생체내에서 항암성 싸이토카인의 생성을 유도하여 항암 면역능을 증가시킬 수 있는 물질 및 에델포신(edelfosine, ET18-OCH3)과 같은 인지질(phospholipids)이 탁월한 항암효과가 있다고 보고된 이후 이와 같은 인지질(phospholipids) 유사체에 대한 연구도 활발히 진행되고 있다.The most commonly used chemotherapy for the treatment of cancer patients is not only difficult to obtain satisfactory therapeutic effects such as complete eradication and metastasis prevention of cancer, but also serious side effects when the effective therapeutic dose is administered. Recently, in order to assist chemotherapy, immunochemotherapy has been attempted in animal models and cancer patients. Various biological response modifiers (BRMs), such as cytokines and bacterial products that can control the biological response of the host, have been used in immunochemotherapy of cancer patients. However, the genetically modified cytokines (IL-2, IL-12, and IFN (interferon) -γ), which are currently used for immunotherapy of cancer patients, are severely toxic and have a short half-life in vivo. In order to overcome the side effects due to hematopoietic cell death during the therapy and radiation therapy, the colony stimulating factor (colony stimulating factor) also has the disadvantage of proliferating only granulocytes and mononuclear cells. Therefore, in order to overcome these side effects, the development of new antitumor natural products and private medicines used in folk remedies are getting positive and successful results in foreign countries due to the effects on natural tumors and their economic effects. Recently, a systematic review of many natural products known as antitumor or various biological response modifiers has been actively conducted in Korea. It is attempting to develop new anticancer drugs using various polysaccharides such as lentinan, schizophyllan and low toxicity, and OK-432, and also induce anticancer cytokine production in vivo. Phospholipids such as edelfosine (ET18-OCH 3 ) and substances that can increase immunity have been reported to have excellent anti-cancer effects, and studies of such phospholipids analogs have been actively conducted.

본 발명에서는 상황버섯(Phellinus linteus)으로부터 면역활성을 증강시키는 단백다당류를 제공하는 것을 목적으로 한다. 즉, 상황버섯 유래 단백다당류는 수지상세포의 성숙(maturation)과 수지상세포의 표면인자의 발현, 수지상세포의 싸이토카인(cytokine) IL-12의 분비, 수지상세포의 T세포의 증식능과 T세포로부터 IL-2의 생산 등을 증가시킴을 확인하여 면역활성을 증강 효능을 확인하였다.In the present invention, an object of the present invention is to provide a protein polysaccharide that enhances immune activity from Phellinus linteus . In other words, the situation-derived protein polysaccharides include denaturation of dendritic cells, expression of surface factors of dendritic cells, secretion of cytokine IL-12 of dendritic cells, proliferative capacity of T cells of dendritic cells and IL- from T cells. Confirmed to increase the production of 2 and confirmed the effect of enhancing the immune activity.

본 발명의 다른 목적은 상황버섯(Phellinus linteus)으로부터의 단백다당류를 유효성분으로 하는 면역증강제를 제공하는 것이다.Another object of the present invention is to provide an immunopotentiator using the protein polysaccharide from Phellinus linteus as an active ingredient.

따라서, 상황버섯으로부터 수지상세포의 면역활성을 증강시키는 물질을 분리, 정제하고 순수 분리된 수지상세포의 면역활성을 증강시키는 물질의 적외선 분광광도 스펙트럼, 1H 핵자기 공명 스펙트럼, 13C 핵자기 공명 스펙트럼, 다당류, 아미노산 성분분석 등을 참고로 고찰한 결과, 산성기를 띠는 아미노산이 다량 포함된 단백다당류로 동정하였다. 따라서 상황버섯(Phellinus linteus)으로부터 수지상세포의 면역활성을 증강시키는 단백다당류를 제조하고 이를 유효성분으로 함유하고 있는 면역증강제를 개발하고자 한다.Therefore, the infrared spectrophotometric spectrum, 1 H nuclear magnetic resonance spectrum, 13 C nuclear magnetic resonance spectrum of the substance which isolates and purifies the substance which enhances the immune activity of dendritic cells from the situation mushroom and enhances the immune activity of purely isolated dendritic cells. As a result of the consideration of polysaccharide, amino acid component analysis, etc., it was identified as a protein polysaccharide containing a large amount of amino acid having an acidic group. Therefore, to prepare a protein polysaccharide to enhance the immune activity of dendritic cells from Phellinus linteus and to develop an immune enhancer containing it as an active ingredient.

본 발명은 상황버섯을 열수추출하여 에탄올로 처리한 후 원심분리하여 얻은 침전물을 용해시켜 원심분리한 후 상등액만을 투석시켜 동결건조시켜 수득된 정제물을 DEAE-셀룰로오스 크로마토그래피 및 겔 여과 크로마토그래피로 분리정제하여 추출물로, 만노스 41.6몰%, 갈락토오즈 23.4몰%, 글루코스 23.8몰%, 아라비노스 5.8몰% 및 자이로스 4.2몰%를 포함하는 것을 특징으로 하는 수지상 세포의 면역활성을 증가시키는 단백다당류에 관한 것이다.The present invention is to remove the precipitate obtained by treating the mushrooms with hot water, treated with ethanol and then centrifuged to dissolve the precipitate obtained by centrifugation, and then dialyzing only the supernatant and freeze-drying to separate the purified product by DEAE-cellulose chromatography and gel filtration chromatography. Protein polysaccharide to increase the immune activity of dendritic cells, characterized in that the extract comprises 41.6 mol% of mannose, 23.4 mol% of galactose, 23.8 mol% of glucose, 5.8 mol% of arabinose and 4.2 mol% of gyros. It is about.

또한, 본 발명은 상기 단백다당류를 유효성분으로 하는 면역증강제에 관한 것이다.The present invention also relates to an immunopotentiator using the protein polysaccharide as an active ingredient.

이와 같은 본 발명을 다음의 실시예을 통하여 더욱 상세히 설명한다. 그러나, 본 발명의 범위가 실시예에 한정되는 것은 아니다.This invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the Examples.

<실시예 1: 상황버섯으로부터 단백다당류의 분리 및 정제>Example 1: Isolation and Purification of Protein Polysaccharides from Mushrooms

상황버섯 자실체 300g을 끓는 물에서 30분간 6회 추출하였다. 추출된 액을 3배 부피의 95% 에탄올에 4일간 4℃에서 방치한 후, 원심분리하여 침전물을 회수하였다. 회수된 침전물을 증류수에 녹여 10,000Xg에서 20분간 원심분리한 후, 상등액을 획득하여 4일간 투석을 실시한 후 동결건조하였다. 동결건조된 정제물을 3차 증류수에 녹여 DEAE-셀룰로오스 음이온 교환수지 컬럼(3x45㎝) 크로마토그래피를 실시하였으며 2M NaCl을 농도구배로 하여 0.3㎖/min의 속도로 전개한 후 각 분획을 디나이트로살리실산(dinitrosalicylic acid, DNS)법으로 분석하여 0.3M-0.5M NaCl 용출분획에서 당이 함유된 것을 확인하였다(도 1). 당분획을 모아서 농축한 뒤, 세파로즈 CL-4B 겔 여과 컬럼(1.5ⅹ105㎝) 크로마토그래피(Sigma 사)를 실시하였으며, 이 때 증류수를 0.5㎖/min의 유속으로 전개하여 분자량 약 150,000에 해당하는 용출부피로부터 당 함유 분획을 분리, 정제하였다. 이 때 분자량 측정을 위한 표준곡선을 작성하기 위하여 블루 덱스트란(blue dextran, 분자량 2,000,000), 덱스트란 D5251(분자량 473,000), 텍스트란 D1062(분자량 41,272) (Sigma 사)를 이용하였다(도 2).300 g of the fruiting mushroom fruit body was extracted 6 times in boiling water for 30 minutes. The extracted solution was allowed to stand in three volumes of 95% ethanol at 4 ° C. for 4 days and then centrifuged to recover the precipitate. The recovered precipitate was dissolved in distilled water, centrifuged at 10,000Xg for 20 minutes, and then the supernatant was obtained by dialysis for 4 days and lyophilized. The lyophilized purified product was dissolved in tertiary distilled water, and subjected to DEAE-cellulose anion exchange resin column (3x45 cm) chromatography. 2 M NaCl was used at a concentration gradient of 0.3 mL / min. Analysis by salicylic acid (dinitrosalicylic acid, DNS) method confirmed that the sugar contained in 0.3M-0.5M NaCl elution fraction (Fig. 1). The sugar fractions were collected and concentrated, followed by Sepharose CL-4B gel filtration column (1.5 × 10 5 cm) chromatography (Sigma). At this time, distilled water was developed at a flow rate of 0.5 ml / min, corresponding to a molecular weight of about 150,000. The sugar-containing fractions were separated and purified from the eluted volume. In this case, in order to prepare a standard curve for molecular weight measurement, blue dextran (blue dextran, molecular weight 2,000,000), dextran D5251 (molecular weight 473,000), textran D1062 (molecular weight 41,272) (Sigma) was used (Fig. 2).

<실시예 2: 상황버섯으로부터 분리한 단백다당류의 분석>Example 2 Analysis of Protein Polysaccharides Isolated from Strain Mushrooms

실시예1에서 상황버섯으로부터 분리한 단백다당류를 DNS법과 브래드포드 (bradford)법을 이용하여 각각 당과 단백질의 함량을 조사하였다. 그 결과 당이 약 72.5%며, 단백질이 22.3%의 단백다당류임을 확인할 수 있었다(표 1). 또한 분리된 단백다당류를 2M 트리플로로아세트산(TFA)를 이용해서 110℃에서 1시간동안 산 가수분해시킨 후 이들을 HPLC(Waters 사, Sugar-Pak column, 7.8X300㎜)를 실시하였으며, 30% 아세토나이트릴을 전개용매로 하여 1㎖/min의 유속으로 전개하여 ELSD 검색기(evaporative light scattering detector, Waters)를 이용하여 분석하였다. 분석결과, 상황버섯 단백다당류는 만노스(mannose), 갈락토오스(galactose), 글루코스(glucose)를 다량 함유하고 있는 것을 확인하였다(표 2). 상황버섯으로부터 분리한 다당체를 6N HCl에서 1시간동안 산 가수분해시킨 후 이들을 Biochrom 20 Amino acid analyzer(BD 사)를 이용하여 구성 아미노산을 분석하였다. 분석결과, 많은 양의 아스파르트산(Aspartic acid), 트레오닌(Threonine), 세린(Serine), 글루탐산(Glutamic acid), 글리신(Glycine) 및 알라닌(Alanine)을 확인할 수 있었다(표 3).The protein polysaccharide isolated from the situation mushroom in Example 1 was investigated by using the DNS method and the Bradford (bradford) method to examine the content of sugar and protein, respectively. As a result, the sugar was about 72.5%, and the protein was confirmed to be 22.3% protein polysaccharide (Table 1). The isolated protein polysaccharide was acid hydrolyzed at 110 ° C. for 1 hour using 2M trifluoroacetic acid (TFA), and they were then subjected to HPLC (Waters, Sugar-Pak column, 7.8 × 300 mm), and 30% aceto. Nitrile was developed as a developing solvent at a flow rate of 1 ml / min and analyzed using an ELSD detector (evaporative light scattering detector, Waters). As a result, it was confirmed that the situation mushroom protein polysaccharide contains a large amount of mannose, galactose, and glucose (Table 2). Polysaccharides isolated from mushrooms were acid-hydrolyzed in 6N HCl for 1 hour and then analyzed for constituent amino acids using a Biochrom 20 Amino acid analyzer (BD). As a result, aspartic acid, threonine, serine, glutamic acid, glycine, and alanine were identified in large amounts (Table 3).

단백다당류의 구조를 확인하기 위하여 표준물질로 느타리버섯(Pleurotus ostreatus)의 베타글루칸(Sigma 사)을 이용하여 이들의 적외선 분광광도 스펙트럼(FT-IR)의 흡수파장을 상호 비교한 결과(도 3a, 3b), 베타글루칸(β-glucan)과 동일하게 전형적인 당고리를 확인할 수 있었으며, 많은 휨구조를 확인할 수 있었다. 또한 이들의 당 결합양상을 보기 위하여, 1H 핵자기 공명 스펙트럼, 13C 핵자기 공명 스펙트럼을 측정한 결과(도 4a, 4b), 상황버섯으로부터 분리한 단백다당류는 당의 결합이 α-와 β- 형 두가지로 공존함을 확인할 수 있었으며, 많은 부분이 메틸화가 확인되었다.In order to confirm the structure of protein polysaccharides, the absorption wavelengths of their infrared spectrophotometric spectra (FT-IR) were compared with each other using beta glucan (Sigma) of Pleurotus ostreatus as a standard (FIG. 3a, 3b), as in beta glucan (β-glucan) was able to identify the typical sugar ring, and many flexural structures were confirmed. In addition, in order to see their sugar binding patterns, 1 H nuclear magnetic resonance spectra, 13 C nuclear magnetic resonance spectra were measured (Figs. 4A, 4B), the protein polysaccharides isolated from the situation mushrooms sugar binding α- and β- Two types of coexistence could be confirmed, and much of the methylation was confirmed.

당(%) Party(%) 단백질(%) protein(%) 단백다당류 Protein Polysaccharides 75.2 75.2 22.3 22.3

Contents Contents Mannose Mannose Galactose Galactose Glucose Glucose Arabinose Arabinose Xylose Xylose 함량(몰%) Content (mol%) 41.6 41.6 23.4 23.4 23.8 23.8 5.8 5.8 4.2 4.2

Amino acidAmino acid 함량(몰%)Content (mol%) Aspartic acidAspartic acid 9.09.0 ThreonineThroneine 6.96.9 SerineSerine 11.811.8 Glutamic acidGlutamic acid 11.111.1 GlycineGlycine 12.012.0 AlanineAlanine 12.712.7 CysteineCysteine 0.70.7 ValineValine 5.15.1 MethionineMethionine 1.01.0 IsoleucineIsoleucine 2.92.9 LeucineLeucine 5.65.6 TyrosineTyrosine 1.61.6 PhenylalaninePhenylalanine 8.48.4 HistidineHistidine 1.21.2 LysineLysine 4.24.2 ArginineArginine 2.82.8 ProlineProline 3.03.0

<실시예 3: 수지상세포의 세포 표면인자 발현에 미치는 영향>Example 3 Effect on Cell Surface Factor Expression of Dendritic Cells

C57BL/6 마우스로부터 유도된 수지상세포를 분리하여 1x106cell/㎖ 농도로 분주한 후에, 각각 10ng/㎖ 농도로 GM-CSF와 IL-4를 첨가한 후 배양하였다. 배양 1일 후와 3일 후에 수지상세포의 순도를 높이기 위해서 부착되지 않은 세포는 세척, 제거하였다. 골수세포는 7일간 배양하며, 마지막 24시간에 실시예1의 상황버섯 추출 단백다당류를 처리하여 수지상세포의 특이적인 표면인자인 FITC(Fluorescein Isothiocyanate)-CD11c와 성숙 후 강하게 발현되는 표면인자인 PE(R-Phycoerythrin)-CD80, PE-CD86, PE-MHC I, PE-MHC II를 염색하여 유세포 분석기를 이용하여 분석하였다.Dendritic cells derived from C57BL / 6 mice were isolated and dispensed at a concentration of 1 × 10 6 cells / ml, followed by incubation with GM-CSF and IL-4 at 10 ng / ml. After 1 day and 3 days of culture, unattached cells were washed and removed to increase the purity of dendritic cells. Bone marrow cells were cultured for 7 days and treated with the situation mushroom extract protein polysaccharide of Example 1 at the last 24 hours, FITC (Fluorescein Isothiocyanate) -CD11c, which is a specific surface factor of dendritic cells, and PE, a surface factor strongly expressed after maturation. R-Phycoerythrin) -CD80, PE-CD86, PE-MHC I, PE-MHC II were stained and analyzed using a flow cytometer.

C57BL/6 마우스로부터 유도된 수지상세포의 성숙에 미치는 영향을 조사하기 위하여 24시간동안 상황버섯 단백다당류와 대조군으로 LPS(lipopolysaccharide)를 처리한 후에 수지상세포의 표면인자 변화를 조사하였다. 도 5a에서 알 수 있듯이 상황버섯 단백다당류를 처리한 결과, 수지상세포로부터 다양한 세포표면인자가 아주 강하게 발현됨을 알 수가 있었다. 상기 결과는 상황버섯 다당류가 수지상세포의 성숙을 강하게 항진시킴을 나타내는 것이다. 또한, 도 5b에서 알 수 있듯이 LPS 억제제인 폴리믹신 B(polymyxin B, PB)를 처리한 후 추출물을 처리하여도 세포표면인자가 강하게 발현되었다. 반면 LPS와 동시에 PB를 처리할 경우 이러한 효과가 강하게 억제됨을 확인하였다. 이는 천연물 추출과정에서 발생할 수 있는 LPS 오염에 의한 것이 아니라, 순수한 추출물의 효과임을 입증하는 결과이다. 이상의 결과를 미루어 볼때, 본 발명의 단백다당류는 선천성 면역과 획득면역을 연결시켜 주는 가장 중요한 세포인 수지상세포를 LPS 오염없이 강하게 성숙시켜서, 표면인자의 발현을 증가시키는 것으로 확인되었다.To investigate the effect on the maturation of dendritic cells derived from C57BL / 6 mice, the surface factor changes of dendritic cells were investigated after treatment of lipopolysaccharide (LPS) with S. mushroom protein polysaccharide and control for 24 hours. As can be seen in Figure 5a, as a result of processing the situation mushroom protein polysaccharides, it can be seen that a variety of cell surface factors are very strongly expressed from dendritic cells. The results indicate that the situation mushroom polysaccharides strongly promote the maturation of dendritic cells. In addition, as shown in Figure 5b after treatment with polymyxin B (polymyxin B, PB), an LPS inhibitor, the cell surface factor was strongly expressed even after the extract. On the other hand, it was confirmed that this effect is strongly suppressed when PB is treated simultaneously with LPS. This is not a result of LPS contamination that may occur during the extraction of natural products, but a result that proves the effect of pure extract. In view of the above results, it was confirmed that the protein polysaccharide of the present invention matures dendritic cells, the most important cells that connect innate immunity and acquired immunity, without LPS contamination, thereby increasing the expression of surface factors.

<실시예 4: 수지상세포의 싸이토카인 발현에 미치는 영향>Example 4 Effect on Cytokine Expression in Dendritic Cells

수지상세포로부터 생산되는 IL-12와 IL-10의 양을 측정하기 위하여 Cytofix/cytoperm kit(PharMingen)을 사용하여 염색한 후, 유세포분석기를 이용하여 분석하였다. 특히, IL-12는 수지상세포의 기능적인 성숙을 측정하는데, 중요한 자료가 되는 것으로 알려져 있다. 이러한 실험을 위해서 우선 C57BL/6 마우스로부터 유도된 수지상세포를 분리하여 1x106cell/ml의 농도로 분주한 후 각각 10ng/ml농도로 GM-CSF와 IL-4 를 첨가한 후 배양하였다. 배양 1일 후와 3일 후에 수지상세포의 순도를 높이기 위해서 부착되지 않은 세포는 세척, 제거하였다. 골수세포는 7일간 배양하며, 마지막 24시간에 상황버섯 단백다당류를 처리하여 수지상세포가 분비하는 싸이토카인(IL-12, IL-10)을 Cytofix/cytoperm kit을 이용하여 염색한 후 표면인자와 동일하게 분석하였다.In order to measure the amount of IL-12 and IL-10 produced from dendritic cells, the cells were stained using Cytofix / cytoperm kit (PharMingen), and analyzed using a flow cytometer. In particular, IL-12 is known to be an important data for measuring the functional maturation of dendritic cells. For these experiments, dendritic cells derived from C57BL / 6 mice were first isolated and dispensed at a concentration of 1 × 10 6 cells / ml, followed by incubation with GM-CSF and IL-4 at 10 ng / ml. After 1 day and 3 days of culture, unattached cells were washed and removed to increase the purity of dendritic cells. Bone marrow cells are incubated for 7 days, and the cytokine (IL-12, IL-10) secreted by dendritic cells is treated with Cytofix / Cytoperm kit in the last 24 hours. Analyzed.

도 6에서와 같이 상황버섯 다당류는 양성대조군(positive control)인 LPS와 상응할 정도로 강하게 IL-12 생산을 증가시켰으며, IL-10의 발현량에는 아무런 영향을 미치지 않았다. 이는 상황버섯 다당류가 수지상세포의 IL-12를 항진시켜서 이들 세포의 기능적인 성숙을 유도함을 간접적으로 설명할 수 있었다.As shown in FIG. 6, the situation mushroom polysaccharides increased IL-12 production to a level comparable to that of the positive control LPS, and had no effect on the expression level of IL-10. This could indirectly explain that the situation mushroom polysaccharides promote IL-12 of dendritic cells and induce functional maturation of these cells.

<실시예 5: 수지상세포의 T세포 증식능 조사>Example 5 Investigation of T Cell Proliferation of Dendritic Cells

상황버섯 다당류에 의하여 증가된 세포표면인자의 발현이 allogeneic T세포의 성숙에 어떠한 영향을 미치는 지를 알아보기 위하여, 수지상세포에 각각 대조군과 LPS를 처리한 군 그리고, 다당류를 처리한 군을 상호 비교하였다. C57BL/6 마우스의 골수세포로부터 유도된 수지상세포(1x104cells)를 50㎍/ml 미토마이신 (mitomycin)을 처리하여 성숙을 차단하고 표면인자의 발현만을 가능하게 한 후에 유전적으로 다른 BALB/c 마우스의 T세포와 동시에 배양하여 T세포 증식능을 3[H] incorporation을 이용하여 측정하였다. 동시에 이들 T세포가 생산하는 IL-2의 양도 ELISA(enzyme linked immunosolvent assay)를 이용하여 측정하였다.To investigate how the expression of cell surface factors increased by the situational polysaccharides on the maturation of allogeneic T cells, the control group, the LPS-treated group, and the polysaccharide-treated group were compared. . Dendritic cells (1 × 104 cells) derived from bone marrow cells of C57BL / 6 mice were treated with 50 μg / ml mitomycin to block maturation and allow expression of surface factors only, followed by T of genetically different BALB / c mice. T cell proliferation was measured using 3 [H] incorporation. At the same time, the amount of IL-2 produced by these T cells was also measured using an enzyme linked immunosolvent assay (ELISA).

도 7a, 7b에서와 같이 추출물을 처리한 후 성숙한 수지상세포는 강하게 T세포의 증식능을 유도함을 알 수 있었다(도 7a). 또한, T세포로부터 IL-2의 생산을 현저하게 증가시켰다(도 7b). 따라서, 이러한 다당류가 처리된 수지상세포는 T세포의 활성화를 강하게 유도하여, 항종양 효과를 항진시키는 것으로 알 수 있었다.After treatment with the extract as shown in Figures 7a, 7b mature dendritic cells were found to strongly induce the proliferation of T cells (Fig. 7a). In addition, the production of IL-2 from T cells was significantly increased (FIG. 7B). Therefore, it was found that dendritic cells treated with these polysaccharides strongly induce T cell activation and enhance antitumor effects.

이상에서 살펴본 바와 같이, 본 발명은 상황버섯(Phellinus linteus)으로부터 분리한 단백다당류가 수지상세포의 면역활성을 증강시키는 물질임을 확인하였다. 따라서, 상기 단백다당류를 유효성분으로 하는 면역증강제로의 제제화가 가능하며, 또한 종래의 면역증강제와는 다른 유형의 면역증강제를 제공할 수 있다.As described above, the present invention was confirmed that the protein polysaccharide isolated from Phellinus linteus is a substance that enhances the immune activity of dendritic cells. Therefore, it is possible to formulate an immunopotentiator using the protein polysaccharide as an active ingredient, and it is also possible to provide a type of immunopotentiator different from conventional immunopotentiators.

도 1은 상황버섯 추출물의 DEAE-셀룰로오스(diethylaminoethyl-cellulose) 음이온 교환수지 크로마토그래피 결과를 나타낸 것이다. ●: DNS(2-hydroxy-3,5-dinitrosalicylic acid)법에 의한 분획의 당 농도, ▲: NaCl 농도구배.Figure 1 shows the DEAE-cellulose (diethylaminoethyl-cellulose) anion exchange resin chromatography results of the situation mushroom extract. ●: sugar concentration of fraction by DNS (2-hydroxy-3,5-dinitrosalicylic acid) method, ▲: NaCl concentration gradient.

도 2는 본 발명의 상황버섯 당분획물의 세파로즈 CL-4B 크로마토그래피를 나타낸 것이다. Figure 2 shows the Sepharose CL-4B chromatography of the situation mushroom sugar fraction of the present invention.

도 3a는 느타리버섯 유래 베타글루칸의 적외선 분광광도 스펙트럼(FT-IR)을 나타낸 것이다.Figure 3a shows the infrared spectrophotometric spectrum (FT-IR) of beta glucan derived from Pleurotus eryngii.

도 3b는 본 발명의 상황버섯 유래 단백다당류 적외선 분광광도 스펙트럼(FT-IR)을 나타낸 것이다.Figure 3b shows a situation mushroom-derived protein polysaccharide infrared spectrophotometric spectrum (FT-IR) of the present invention.

도 4a는 본 발명의 상황버섯 유래 단백다당류의 1H 핵자기 공명 스펙트럼을 나타낸 것이다.Figure 4a shows the 1 H nuclear magnetic resonance spectrum of the situation mushroom-derived protein polysaccharide of the present invention.

도 4b는 본 발명의 상황버섯 유래 단백다당류의 13C 핵자기 공명 스펙트럼을 나타낸 것이다.Figure 4b shows a 13 C nuclear magnetic resonance spectra of the situation mushroom-derived protein polysaccharide of the present invention.

도 5a는 수지상제포의 성숙의 영향을 알아보기 위하여 본 발명의 상황버섯 단백다당류(Phellinus linteus, PL)와 대조군인 LPS(lipopolysaccharide)를 처리하여 수지상 세포의 표면인자 발현 변화를 관찰한 그래프이다.5a is a graph illustrating the change of surface factor expression of dendritic cells by treatment of situation mushroom protein polysaccharide ( Phellinus linteus , PL) of the present invention and LPS (lipopolysaccharide) as a control group to determine the effect of maturation of dendritic cells.

도5b는 폴리믹신 B(polymyxin B, PB)를 처리한 후 본 발명의 상황버섯 단백다당류(PL)와 LPS를 처리하여 수지상 세포의 표면인자 발현 변화를 관찰한 그래프이다.Figure 5b is a graph of the surface factor expression changes of dendritic cells treated with polymyxin B (polymyxin B, PB) after treatment of the situation mushroom protein polysaccharide (PL) and LPS of the present invention.

도 6은 수지상세포의 사이토카인 생산에 대한 본 발명의 상황버섯 단백다당류의 영향을 나타낸 것이다.Figure 6 shows the effect of the situation mushroom protein polysaccharide of the present invention on cytokine production of dendritic cells.

도 7a는 수지상세포의 T세포 증식능에 대한 본 발명의 상황버섯 단백다당류의 영향을 나타낸 것이다.Figure 7a shows the effect of the situation mushroom protein polysaccharide of the present invention on the T cell proliferation capacity of dendritic cells.

도 7b는 T 세포로부터 IL-2의 생산 증가에 대한 본 발명의 상황버섯 단백다당류의 영향을 나타낸 것이다.Figure 7b shows the effect of the situation mushroom protein polysaccharide of the present invention on increased production of IL-2 from T cells.

Claims (2)

상황버섯을 열수추출하고 에탄올을 처리한 후 원심분리하여 얻은 침전물을 용해시켜 원심분리시키고 상등액만을 투석 및 동결건조시킨 후 DEAE-셀룰로오스 크로마토그래피 및 겔 여과 크로마토그래피로 분리정제하여 얻은 것으로, 당 함량이 75.2%, 단백질 함량이 22.3%이며, 구성당 성분이 만노스 41.6몰%, 갈락토오스 23.4몰%, 글루코스 23.8몰%, 아라비노스 5.8몰% 및 자이로스 4.2몰%인 것을 특징으로 하는 수지상세포의 면역활성을 증가시키는 상황버섯 유래 단백다당류.The resultant mushrooms were extracted by hot water extraction, ethanol treatment, centrifugation to dissolve precipitates, centrifugation, dialysis and lyophilization of supernatant, and purification by DEAE-cellulose chromatography and gel filtration chromatography. Immune activity of dendritic cells, characterized in that 75.2%, protein content 22.3%, constituents of constituent sugar is 41.6 mol% mannose, 23.4 mol% galactose, 23.8 mol% glucose, 5.8 mol% arabinose and 4.2 mol% gyros. Situation of mushroom-derived protein polysaccharide. 상기 제1항의 단백다당류를 유효성분으로 하는 면역증강제.An immunopotentiator using the protein polysaccharide of claim 1 as an active ingredient.
KR1020040011877A 2004-02-23 2004-02-23 A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof KR20050083369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040011877A KR20050083369A (en) 2004-02-23 2004-02-23 A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040011877A KR20050083369A (en) 2004-02-23 2004-02-23 A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof

Publications (1)

Publication Number Publication Date
KR20050083369A true KR20050083369A (en) 2005-08-26

Family

ID=37269620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040011877A KR20050083369A (en) 2004-02-23 2004-02-23 A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof

Country Status (1)

Country Link
KR (1) KR20050083369A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297821B (en) * 2007-09-18 2011-01-26 江苏大学 Phellinus linteus mycelia active glucoprotein and use thereof and preparation
CN113817078A (en) * 2021-10-20 2021-12-21 吉林农业大学 Poplar yellow fungus polysaccharide with anti-colorectal cancer effect based on immune regulation and control and application thereof
CN115746157A (en) * 2022-11-24 2023-03-07 吉林农业大学 Delicious fan mushroom polysaccharide and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297821B (en) * 2007-09-18 2011-01-26 江苏大学 Phellinus linteus mycelia active glucoprotein and use thereof and preparation
CN113817078A (en) * 2021-10-20 2021-12-21 吉林农业大学 Poplar yellow fungus polysaccharide with anti-colorectal cancer effect based on immune regulation and control and application thereof
CN115746157A (en) * 2022-11-24 2023-03-07 吉林农业大学 Delicious fan mushroom polysaccharide and preparation method and application thereof
CN115746157B (en) * 2022-11-24 2023-08-08 吉林农业大学 Delicious russula polysaccharide, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Chen et al. Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells
Chan et al. Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley
Borchers et al. The immunobiology of mushrooms
Zhang et al. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum
Han et al. Isolation, structure characterization, and immunomodulating activity of a hyperbranched polysaccharide from the fruiting bodies of Ganoderma sinense
Kimura et al. Antitumor and antimetastatic activity of a novel water-soluble low molecular weight β-1, 3-D-glucan (branch β-1, 6) isolated from Aureobasidium pullulans 1A1 strain black yeast
Qin et al. Selenizing Hericium erinaceus polysaccharides induces dendritic cells maturation through MAPK and NF-κB signaling pathways
JP2004505925A (en) Chlorella preparations exhibiting immunomodulatory properties
Wu et al. Effect of various extracts and a polysaccharide from the edible mycelia of Cordyceps sinensis on cellular and humoral immune response against ovalbumin in mice
Chen et al. In vitro antitumor and immunomodulatory effects of the protein PCP-3A from mushroom Pleurotus citrinopileatus
Han et al. Antimetastatic and immunomodulating effect of water extracts from various mushrooms
Kakutani et al. The effect of orally administered glycogen on anti-tumor activity and natural killer cell activity in mice
Kralovec et al. An aqueous Chlorella extract inhibits IL-5 production by mast cells in vitro and reduces ovalbumin-induced eosinophil infiltration in the airway in mice in vivo
KR102294288B1 (en) Polysaccharide fraction isolated from Nelumbo nucifera leaf with immune-enhancing activity and method for producing the same
KR20050083369A (en) A proteoglycan, which is increased in immuno-activity of dendritic cells, from phellinus linteus and immunostimulator containing thereof
EP2087899B1 (en) Grifola frondosa-derived substance having anti-influenza virus activity and method for producing the same
Masuda et al. Macrophage J774. 1 cell is activated by MZ-Fraction (Klasma-MZ) polysaccharide in Grifola frondosa
Wu et al. Oral administration of MBG to modulate immune responses and suppress OVA-sensitized allergy in a murine model
Maeda et al. Lentinan and other antitumoral polysaccharides
González-Quero et al. Bioactive compounds in some principal mushrooms: An association to adverse effects
KR100729213B1 (en) Exo-biopolymer isolated from submerged mycelial culture of Grifola frondosa increasing immune activity
KR101905009B1 (en) Polysaccharide fraction isolated from kale with immune-enhancing activity and method for producing the same
Shim et al. Antitumor Effect of Soluble ${\beta} $-1, 3-Glucan from Agrobacterium sp. R259 KCTC 1019
KR101403591B1 (en) Oligosaccharides obtained from polysaccharides-derived from Formitella fracinea and method for preparing the same
JP2000159686A (en) Preparation for lak activity potentiation arising from extract from mycelia of lntinus edodes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application