KR20050077141A - Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method - Google Patents

Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method Download PDF

Info

Publication number
KR20050077141A
KR20050077141A KR1020040005050A KR20040005050A KR20050077141A KR 20050077141 A KR20050077141 A KR 20050077141A KR 1020040005050 A KR1020040005050 A KR 1020040005050A KR 20040005050 A KR20040005050 A KR 20040005050A KR 20050077141 A KR20050077141 A KR 20050077141A
Authority
KR
South Korea
Prior art keywords
membrane
reverse osmosis
tourmaline
osmosis composite
composite membrane
Prior art date
Application number
KR1020040005050A
Other languages
Korean (ko)
Other versions
KR100527898B1 (en
Inventor
김현주
정동호
송경헌
홍영기
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR10-2004-0005050A priority Critical patent/KR100527898B1/en
Publication of KR20050077141A publication Critical patent/KR20050077141A/en
Application granted granted Critical
Publication of KR100527898B1 publication Critical patent/KR100527898B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Abstract

본 발명은 해양심층수의 담수화에 목적하는 분리기능에 맞는 역삼투막 소재를 개발하기 위하여 유기계 고분자 물질로 셀룰로오스계 고분자와 폴리아미드계 고분자를 바탕으로 역삼투막 형성시 무기계 고분자 물질인 나노 입자의 토르마린 물질을 함침하여 형성시킨 유기계 및 무기계 역삼투 복합막에 관한 것이다.The present invention is to impregnate the tourmaline material of the nanoparticles of inorganic particles when forming the reverse osmosis membrane based on the cellulose-based polymer and the polyamide-based polymer as an organic polymer material in order to develop a reverse osmosis membrane material for the desired separation function for the desalination of deep sea water It relates to an organic and inorganic reverse osmosis composite membrane formed.

또한, 역삼투 복합막 제조시 보강재로 나노 입자 실버를 함유시킨 정밀여과재인 멜트블로운 부직포 필터를 사용하고, 그 위에 지지체 막으로 폴리설폰계 다공성 막을 코팅한 후, 최종 분리막의 활성층에 셀룰로오스계 고분자와 폴리아미드계 고분자 물질에 나노 입자의 토르마린 물질을 적정량 함유하여 형성시킨 유기계 및무기계 역삼투 복합막을 구비시킴으로써 이루어진다.In addition, a meltblown nonwoven filter, which is a fine filtration material containing nanoparticle silver as a reinforcing material, is coated with a polysulfone porous membrane with a support membrane on the reverse osmosis composite membrane. And an organic and inorganic reverse osmosis composite membrane formed by containing an appropriate amount of nanoparticle tourmaline in a polyamide-based polymer material.

Description

나노 입자 토르마린을 포함한 역삼투 복합막 및 이의 제조방법{REVERSE OSMOSIS COMPOSITE MEMBRANE WITH NANO PARTICLE TOURMALINE AND MANUFACTURING METHOD}Reverse osmosis composite membrane including nanoparticle tourmaline and method for preparing the same {REVERSE OSMOSIS COMPOSITE MEMBRANE WITH NANO PARTICLE TOURMALINE AND MANUFACTURING METHOD}

본 발명은 해양심층수의 담수화를 위한 역삼투 복합막에 관한 것으로서, 특히 역삼투 방식에 의해 해양심층수로부터 고품질의 청정 미네랄수를 얻기 위한나노 입자 토르마린을 포함한 역삼투 복합막에 관한 것이다.The present invention relates to a reverse osmosis composite membrane for desalination of deep sea water, and more particularly, to a reverse osmosis composite membrane including nanoparticle tourmaline for obtaining high quality clean mineral water from deep sea water by reverse osmosis.

일반적으로 역삼투막으로 사용되고 있는 분리막은 셀룰로오스 아세테이트, 폴리아미드계, 폴리이미드계 및 셀룰로오스 아세테이트 복합막으로 대부분 유기계 고분자막으로 주종을 이루고 있다.In general, the separator used as a reverse osmosis membrane is a cellulose acetate, polyamide-based, polyimide-based, and cellulose acetate composite membranes, which are mainly composed of organic polymer membranes.

그러나 목적하는 분리기능에 맞는 역삼투막 개발은 아직도 미흡한 상태이고 특히 해양심층수의 담수화를 통해 고품질의 청정 미네랄수를 선택적으로 얻는데 적합한 역삼투막 개발은 아직도 완결되지 않은 연구과제로 남아있는 실정이다.However, the development of reverse osmosis membranes for the desired separation function is still insufficient, and the development of reverse osmosis membranes suitable for selectively obtaining high quality clean mineral water through desalination of deep sea water is still an incomplete research task.

일반적으로 잘 알려진 상업용 역삼투막으로는 셀룰로오스 아세테이트막을 열처리하여 비대칭형의 구조를 갖는 막이 제조되었고, 이 막의 비대칭성은 0.1~0.2㎛정도의 두께로 얇은 표면층이 막의 한쪽 표면에 존재하기 때문이며, 그 밖의 다른 부분은 다공성의 스폰지 구조를 갖고 있었다. In general, a well-known commercial reverse osmosis membrane is prepared by heat-treating a cellulose acetate membrane, and a membrane having an asymmetrical structure is produced. Had a porous sponge structure.

막을 통한 물질전달에 대한 주요 저항은 막의 두께와 비대칭형막의 활성층인 유효두께와 관련이 있는데, 보통 비대칭형막의 유효두께는 0.1~0.2㎛ 정도이고, 균질막의 두께는 100~200㎛ 정도이다.The main resistance to material transfer through the membrane is related to the thickness of the membrane and the effective thickness of the active layer of the asymmetric membrane. The effective thickness of the asymmetric membrane is usually about 0.1 to 0.2 µm and the thickness of the homogeneous membrane is about 100 to 200 µm.

따라서 비대칭형막의 경우 매우 높은 투과량을 갖게 되고, 또한 열처리에 의한 유효막 세공크기의 감소로 높은 염배제 효과도 얻을 수 있다.Therefore, the asymmetric membrane has a very high permeation amount and a high salt rejection effect can also be obtained by reducing the effective membrane pore size by heat treatment.

이와 같이 역삼투막 기술은 최근 많은 성장을 가져왔고, 현재 많은 형태의 막이 사용 가능하고 다양한 응용분야로 증가하고 있다. As such, reverse osmosis membrane technology has brought a lot of growth in recent years, and many types of membranes are available and are increasing in various applications.

이상적인 역삼투막은 화학적인 저항성을 가지고 미생물의 공격에 저항을 하며, 분리성능과 역학적성질은 장시간의 조작 후에도 변하지 않아야 하며, 대부분 상용화된 역삼투막은 한가지 고분자로 이루어진 비대칭형이거나 얇은 필름형 복합구조이다.The ideal reverse osmosis membrane has chemical resistance and resists microbial attack. Separation performance and mechanical properties should not change even after a long time operation. Most commercially available reverse osmosis membranes are asymmetric or thin film composite structure composed of one polymer.

본 발명은 이러한 문제점을 개선하기 위하여 안출된 것으로서, 종래의 유기계 고분자막으로 주종을 이루고 있는 단순한 역삼투막 방식을 변화시킨 유기계 및 무기계 복합 역삼투막 방식으로 유기계 및 무기계 고분자 물질의 상호 물리·화학적 작용에 의한 해양심층수의 고품질의 청정 미네랄수를 얻는데 적합한 복합 역삼투막이다.The present invention has been made to solve the above problems, and the deep ocean water by the organic and inorganic polymer reverse osmosis membrane method by the organic and inorganic composite reverse osmosis membrane method that changed the simple reverse osmosis membrane method mainly composed of conventional organic polymer membrane It is a composite reverse osmosis membrane suitable for obtaining high quality clean mineral water.

이러한 복합 역삼투막은 유기계 고분자 물질로 셀룰로오스계 고분자와 폴리아미드계 고분자를 바탕으로 역삼투막 형성시 무기계 고분자 물질인 나노 입자의 토르마린 물질을 함침하여 형성시킨 유기계 및 무기계 역삼투 복합막이다. The composite reverse osmosis membrane is an organic and inorganic reverse osmosis composite membrane formed by impregnating a tourmaline material of nanoparticles, which is an inorganic polymer, based on a cellulose polymer and a polyamide polymer as an organic polymer material.

더 나아가, 역삼투 복합막 제조시 보강재로 나노 입자 실버를 함유시킨 정밀여과재인 멜트블로운 부직포 필터를 사용하고, 그 위에 지지체 막으로 폴리설폰계 다공성 막을 코팅한 후, 최종 분리막의 활성층에 셀룰로오스계 고분자와 폴리아미드계 고분자 물질에 나노 입자의 토르마린 물질을 적정량 함유하여 형성시킨 유기계 및 무기계 역삼투 복합막을 제조하여 구비시킨 것이 핵심기술이다.Furthermore, a meltblown nonwoven filter, which is a fine filtration material containing nanoparticle silver as a reinforcing material in the preparation of reverse osmosis composite membranes, is coated with a polysulfone porous membrane with a support membrane thereon, and then a cellulose based The core technology is to prepare and equip organic and inorganic reverse osmosis composite membranes formed by containing an appropriate amount of nanoparticle tourmaline in a polymer and a polyamide polymer.

해양심층수의 담수화기술에서 증발법이나 냉동법과 같은 상변화법의 경우 염배제율이 이론적으로 100%이므로 심층수 담수화에서 목표로 하는 고부가가치의 청정 미네랄수를 만들 수 없으므로 부적당하다.Phase change methods such as evaporation and freezing in the deep sea water desalination technology are theoretically 100%, which is inappropriate because high-value clean mineral water, which is the target for deep water desalination, cannot be produced.

반면에, 막분리법은 1% 정도의 이온이 잔존하기 때문에 심층수 담수화에 적용이 가능하고 그 중 역삼투법이 가장 적합한 것으로 알려져 있다.On the other hand, the membrane separation method is applicable to deep water desalination because about 1% of ions remain, and reverse osmosis is most suitable.

이미 상용화된 심층수의 담수화에서도 역삼투법은 채택하고 있으며 심층수에 적용하는 전용 모델까지 출시되어 있는 상황이다. In the desalination of deep water, which is already commercialized, reverse osmosis is adopted, and a special model applied to deep water is being released.

역삼투법에 의한 해수의 담수화에 있어서는 염배제율이 98%이상의 막이 사용되는데 이러한 막은 모두 얇은 배제층을 지지하는 다공성 층에 의해 압력에도 견딜 수 있도록 구성되어 있다.In desalination of seawater by reverse osmosis, membranes with a salt rejection rate of 98% or more are used, all of which are configured to withstand pressure by a porous layer supporting a thin exclusion layer.

본 발명에서는 해양심층수의 담수화에 목적하는 기능에 맞는 분리막 소재를 개발하기 위하여 유기계 고분자막인 셀룰로오스계 고분자와 폴리아미드계 고분자를 바탕으로 유기계 고분자막 형성시 무기계 고분자 물질인 미세 입자의 토르마린을 함침하여 생성시킨 역삼투 복합기능을 갖는 유기계 및 무기계 고분자막을 포함하는 나노 입자 토르마린을 포함한 역삼투 복합막에 관한 것이다. In the present invention, in order to develop a membrane material suitable for the purpose of desalination of deep sea water, the organic polymer membrane is formed by impregnating tourmaline of fine particles, which are inorganic polymer materials, when the organic polymer membrane is formed based on the cellulose polymer and the polyamide polymer. The present invention relates to a reverse osmosis composite membrane including nanoparticle tourmaline containing an organic and inorganic polymer membrane having a reverse osmosis composite function.

본 발명에 따른 유기계 및 무기계 고분자 물질로 복합화하여 설계 제조된 분리막의 개발은 아직 국내·외에서 거의 찾아보기 어렵고, 또한 심층수의 담수화를 위한 역삼투막으로의 적용은 전무한 상태이다.The development of a separator designed and manufactured by combining the organic and inorganic polymer materials according to the present invention is hardly found in Korea and abroad, and there is no application to a reverse osmosis membrane for desalination of deep water.

또한, 본 발명에 따른 역삼투막의 제조에 있어서 분리막의 선택성과 투과성을 높이기 위해서는 무엇보다도 투과물질과 막과의 상호친화성을 높여주는 것이 중요하다. 따라서 이러한 역삼투막을 제조하기 위하여 용매와 친화성을 갖는 셀룰로오스계 고분자와 폴리아미드계 고분자를 설계하였다.In addition, in the preparation of the reverse osmosis membrane according to the present invention, in order to increase the selectivity and permeability of the separation membrane, it is important to increase the mutual affinity between the permeable material and the membrane. Therefore, in order to prepare such a reverse osmosis membrane, a cellulose polymer and a polyamide polymer having affinity with a solvent were designed.

여기서 셀룰로오스계 고분자 물질로는 셀룰로오스 아세테이트와 카르복시 메틸 셀룰로오스를 사용하였고, 유기막 내부에 함침시킨 무기계 고분자는 나노 크기의 분체상을 갖는 토르마린을 사용하여 제조하였다. Here, cellulose acetate and carboxymethyl cellulose were used as the cellulose-based polymer material, and the inorganic polymer impregnated inside the organic membrane was prepared using tourmaline having a nano-sized powdery phase.

역삼투막은 공경이 약 0.01㎛내외이고, 세공이 거의 존재하지 않으므로 일반적으로 비공성막이라고 할 수 있다. 따라서 물질의 분리는 유기계 고분자가 미셀을 형성하고 있는 미셀간의 간격을 통하여 투과가 행해지고 그 사이에 토르마린 입자가 존재하여 투과되는 물질을 선택적으로 활성 작용시켜 높은 투과성과 선택성을 갖도록 설계하였다.The reverse osmosis membrane has a pore size of about 0.01 μm and almost no pores, so the reverse osmosis membrane is generally referred to as a non-porous membrane. Therefore, the separation of materials is designed to have high permeability and selectivity by permeation through the gap between micelles in which the organic polymer forms micelles, and tourmaline particles present therebetween to selectively activate the permeable material.

무기계 고분자인 토르마린의 특성은 영구적인 미약전류 발생에 의한 효과로 전기장형성, 음이온 발생 및 계면활성 작용이 있고 4~14㎛의 파장인 원적외선 방사에 의한 효과 및 미네랄 용출효과가 있다. 또한 토르마린은 물에 접촉할 때 효과가 극대화되어 물을 활성화 하는 작용이 있다.The properties of tourmaline, an inorganic polymer, have the effect of permanent weak current generation, electric field formation, anion generation and surfactant activity, far infrared radiation with a wavelength of 4 ~ 14㎛ and mineral leaching effect. In addition, tourmaline has the effect of activating water is maximized when in contact with water.

이와 같이 본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막은 유기막의 특성과 무기계 토르마린 특성이 고려된 물리·화학적 방법에 의한 심층수 담수화 효과와 건강수 생산에 매우 효과가 높은 것이 중요기술이고, 또한 분리막 내에서의 새로운 역삼투 분리특성을 갖도록 한 것이 본 발명이 이루고자 하는 기술이다.As described above, the reverse osmosis composite membrane including the nanoparticle tourmaline according to the present invention is an important technology that is highly effective in the deep water desalination effect and the production of healthy water by physical and chemical methods considering the characteristics of the organic membrane and the inorganic tourmaline, and also the separation membrane. It is a technique of the present invention to have a new reverse osmosis separation characteristics within.

이하 본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막에 대하여 첨부된 도면을 참조하여 보다 상세히 설명하면 다음과 같다.Hereinafter, the reverse osmosis composite membrane including nanoparticle tourmaline according to the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막 제조공정이며, 도 2는 본 발명에 따른 역삼투 복합막을 나타낸 개략도이며, 도 3은 도 2의 C-C'선을 따라 잘라진 역삼투 복합막의 부분 측단면도 상세도이며, 도 4는 본 발명에 따른 역삼투 복합막의 심층수 투과모델 상세도로서, 1 is a reverse osmosis composite membrane manufacturing process comprising nanoparticle tourmaline according to the present invention, Figure 2 is a schematic diagram showing a reverse osmosis composite membrane according to the present invention, Figure 3 is a reverse osmosis cut along the line C-C 'of FIG. Partial side cross-sectional view of the composite membrane in detail, Figure 4 is a detailed view of the depth-permeation model of the reverse osmosis composite membrane according to the present invention

해양 심층수의 담수화 분리특성은 도 4는 본 발명에 따른 역삼투 복합막의 심층수 투과모델 상세도에 나타난 투과메카니즘으로 이루어진다.Desalination separation characteristics of the deep sea water is composed of the permeation mechanism shown in the detailed view of the deep water permeation model of the reverse osmosis composite membrane according to the present invention.

본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막은 유기계 고분자 물질(14)과 무기계 고분자 물질(13)의 기능성이 각각 부여된 활성 분리층 막(15)을 핵심으로 마련된 역삼투 복합막이다.The reverse osmosis composite membrane including nanoparticle tourmaline according to the present invention is a reverse osmosis composite membrane prepared based on an active separation layer membrane 15 provided with the functionality of the organic polymer material 14 and the inorganic polymer material 13.

상기 역삼투 복합막은 보강재(17)로 나노 입자 실버(18)를 함유시킨 정밀여과제인 멜트블로운 부직포 필터를 사용하고, 그 위에 지지층 막(16)으로 폴리설폰계 다공성막을 코팅한 후, 역삼투막의 활성층(15)에 유기계인 셀룰로오스계 고분자와 폴리아미드계 고분자 물질과 무기계인 나노 입자의 토르마린 물질(13)을 적정량 함유하여 형성시킨 도 3과 같은 나노 입자 토르마린을 포함한 역삼투 복합막(11)으로 이루어진다. The reverse osmosis composite membrane uses a meltblown nonwoven filter, which is a precision filter containing nanoparticle silver 18 as a reinforcing material 17, and coated a polysulfone porous membrane with a support layer membrane 16 thereon, followed by a reverse osmosis membrane. The reverse osmosis composite membrane 11 including nanoparticle tourmaline as shown in FIG. 3 formed by containing an appropriate amount of an organic cellulose-based polymer, a polyamide-based polymer material, and an inorganic nanoparticle tourmaline material 13 in the active layer 15. Is done.

도 1은 본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막의 제조공정 상세도로서, 나노 입자 실버를 함유한 정밀여과재인 멜트블로운 부직포 필터(1)는 가이드 롤러(2)를 거쳐 피드 롤러(3)에 의해 예비가열 롤러(4)에 공급하게 된다.1 is a detailed view of the manufacturing process of the reverse osmosis composite membrane including nanoparticle tourmaline according to the present invention, the meltblown nonwoven filter 1, which is a nanofiltration silver-containing microfiltration material, passes through a guide roller 2 and a feed roller ( 3) is supplied to the preheating roller (4).

이때 예비 가열롤러(4)는 부직포재료의 융점이하에서 열처리를 받게 되고 이후 열과 압력이 작용되는 캘린더 상부 롤러(6)와 하부 롤러(5)에 의해 정밀여과재의 기공크기와 기공도를 조절함으로써 역삼투막의 보강재(17)를 형성시킨다.At this time, the pre-heating roller 4 is subjected to heat treatment under the melting point of the nonwoven fabric material, and then the reverse osmosis membrane is controlled by adjusting the pore size and porosity of the fine filter material by the calender upper roller 6 and the lower roller 5 to which heat and pressure are applied. To form a reinforcing material (17).

상기 형성된 보강재(17)의 표면에 지지층막(16)을 형성시키기 위해 코팅장치(7)에 고분자 물질을 12~15wt%의 농도로 용해하여 점성을 갖는 코팅액을 조제하여 균일 코팅시킨 후, 응고욕(8)에 의해 상전환을 시킴으로써 다공성의 지지층막(16)을 형성시킨다. 이때 지지층막(16)의 기공크기와 기공도는 응고욕의 농도조성과 온도조절에 의해 일반적으로 의존성을 갖게 되는 것이다. In order to form the support layer film 16 on the surface of the formed reinforcing material 17, the coating material 7 is dissolved in a concentration of 12-15 wt% to prepare a viscous coating liquid and uniformly coated, and then the coagulation bath Phase switching is performed by (8) to form the porous support layer membrane 16. At this time, the pore size and porosity of the support layer membrane 16 are generally dependent on the concentration composition and temperature control of the coagulation bath.

이와 같이 형성된 다공성의 지지층막(16)은 열처리장치(9)에서 열처리 된 후에, 본 발명의 핵심부분인 역삼투막의 활성 분리층 막(15)을 형성하기 위해 활성층 형성장치(10)에 공급되게 된다. After the porous support layer membrane 16 formed as described above is heat treated in the heat treatment apparatus 9, it is supplied to the active layer forming apparatus 10 to form the active separation layer membrane 15 of the reverse osmosis membrane which is a core part of the present invention. .

이때 지지층 막(16) 표면의 활성 분리층은 활성층 막 형성장치(9) 내부에 용해되어있는 친수성 유기계 고분자 물질과 무기계 고분자 물질을 적정량 브랜드 시킴으로서 형성하게 된다. In this case, the active separation layer on the surface of the support layer membrane 16 is formed by branding an appropriate amount of the hydrophilic organic polymer material and the inorganic polymer material dissolved in the active layer film forming apparatus 9.

이러한 활성 분리층 막(15)은 역삼투막 형성시 지지층 막 표면에서 활성 분리층의 두께를 조절 가능토록 형성시킴으로써 역삼투막의 투과효율을 향상시킬 수 있도록 구성하였고, 최종 열처리 장치(9)에 의해 새로운 형식의 유기계 및 무기계 역삼투 복합막을 제조함으로서 구성되는 것이다..The active separation layer membrane 15 is formed to improve the permeation efficiency of the reverse osmosis membrane by forming the thickness of the active separation layer on the surface of the support layer membrane when the reverse osmosis membrane is formed. It is constituted by producing organic and inorganic reverse osmosis composite membranes.

이러한 발명의 역삼투막의 적용으로 해양심층수의 분리특성에 관한 투과메카니즘 관계는 도 4에 나타낸 바와 같이 활성 분리층 막(15)에 유기계 고분자 물질(14)과 무기계 고분자 물질(13)을 형성시킴으로써 새로운 형식의 분리특성을 갖도록 고안된 것이다.As a result of the application of the reverse osmosis membrane of the present invention, the permeation mechanism relationship for the deep sea water separation characteristics is shown in FIG. 4 by forming an organic polymer material 14 and an inorganic polymer material 13 in the active separation layer membrane 15. It is designed to have a separation characteristic of.

이러한 역삼투막의 해양심층수(19)에 대한 새로운 분리특성은 공급측(20)의 해양심층수(19)에서 염을 배제하고 물분자와 미네랄 성분을 선택적으로 투과시키기 위한 것으로 먼저 물분자(22)는 활성 분리층 막(15)에서 유기계 고분자 물질의 친수성에 기인하여 표면 흡착에 의한 용해·확산 현상이 일어나게 되는데 이때 용해·확산 과정에서 물분자(22)는 무기계 고분자인 토르마린 물질(13)에 의해 활성작용을 받게 되는데 이는 분자활성 작용에 의한 막내부에서의 투과유속 증가를 가져오게 하고, 물분자에 의해 일부 용존되어 있는 미네랄 물질 또한 토르마린 물질(13)로부터 용출시키게 된다. The new separation characteristics of the deep seawater 19 of the reverse osmosis membrane are to remove salts from the deep seawater 19 on the supply side 20 and to selectively permeate water molecules and mineral components. Due to the hydrophilicity of the organic polymer material in the layered film 15, dissolution and diffusion due to surface adsorption occur. In this process, the water molecule 22 is activated by the tourmaline material 13, which is an inorganic polymer. This leads to an increase in the permeation flux in the membrane due to the molecular activity, and also some of the dissolved mineral material by the water molecules elute from the tourmaline material (13).

본 발명에 따른 유기계 및 무기계 역삼투 복합막(11)은 용출된 미네랄 성분은 담수에 함유시키고, 토르마린 물질 자체로부터 음이온과 원적외선 방출효과로부터 해양심층수의 담수화로부터 기능성의 생수를 얻을 수 있도록 안출된 것이다. The organic and inorganic reverse osmosis composite membrane 11 according to the present invention is designed to contain the eluted mineral component in fresh water and to obtain functional bottled water from the desalination of deep sea water from anion and far-infrared emission effect from tourmaline material itself. .

본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막의 구성과 제조공법으로 다음과 같은 발명효과의 특징이 있다. The composition and manufacturing method of the reverse osmosis composite membrane including nanoparticle tourmaline according to the present invention has the following characteristics of the invention effect.

-해양심층수의 담수화에 목적하는 기능에 맞는 역삼투막 소재개발에 따른 새로운 형식의 유·무기계 역삼투막의 설계와 제조기술에 의한 실용적인 활용이 가능하다.-It is possible to apply practically by design and manufacturing technology of new type organic / inorganic reverse osmosis membrane according to the development of reverse osmosis membrane material that is suitable for the purpose of desalination of deep sea water.

-고효율의 역삼투 복합막에 의한 최저에너지형 심층수 담수화기술에 역삼투 공정상의 에너지 손실이 적다Lowest energy type deep water desalination technology with high efficiency reverse osmosis composite membrane, less energy loss in reverse osmosis process

-종래의 유기계 고분자 막으로 주종을 이루고 있는 단순한 역삼투막 방식을 변환시킨 신형식 유·무기계 복합기능성 역삼투막에 의한 응용범위가 크다.-The application range is large by the new type organic / inorganic complex functional reverse osmosis membrane which converts simple reverse osmosis membrane method which is mainly composed of conventional organic polymer membrane.

-무기계 고분자 물질인 토르마린의 특성에 의한 음이온 발생과 원적외선 방사효과 및 미네랄 용출효과에 의한 건강수 생산에 매우 효과가 높다.-It is very effective for the production of healthy water by the generation of negative ions due to the properties of tourmaline, a non-mechanical polymer, far-infrared radiation effect and mineral leaching effect.

-새로운 역삼투막 분리법에 의한 심층수 담수화의 산업자원적 가치에 대한 활용과 응용범위 확대에 따른 대체 수자원 확보가 가능하다.-It is possible to secure alternative water resources by utilizing industrial resource value of deep water desalination by new reverse osmosis membrane separation method and expanding application scope.

-고효율의 역삼투막에 의한 해수 담수화 및 식품, 화학공업 등에서 유효물질의 분리와 회수 등에 의한 산업적 파급효과가 크다. -The industrial ripple effect of seawater desalination by high efficiency reverse osmosis membrane and separation and recovery of effective substances in food, chemical industry, etc. is great.

도 1은 본 발명에 따른 나노 입자 토르마린을 포함한 역삼투 복합막 제조공정.1 is a reverse osmosis composite membrane manufacturing process including nanoparticles tourmaline according to the present invention.

도 2는 본 발명에 따른 역삼투 복합막을 나타낸 개략도.2 is a schematic view showing a reverse osmosis composite membrane according to the present invention.

도 3은 도 2의 C-C'선을 따라 잘라진 역삼투 복합막의 부분 측단면도 상세도3 is a partial side cross-sectional detail view of the reverse osmosis composite membrane cut along the line CC ′ of FIG. 2.

도 4는 본 발명에 따른 역삼투 복합막의 심층수 투과모델 상세도Figure 4 is a detailed view of the deep water permeation model of the reverse osmosis composite membrane according to the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 나노 입자 실버 함유 멜트블로운 부직포 필터1: nanoparticle silver-containing meltblown nonwoven filter

2 : 가이드 롤러 3 : 피드 롤러 2: guide roller 3: feed roller

4 : 예비가열 롤러 5 : 캘린더 하부 롤러 4: preheating roller 5: calender bottom roller

6 : 캘린더 상부 롤러 7 : 지지체 막 나이프 코팅장치6: calender upper roller 7: support membrane knife coating device

8 : 지지체막 상전환 응고욕 9 : 열처리 장치8: support membrane phase inversion coagulation bath 9: heat treatment apparatus

10 : 역삼투막 활성층 형성장치10: reverse osmosis membrane active layer forming device

11 : 역삼투 복합막 12 : 활성 분리층11: reverse osmosis composite membrane 12: active separation layer

13 : 나노 입자 토르마린 14 : 유기계 고분자13: nanoparticle tourmaline 14: organic polymer

15 : 활성 분리층 막 16 : 지지층 막15 active separation layer membrane 16 support layer membrane

17 : 보강재 18 : 나노 입자 실버17: reinforcing material 18: nanoparticle silver

19 : 해양심층수 20 : 공급부19: deep sea water 20: supply

21 : 투과부 22 : 물분자21: penetrating portion 22: water molecule

Claims (5)

유기계 고분자 물질인 셀룰로오스 아세테이트를 바탕으로 무기계 고분자 물질인 나노 입자의 토르마린 물질을 함유하여 형성시킨 활성 분리층 막을 포함하는 것을 특징으로 하는 나노 입자 토르마린을 포함한 역삼투 복합막.A reverse osmosis composite membrane comprising nanoparticle tourmaline comprising an active separation layer membrane formed by containing a tourmaline material of nanoparticles of an inorganic polymer material based on cellulose acetate which is an organic polymer material. 유기계 고분자 물질인 카르복시 메틸 셀룰로오스를 바탕으로 무기계 고분자 물질인 나노 입자의 토르마린 물질을 함유하여 형성시킨 활성 분리층 막을 포함하는 것을 특징으로 하는 나노 입자 토르마린을 포함한 역삼투 복합막.A reverse osmosis composite membrane comprising nanoparticles tourmaline comprising an active separation layer membrane formed by containing a tourmaline material of nanoparticles, which is an inorganic polymer, based on carboxymethyl cellulose, which is an organic polymer. 제1항 또는 제2항에 있어서, The method according to claim 1 or 2, 상기 활성 분리층 막의 보강재로 나노 입자 실버를 함유한 멜트블로운 부직포필터를 부가한 것을 특징으로 하는 나노 입자 토르마린을 포함한 역삼투 복합막.Reverse osmosis composite membrane comprising nanoparticles tourmaline, characterized in that the melt blown nonwoven filter containing nanoparticles silver is added as a reinforcing material of the active separation layer membrane. 제3항에 있어서, The method of claim 3, 상기 멜트블로운 부직포 필터상면과 상기 활성 분리층 막의 하면에 지지체막으로서 폴리설폰계 다공성 막을 코팅한 것을 특징으로 하는 나노 입자 토르마린을 포함한 역삼투 복합막.The reverse osmosis composite membrane comprising nanoparticle tourmaline, characterized in that the polysulfone porous membrane is coated as a support membrane on the upper surface of the melt-blown nonwoven filter and the lower surface of the active separation layer membrane. 나노 입자 실버를 함유한 정밀여과재인 멜트블로운 부직포 필터가 예비 가열롤러로 공급되는 단계와;Supplying a meltblown nonwoven filter, which is a microfiltration material containing nanoparticle silver, to a preliminary heating roller; 상기 예비 가열롤러에서 상기 부직포재료가 융점이하에서 열처리를 받는 단계와;Subjecting the nonwoven fabric material to heat treatment at a melting point below the preheat roller; 열과 압력이 작용되는 상부 롤러와 하부 롤러에 의해 정밀여과재의 기공크기와 기공도를 조절하여 역삼투막의 보강재를 형성시키는 단계와;Forming a reinforcing material of the reverse osmosis membrane by adjusting the pore size and porosity of the microfiltration material by the upper roller and the lower roller to which heat and pressure are applied; 상기 형성된 보강재의 표면에 지지층막을 형성시키기 위해 코팅장치에 고분자 물질을 12~15wt%의 농도로 용해하여 점성을 갖는 코팅액을 조제하여 균일 코팅시키는 단계와;Dissolving a polymeric material at a concentration of 12-15 wt% in a coating apparatus to form a support layer film on the surface of the formed reinforcing material to prepare a coating solution having a viscosity and uniformly coating; 응고욕에 의해 상전환을 시킴으로써 다공성의 지지층막을 형성시키는 단계와,Forming a porous support layer membrane by performing phase inversion by a coagulation bath, 상기 다공성의 지지층막은 열처리장치에서 열처리 하는 단계와; Heat treating the porous support layer membrane in a heat treatment apparatus; 역삼투막의 활성 분리층 막을 형성하기 위해 친수성 유기계 고분자 물질과 무기계 고분자 물질을 혼합시키는 활성층 막 형성장치에 공급되는 단계와;Supplying an active layer membrane forming apparatus for mixing a hydrophilic organic polymer material and an inorganic polymer material to form an active separation layer membrane of a reverse osmosis membrane; 열처리 장치에 의해 열처리 시키는 단계를 포함하는 것을 특징으로 하는 Characterized in that it comprises the step of heat treatment by the heat treatment apparatus 나노 입자 토르마린을 포함한 역삼투 복합막의 제조방법.Method for producing a reverse osmosis composite membrane containing nanoparticle tourmaline.
KR10-2004-0005050A 2004-01-27 2004-01-27 Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method KR100527898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2004-0005050A KR100527898B1 (en) 2004-01-27 2004-01-27 Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0005050A KR100527898B1 (en) 2004-01-27 2004-01-27 Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method

Publications (2)

Publication Number Publication Date
KR20050077141A true KR20050077141A (en) 2005-08-01
KR100527898B1 KR100527898B1 (en) 2005-11-15

Family

ID=37264716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-0005050A KR100527898B1 (en) 2004-01-27 2004-01-27 Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method

Country Status (1)

Country Link
KR (1) KR100527898B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100611682B1 (en) * 2005-07-12 2006-08-14 한국과학기술연구원 Silver nanoparticles/polymer nanocomposites for olefin/paraffin separation membranes and preparation method thereof
WO2009129354A3 (en) * 2008-04-15 2010-01-28 Nanoh2O, Inc. Hybrid nanoparticle tfc membranes
US8029857B2 (en) 2006-10-27 2011-10-04 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
US9254465B2 (en) 2008-04-15 2016-02-09 Lg Nanoh2O, Inc. Hybrid nanoparticle TFC membranes
KR101691874B1 (en) * 2016-03-18 2017-01-03 주식회사 성민코리아 Method of producing alkaline water
US9597642B2 (en) 2010-11-10 2017-03-21 Lg Nanoh2O, Inc. Hybrid TFC RO membranes with non-metallic additives
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
CN110898682A (en) * 2018-09-17 2020-03-24 天津工业大学 Preparation method of tourmaline modified polyvinyl chloride separation membrane
US10618013B2 (en) 2005-03-09 2020-04-14 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618013B2 (en) 2005-03-09 2020-04-14 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
US20200246757A1 (en) * 2005-03-09 2020-08-06 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
KR100611682B1 (en) * 2005-07-12 2006-08-14 한국과학기술연구원 Silver nanoparticles/polymer nanocomposites for olefin/paraffin separation membranes and preparation method thereof
US8029857B2 (en) 2006-10-27 2011-10-04 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
WO2009129354A3 (en) * 2008-04-15 2010-01-28 Nanoh2O, Inc. Hybrid nanoparticle tfc membranes
US9254465B2 (en) 2008-04-15 2016-02-09 Lg Nanoh2O, Inc. Hybrid nanoparticle TFC membranes
US9744499B2 (en) 2008-04-15 2017-08-29 Lg Nanoh2O, Inc. Hybrid nanoparticle TFC membranes
US9597642B2 (en) 2010-11-10 2017-03-21 Lg Nanoh2O, Inc. Hybrid TFC RO membranes with non-metallic additives
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
KR101691874B1 (en) * 2016-03-18 2017-01-03 주식회사 성민코리아 Method of producing alkaline water
CN110898682A (en) * 2018-09-17 2020-03-24 天津工业大学 Preparation method of tourmaline modified polyvinyl chloride separation membrane

Also Published As

Publication number Publication date
KR100527898B1 (en) 2005-11-15

Similar Documents

Publication Publication Date Title
Selatile et al. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination
Yang et al. Janus membranes: exploring duality for advanced separation
Wang et al. Electrospun nanofiber membranes
JP6155347B2 (en) Forward osmosis membrane
CN105854626A (en) Compound reverse osmosis film and preparation method thereof
CN104248913B (en) A kind of method of polyolefin hollow fiber ultrafiltration membrane hydrophilic modification
KR100990168B1 (en) Forward osmosis membranes and method for fabricating the same
KR100527898B1 (en) Reverse osmosis composite membrane with nano particle tourmaline and manufacturing method
EP2883600B1 (en) Manufacturing of polyamide-based water-treatment separation membrane
Bai et al. High-performance nanofiltration membranes with a sandwiched layer and a surface layer for desalination and environmental pollutant removal
CN103687895A (en) Method to improve forward osmosis membrane performance
WO2006038409A1 (en) Process for producing semipermeable composite membrane
KR20130064705A (en) Reverse osmotic membrane comprising silver nano wire layer and method of manufacturing the same
Xu et al. Cost-effective polymer-based membranes for drinking water purification
Li et al. Tailoring the polyamide active layer of thin-film composite forward osmosis membranes with combined cosolvents during interfacial polymerization
Ravichandran et al. A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process
CN105833743A (en) Graphene oxide coating modified aromatic polyamide reverse osmosis membrane and preparation method thereof
JPH0825539A (en) Production of composite semipermeable membrane
KR101869799B1 (en) manufacturing method of forward osmosis filter using carbon nano-material
CN114618331A (en) Covalent organic framework doped polyamide reverse osmosis membrane and preparation method thereof
Wang et al. Polyelectrolyte interlayer assisted interfacial polymerization fabrication of a dual-charged composite nanofiltration membrane on ceramic substrate with high performance
KR101076221B1 (en) Method for fabricating of reverse osmosis membrane from polyelectrolyte multilayers and reverse osmosis membrane of fabricated using the same
Geng et al. Fabrication of carbon nanotubes-modified poly (ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process
KR101357670B1 (en) Forward osmosis membrane packed with draw material, the preparing method thereof and the forward osmosis apparatus comprising the same
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 14