KR20050075888A - Negative active material for rechargeable lithium battery and rechargeable lithium battery - Google Patents

Negative active material for rechargeable lithium battery and rechargeable lithium battery Download PDF

Info

Publication number
KR20050075888A
KR20050075888A KR1020040003260A KR20040003260A KR20050075888A KR 20050075888 A KR20050075888 A KR 20050075888A KR 1020040003260 A KR1020040003260 A KR 1020040003260A KR 20040003260 A KR20040003260 A KR 20040003260A KR 20050075888 A KR20050075888 A KR 20050075888A
Authority
KR
South Korea
Prior art keywords
active material
ray diffraction
plane
negative electrode
diffraction peak
Prior art date
Application number
KR1020040003260A
Other languages
Korean (ko)
Other versions
KR100570650B1 (en
Inventor
김준섭
김성수
김상진
이상민
심규윤
정구진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040003260A priority Critical patent/KR100570650B1/en
Priority to US10/921,358 priority patent/US8026003B2/en
Priority to EP04090319.7A priority patent/EP1511101B1/en
Priority to CNB2004100981259A priority patent/CN100487960C/en
Priority to JP2004242992A priority patent/JP2005072008A/en
Publication of KR20050075888A publication Critical patent/KR20050075888A/en
Application granted granted Critical
Publication of KR100570650B1 publication Critical patent/KR100570650B1/en
Priority to JP2009242646A priority patent/JP2010016005A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D9/00Sanitary or other accessories for lavatories ; Devices for cleaning or disinfecting the toilet room or the toilet bowl; Devices for eliminating smells
    • E03D9/12Means to prevent freezing of lavatories
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D3/00Flushing devices operated by pressure of the water supply system flushing valves not connected to the water-supply main, also if air is blown in the water seal for a quick flushing
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D5/00Special constructions of flushing devices, e.g. closed flushing system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Epidemiology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차 전지에 관한 것으로서, 상기 음극 활물질은 하기 화학식 1을 갖으며, (003)면의 X-선 회절 피크 반가폭이 0.5 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.5 이하이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same, wherein the negative electrode active material has the following Chemical Formula 1, and the half width of the X-ray diffraction peak of the (003) plane is 0.5 or less, (104) The half width of the X-ray diffraction peak of the plane is 0.5 or less.

[화학식 1][Formula 1]

LixMyVzO2+d Li x M y V z O 2 + d

(상기 식에서, 0.1 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이며, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 것임)Wherein 0.1 ≦ x ≦ 2.5, 0 ≦ y ≦ 0.5, 0.5 ≦ z ≦ 1.5, 0 ≦ d ≦ 0.5, and M is selected from the group consisting of Al, Cr, Mo, Ti, W and Zr.

본 발명의 음극 활물질은 고용량, 특히 고율로 충방전을 시켜도 고용량과 우수한 수명 특성을 나타내는 리튬 이차 전지를 제공할 수 있다.The negative electrode active material of the present invention can provide a lithium secondary battery that exhibits high capacity and excellent lifespan even when charged and discharged at a high capacity, particularly at a high rate.

Description

리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차 전지{NEGATIVE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY} A negative electrode active material for a lithium secondary battery and a lithium secondary battery including the same {NEGATIVE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY}

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차 전지에 관한 것으로서, 보다 바람직하게는 고용량의 전지를 제공할 수 있는 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same, and more preferably, to a negative electrode active material for a lithium secondary battery capable of providing a battery having a high capacity, and a lithium secondary battery comprising the same.

[종래 기술][Prior art]

최근의 휴대용 소형 전자기기의 전원으로서 각광받고 있는 리튬 이차 전지는 유기 전해액을 사용하여 기존의 알칼리 수용액을 사용한 전지보다 2배 이상의 높은 방전 전압을 보임으로써 높은 에너지 밀도를 나타내는 전지이다.Lithium secondary batteries, which are in the spotlight as power sources of recent portable small electronic devices, exhibit high energy density by showing a discharge voltage that is twice as high as that of a battery using an alkaline aqueous solution using an organic electrolyte solution.

리튬 이차 전지의 양극 활물질로는 LiCoO2, LiMn2O4, LiNi1-x CoxO2(0 < X < 1)등과 같이 리튬이 인터칼레이션이 가능한 구조를 가진 리튬과 전이 금속으로 이루어진 산화물을 주로 사용하였다.As a cathode active material of a lithium secondary battery, an oxide composed of lithium and a transition metal having a structure capable of intercalating lithium, such as LiCoO 2 , LiMn 2 O 4 , and LiNi 1-x Co x O 2 (0 <X <1) Was mainly used.

음극 활물질로는 리튬의 삽입/탈리가 가능한 인조, 천연 흑연, 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다. 상기 탄소 계열 중 흑연은 리튬 대비 방전 전압이 -0.2V로 낮아, 이 음극 활물질을 사용한 전지는 3.6V의 높은 방전 전압을 나타내어, 리튬 전지의 에너지 밀도면에서 이점을 제공하며 또한 뛰어난 가역성으로 리튬 이차 전지의 장수명을 보장하여 가장 널리 사용되고 있다. 그러나 흑연 활물질은 극판 제조시 흑연의 밀도(이론 밀도 2.2g/cc)가 낮아 극판의 단위 부피당 에너지 밀도 측면에서는 용량이 낮은 문제점이 있고, 높은 방전 전압에서는 사용되는 유기 전해액과의 부반응이 일어나기 쉬워, 전지의 오동작 및 과충전 등에 의해 발화 혹은 폭발의 위험성이 있다. As the negative electrode active material, various types of carbon-based materials including artificial, natural graphite, and hard carbon capable of inserting / desorbing lithium have been applied. The graphite of the carbon series has a low discharge voltage of -0.2V compared to lithium, and the battery using this negative electrode active material exhibits a high discharge voltage of 3.6V, which provides an advantage in terms of energy density of the lithium battery and also has excellent reversibility in lithium secondary. It is most widely used to ensure the long life of the battery. However, the graphite active material has a problem of low capacity in terms of energy density per unit volume of the electrode plate due to the low graphite density (theoretical density of 2.2 g / cc) in the production of the electrode plate, and side reaction with the organic electrolyte used at high discharge voltage is likely to occur. There is a risk of fire or explosion due to battery malfunction or overcharging.

이러한 문제를 해결하기 위하여, 산화물 음극이 최근 개발되고 있다. 후지필름이 연구 개발한 비정질의 주석 산화물은 중량당 800mAh/g의 고용량을 나타내나, 초기 비가역 용량이 50% 정도 되는 치명적인 문제가 있으며, 방전 전위가 0.5V 이상이고 비정질상 특유의 전체적으로 부드러운 전압 프로파일(smooth voltage profile)로 전지로 구현되기 어려운 문제가 있다. 또한 충방전에 의해 주석 산화물 중 일부가 산화물에서 주석 금속으로 환원되는 등 부수적인 문제도 심각하게 발생되고 있어 전지에의 사용을 더욱 더 어렵게 하고 있는 실정이다. In order to solve this problem, oxide cathodes have recently been developed. The amorphous tin oxide researched and developed by FUJIFILM exhibits a high capacity of 800 mAh / g per weight, but has a fatal problem with an initial irreversible capacity of about 50%. There is a problem that it is difficult to implement a battery with a smooth voltage profile). In addition, incidental problems such as reduction of some tin oxides from oxides to tin metals due to charging and discharging have been seriously occurring, making the use of batteries even more difficult.

이외에 산화물 음극으로 일본 특허 공개 번호 제 2002-216753 호(스미토모)에 LiaMgbVOc(0.05 ≤ a ≤ 3, 0.12 ≤ b ≤ 2, 2 ≤ 2c-a-2b ≤ 5) 음극 활물질이 기술되어 있다. 또한, 일본 전지 토론회 2002년 요지집번호 3B05에서는 Li1.1V0.9 O2의 리튬 이차 전지 음극 특성에 대해 발표된 바 있다.In addition, Japanese Unexamined Patent Publication No. 2002-216753 (Sumitomo) discloses Li a Mg b VO c (0.05 ≤ a ≤ 3, 0.12 ≤ b ≤ 2, 2 ≤ 2c-a-2b ≤ 5) as an oxide cathode. It is. In addition, a Japanese battery debate in 2002 Main Publication No. 3B05 published a lithium secondary battery negative electrode of Li 1.1 V 0.9 O 2 .

그러나 아직 산화물 음극으로는 만족할만한 전지 성능을 나타내지 못하여 그에 관한 연구가 계속 진행 중에 있다.However, the oxide negative electrode does not yet exhibit satisfactory battery performance, and research on it is ongoing.

본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고용량을 나타내는 리튬 이차 전지용 음극 활물질을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a negative electrode active material for a lithium secondary battery exhibiting a high capacity.

본 발명의 다른 목적은 고율로 충방전시에도 고용량과 사이클 수명 특성이 우수한 리튬 이차 전지용 음극 활물질을 제공하는 것이다.Another object of the present invention is to provide a negative active material for a lithium secondary battery having excellent high capacity and cycle life characteristics even at high rates of charge and discharge.

본 발명의 또 다른 목적은 상기 음극 활물질을 포함하는 리튬 이차 전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including the negative electrode active material.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1을 갖으며, (003)면의 X-선 회절 피크 반가폭이 0.5 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.5 이하인 리튬 이차 전지용 음극 활물질을 제공한다.In order to achieve the above object, the present invention has the formula (1), the X-ray diffraction peak half width of (003) plane is 0.5 or less, the X-ray diffraction peak half width of (104) plane is lithium or less Provided is a negative active material for a secondary battery.

[화학식 1][Formula 1]

LixMyVzO2+d Li x M y V z O 2 + d

(상기 식에서, 0.1 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이며, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 것임)Wherein 0.1 ≦ x ≦ 2.5, 0 ≦ y ≦ 0.5, 0.5 ≦ z ≦ 1.5, 0 ≦ d ≦ 0.5, and M is selected from the group consisting of Al, Cr, Mo, Ti, W and Zr.

본 발명은 또한 상기 음극 활물질을 포함하는 음극; 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하는 양극; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.The present invention also includes a negative electrode comprising the negative electrode active material; A positive electrode including a positive electrode active material capable of reversibly intercalating and deintercalating lithium ions; And it provides a lithium secondary battery comprising an electrolyte solution.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 리튬 이차 전지용 음극 활물질에 관한 것으로서, 이 음극 활물질은 하기 화학식 1로 표시되는 층상 구조(layered structure)를 갖는 화합물이다.The present invention relates to a negative electrode active material for a lithium secondary battery, which is a compound having a layered structure represented by the following formula (1).

[화학식 1][Formula 1]

LixMyVzO2+d Li x M y V z O 2 + d

(상기 식에서, 0.1 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이며, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 것임)Wherein 0.1 ≦ x ≦ 2.5, 0 ≦ y ≦ 0.5, 0.5 ≦ z ≦ 1.5, 0 ≦ d ≦ 0.5, and M is selected from the group consisting of Al, Cr, Mo, Ti, W and Zr.

본 발명에서는 상기 화학식 1의 화합물의 Li 함량과 합성 조건을 조절하여 고율로 충방전을 시켜도 고용량과 우수한 수명 특성을 나타내도록 특정 물성을 갖는 활물질을 제조하였다.In the present invention, an active material having specific physical properties is prepared to control the Li content and the synthesis conditions of the compound of Formula 1 to show high capacity and excellent lifespan even when charging and discharging at a high rate.

본 발명의 음극 활물질은 상기 화학식 1로 표시되면서, (003)면의 X-선 회절(X-ray diffraction) 피크 반가폭이 바람직하게는 0.5 이하, 더욱 바람직하게는 0.3 이하의 값을 나타내며, (104)면의 X-선 회절 피크 반가폭이 바람직하게는 0.5 이하, 더욱 바람직하게는 0.4 이하의 값을 나타낸다. X-선 회절 피크 반가폭이 0.5보다 클 경우에는 구조가 불안정하여 초기 용량이 저하되고 사이클링에 따른 용량 감소가 심하게 되어 바람직하지 않다. The negative electrode active material of the present invention is represented by the formula (1), the X-ray diffraction peak half width of the (003) plane is preferably 0.5 or less, more preferably 0.3 or less, ( The half-width of the X-ray diffraction peak of the 104) surface is preferably 0.5 or less, more preferably 0.4 or less. If the half-width of the X-ray diffraction peak is larger than 0.5, the structure is unstable and the initial capacity is lowered and the capacity decrease due to cycling is not preferable.

본 발명의 음극 활물질은 (003)면의 X-선 회절 피크 강도 I(003)와 (104)면의 X-선 회절 피크 강도 I(104)의 비인 I(003)/I(104) 값이 바람직하게는 0.3 내지 2를 나타내며, 더욱 바람직하게는 0.5 내지 1.5를 나타낸다. The negative electrode active material of the present invention has an I (003) / I (104) value which is a ratio of the X-ray diffraction peak intensity I (003) of the (003) plane and the X-ray diffraction peak intensity I (104) of the (104) plane. Preferably from 0.3 to 2, more preferably from 0.5 to 1.5.

아울러, 본 발명의 음극 활물질은 2.8Å < 격자 상수 a < 2.9Å, 14Å < 격자 상수 b < 15Å의 물성을 갖는다. 상기 격자 상수 값이 상술한 범위를 벗어나는 경우 산화물의 층간 구조가 틀어지게 되어 용량 감소 문제가 발생하므로 바람직하지 않다.In addition, the negative electrode active material of the present invention has physical properties of 2.8 kPa <lattice constant a <2.9 kPa, 14 kPa <lattice constant b <15 kPa. When the lattice constant value is out of the above-described range, the interlayer structure of the oxide is distorted, which causes a capacity reduction problem.

본 발명의 음극 활물질은 리튬 이차 전지의 음극에 사용되며, 이 리튬 이차 전지는 양극 및 전해액을 포함한다. 상기 음극에서 음극 활물질로 본 발명의 음극 활물질로만을 사용할 수도 있고, 또한 본 발명의 음극 활물질과 그라파이트와 같은 탄소 계열 음극 활물질을 중량비로 1 내지 99 : 99 내지 1, 바람직하게는 10 내지 90 : 90 내지 10 비율로 혼합하여 사용할 수도 있다.The negative electrode active material of the present invention is used for the negative electrode of a lithium secondary battery, and this lithium secondary battery includes a positive electrode and an electrolyte solution. The negative electrode active material in the negative electrode may be used only as the negative electrode active material of the present invention, and also the carbon-based negative electrode active material such as graphite and the negative electrode active material of the present invention in a weight ratio of 1 to 99: 99 to 1, preferably 10 to 90: 90 You may use it in mixture of 10 to 10 ratio.

상기 양극에서 양극 활물질은 리튬을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하며, 이 양극 활물질의 대표적인 예로는 리티에이티드 인터칼레이션 산화물로서 구체적인 예로는 LiCoO2, LiNiO2, LiMnO 2, LiMn2O4, 또는 LiNi1-x-yCoxMyO2 (0≤x≤1, 0≤y≤1, 0≤x+y≤1, M은 Al, Sr, Mg, La 등의 금속)와 같은 리튬-전이금속 산화물을 들 수 있으나, 이에 한정되는 것은 아니며, 일반적으로 리튬 이차 전지에서 양극 활물질로 사용할 수 있는 것은 어떠한 것도 사용 가능하다.In the positive electrode, the positive electrode active material includes a positive electrode active material capable of reversibly intercalating and deintercalating lithium, and a representative example of the positive electrode active material is a lithium intercalation oxide, and specific examples thereof include LiCoO 2 and LiNiO 2. , LiMnO 2 , LiMn 2 O 4 , or LiNi 1-xy Co x M y O 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1, M is Al, Sr, Mg, La And a lithium-transition metal oxide, such as a metal), but is not limited thereto. In general, anything that can be used as a cathode active material in a lithium secondary battery may be used.

본 발명의 전해액은 비수성 유기 용매와 리튬염을 포함한다. The electrolyte solution of the present invention contains a non-aqueous organic solvent and a lithium salt.

상기 비수성 유기 용매는 전지의 전기화학적인 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 비수성 유기 용매로는 카보네이트, 에스테르, 에테르 또는 케톤을 사용할 수 있다. 상기 카보네이트로는 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 등이 사용될 수 있으며, 상기 에스테르로는 γ-부티로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트 등이 사용될 수 있고, 상기 에테르로의 예로는 디부틸 에테르가 있으며, 상기 케톤으로는 폴리메틸비닐 케톤이 있다. 상기 비수성 규기 용매 중 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1 : 1 내지 1 : 9의 부피비로 혼합하여 사용하는 것이 바람직하며, 상기 환형 카보네이트와 사슬형 카보네이트의 혼합 비율이 상기 범위에 포함되어야 전해질의 성능이 바람직하게 나타날 수 있다.The non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move. As the non-aqueous organic solvent, carbonate, ester, ether or ketone may be used. Dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, methylethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, etc. may be used as the carbonate, and the ester may be γ-butyro. Lactone, n-methyl acetate, n-ethyl acetate, n-propyl acetate and the like can be used. Examples of the ether include dibutyl ether, and the ketone is polymethylvinyl ketone. In the case of the carbonate-based solvent of the non-aqueous silicic solvent, it is preferable to use a mixture of a cyclic carbonate and a chain carbonate. In this case, the cyclic carbonate and the linear carbonate are preferably mixed and used in a volume ratio of 1: 1 to 1: 9, and the performance of the electrolyte is desirable when the mixing ratio of the cyclic carbonate and the linear carbonate is included in the above range. Can be.

상기 비수성 유기 용매는 또한 방향족 탄화수소계 유기 용매를 더욱 포함할 수 있으며, 이 경우에는 카보네이트 유기 용매와 혼합하여 사용하는 것이 좋다. 상기 방향족 탄화수소계 유기 용매는 하기 화학식 2의 방향족 탄화 수소계 화합물이 사용될 수 있다.The non-aqueous organic solvent may further include an aromatic hydrocarbon-based organic solvent, in which case it is preferable to use a mixture with a carbonate organic solvent. The aromatic hydrocarbon organic solvent may be an aromatic hydrocarbon compound of the formula (2).

[화학식 2][Formula 2]

(상기 식에서, R1은 할로겐 또는 탄소수 1 내지 10의 알킬기이고, n은 0 내지 6의 정수임)(Wherein R 1 is a halogen or an alkyl group having 1 to 10 carbon atoms and n is an integer of 0 to 6)

상기 방향족 탄화 수소계 유기 용매의 구체적인 예로는 벤젠, 플루오로 벤젠, 클로로벤젠, 니크로 벤젠, 톨루엔, 플루오로톨루엔, 트리플루오로톨루엔, 자일렌 등을 들 수 있다. 방향족 탄화 수소계 유기 용매를 포함하는 전해질에서 카보네이트 용매/방향족 탄화 수소계 용매의 부피비가 1 : 1 내지 30 : 1인 것이 바람직하다. 상기 부피비로 혼합되어야 전해질의 성능이 바람직하게 나타날 수 있다.Specific examples of the aromatic hydrocarbon-based organic solvent include benzene, fluorobenzene, chlorobenzene, nitrobenzene, toluene, fluorotoluene, trifluorotoluene, xylene and the like. In an electrolyte containing an aromatic hydrocarbon-based organic solvent, the volume ratio of the carbonate solvent / aromatic hydrocarbon-based solvent is preferably 1: 1 to 30: 1. The performance of the electrolyte may be desirable when mixed in the volume ratio.

상기 리튬염은 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 전지의 작동을 가능하게 하며, 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 상기 리튬염으로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, CF3SO3 Li, LiN(SO2CF3)2, LiC4F9SO3 , LiAlO4, LiAlOCl4, LiN(SO2C2F5)2), LiN(CxF2x+1SO 2)(CyF2+ySO2)(여기서, x 및 y는 자연수임), LiCl 및 LiI들 중의 하나 혹은 둘 이상을 혼합하여 사용할 수 있다.The lithium salt acts as a source of lithium ions in the battery to enable operation of the basic lithium battery, and the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2 , LiC 4 F 9 SO 3 , LiAlO 4 , LiAlOCl 4 , LiN ( SO 2 C 2 F 5 ) 2 ), LiN (C x F 2x + 1 SO 2 ) (C y F 2 + y SO 2 ), where x and y are natural numbers, one or two of LiCl and LiIs The above can be mixed and used.

상기 전해액에서, 상기 지지 전해염의 농도는 0.1 내지 2.0M이 바람직하다. 상기 지지 전해염의 농도가 0.1M 미만이면, 전해질의 전도도가 낮아져 전해질 성능이 떨어지고 2.0M을 초과하는 경우에는 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 있다. In the electrolyte solution, the concentration of the supporting electrolyte salt is preferably 0.1 to 2.0M. If the concentration of the supporting electrolytic salt is less than 0.1M, the conductivity of the electrolyte is lowered, the performance of the electrolyte is lowered, and if it exceeds 2.0M, there is a problem that the mobility of the lithium ions is reduced by increasing the viscosity of the electrolyte.

또한, 리튬 이차 전지에서 양극 및 음극 사이에 단락을 방지하는 세퍼레이터를 포함할 수 있으며, 이러한 세퍼레이터로는 폴리올레핀, 폴리프로필렌, 폴리에틸렌 등의 고분자막 또는 이들의 다중막, 미세다공성 필름, 직포 및 부직포와 같은 공지된 것을 사용할 수 있다.In addition, the lithium secondary battery may include a separator that prevents a short circuit between the positive electrode and the negative electrode, and the separator may include a polymer film such as polyolefin, polypropylene, and polyethylene, or a multilayer of these, a microporous film, a woven fabric, and a nonwoven fabric. Known ones can be used.

상술한 전해액, 양극, 음극 및 세퍼레이터를 포함하는 리튬 이차 전지는 양극/세퍼레이터/음극의 구조를 갖는 단위 전지, 양극/세퍼레이터/음극/세퍼레이터/양극의 구조를 갖는 바이셀, 또는 단위 전지의 구조가 반복되는 적층 전지의 구조로 형성할 수 있다.The lithium secondary battery including the electrolyte, the positive electrode, the negative electrode, and the separator described above has a unit cell having a structure of positive electrode / separator / cathode, a bicell having a structure of positive electrode / separator / cathode / separator / anode, or a unit cell structure. It can be formed in the structure of a repeated laminated battery.

이러한 구성을 갖는 본 발명의 리튬 이차 전지의 대표적인 예를 도 1에 나타내었다. 도 1은 양극(2), 음극(3) 및 상기 양극(2)과 음극(3) 사이에 위치하는 세퍼레이터(4)를 포함하고, 상기 양극(2) 및 상기 음극(3) 사이에 전해액(미도시)이 위치하는 케이스(5)를 포함하는 각형 타입의 리튬 이온 전지(1)를 나타낸 것이다. 물론, 본 발명의 리튬 이차 전지가 이 형상으로 한정되는 것은 아니며, 본 발명의 양극 활물질을 포함하며 전지로서 작동할 수 있는 원통형, 파우치 등 어떠한 형성도 가능함은 당연하다. A representative example of the lithium secondary battery of the present invention having such a configuration is shown in FIG. 1. 1 includes a positive electrode 2, a negative electrode 3, and a separator 4 positioned between the positive electrode 2 and the negative electrode 3, and an electrolyte solution between the positive electrode 2 and the negative electrode 3. The rectangular type lithium ion battery 1 including the case 5 in which the figure is shown is shown. Of course, the lithium secondary battery of the present invention is not limited to this shape, it is natural that any formation such as cylindrical, pouch, etc., including the positive electrode active material of the present invention and can operate as a battery.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

V2O3, Li2CO3 및 MoO3를 Li:V:Mo의 비가 1.08:0.9:0.02가 되게 고상 혼합하였다. 상기 혼합물을 질소 분위기에서 900℃로 10시간동안 열처리 한 후 상온까지 냉각하여 Li1.08Mo0.02V0.9O2 활물질을 합성하였다.V 2 O 3 , Li 2 CO 3 and MoO 3 were mixed in a solid phase such that the ratio of Li: V: Mo was 1.08: 0.9: 0.02. The mixture was heat-treated at 900 ° C. for 10 hours in a nitrogen atmosphere, and then cooled to room temperature to synthesize a Li 1.08 Mo 0.02 V 0.9 O 2 active material.

(실시예 2)(Example 2)

V2O3, Li2CO3 및 WO3를 Li:V:W의 비가 1.12:0.85:0.05가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 1000℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.The same procedure was followed except that V 2 O 3 , Li 2 CO 3 and WO 3 were mixed in a solid phase such that the ratio of Li: V: W was 1.12: 0.85: 0.05, and the mixture was heat-treated at 1000 ° C. for 10 hours under a nitrogen atmosphere. It was.

(실시예 3)(Example 3)

V2O3, Li2CO3 및 MoO3를 Li:V:Mo의 비가 1.1:0.85:0.05가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 1100℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.The same procedure was followed except that V 2 O 3 , Li 2 CO 3 and MoO 3 were mixed in a solid phase such that the ratio of Li: V: Mo was 1.1: 0.85: 0.05, and the mixture was heat-treated at 1100 ° C. for 10 hours under a nitrogen atmosphere. It was.

(실시예 4)(Example 4)

V2O3, Li2CO3 및 MoO3를 Li:V:Mo의 비가 1.08:0.88:0.02가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 900℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.V 2 O 3 , Li 2 CO 3 and MoO 3 were mixed in a solid phase so that the ratio of Li: V: Mo was 1.08: 0.88: 0.02, and the mixture was carried out in the same manner except that the mixture was heat-treated at 900 ° C. for 10 hours. It was.

(비교예 1)(Comparative Example 1)

V2O3, Li2CO3 및 MoO3를 Li:V:Mo의 비가 1:0.95:0.05가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 400℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.V 2 O 3 , Li 2 CO 3 and MoO 3 were mixed in a solid phase such that the ratio of Li: V: Mo was 1: 0.95: 0.05, and the mixture was heat-treated at 400 ° C. for 10 hours under a nitrogen atmosphere. It was.

(비교예 2)(Comparative Example 2)

V2O3, Li2CO3 및 MoO3를 Li:V:Mo의 비가 3:0.85:0.05가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 1000℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.V 2 O 3 , Li 2 CO 3 and MoO 3 were mixed in a solid phase such that the ratio of Li: V: Mo was 3: 0.85: 0.05 and the mixture was heat-treated at 1000 ° C. for 10 hours under a nitrogen atmosphere. It was.

(비교예 3)(Comparative Example 3)

V2O3, Li2CO3 및 WO3를 Li:V:W의 비가 1.1:0.05:0.85가 되도록 고상 혼합하고, 이 혼합물을 질소 분위기 하에서 800℃로 10시간 동안 열처리 한 것 이외에는 동일하게 실시하였다.A solid phase mixture of V 2 O 3 , Li 2 CO 3 and WO 3 in a Li: V: W ratio of 1.1: 0.05: 0.85 was carried out in the same manner except that the mixture was heat-treated at 800 ° C. for 10 hours under a nitrogen atmosphere. It was.

* 음극 활물질의 구조 분석* Structural analysis of negative active material

상기 실시예 1 내지 3의 음극 활물질을 X선 회절 패턴(X-ray diffraction)을 사용하여 0.02°/1초의 주사속도로 분말법에 의해 구조를 분석하고 그 결과를 도 2에 나타내었다. 제조된 음극 활물질은 모두 유사한 X선 회절 패턴을 갖음을 알 수 있다.The negative electrode active materials of Examples 1 to 3 were analyzed by a powder method at a scanning speed of 0.02 ° / 1 sec using an X-ray diffraction pattern, and the results are shown in FIG. 2. It can be seen that all of the prepared negative electrode active materials have a similar X-ray diffraction pattern.

상기 실시예 1 내지 4 및 비교예 1 내지 3으로 제조된 음극 활물질의 격자 상수, (003)면 및 (104)면의 피크 반가폭과 (003)면과 (104)면의 X-선 회절 피크 강도 비 I(003)/I(104)를 측정하였다. 그 결과를 하기 표 1에 나타내었다.Lattice constants, peak widths of (003) and (104) planes, and X-ray diffraction peaks of (003) and (104) planes of the negative electrode active materials prepared in Examples 1 to 4 and Comparative Examples 1 to 3. The intensity ratio I (003) / I (104) was measured. The results are shown in Table 1 below.

격자 상수Lattice constant (003)(003) (104)(104) 강도비Strength ratio a(Å)a (Å) c(Å)c (Å) 반가폭Half width 반가폭Half width I(003)/I(104)I (003) / I (104) 실시예 1Example 1 2.85562.8556 14.69514.695 18.1118.11 0.1690.169 44.1244.12 0.2280.228 0.8010.801 실시예 2Example 2 2.85832.8583 14.68814.688 18.1118.11 0.1590.159 44.0844.08 0.240.24 0.9590.959 실시예 3Example 3 2.86312.8631 14.70314.703 18.0918.09 0.160.16 44.144.1 0.220.22 1.0521.052 실시예 4Example 4 2.86972.8697 14.71114.711 18.118.1 0.1690.169 44.1544.15 0.2190.219 1.161.16 비교예 1Comparative Example 1 -- -- 18.70818.708 0.5150.515 44.1244.12 0.5080.508 1.0211.021 비교예 2Comparative Example 2 -- -- 18.7118.71 0.4270.427 44.0944.09 0.510.51 0.050.05 비교예 3Comparative Example 3 -- -- 18.7118.71 0.3980.398 44.144.1 0.5250.525 0.10.1

상기 표 1에 나타낸 것과 같이, 실시예 1 내지 4의 음극 활물질의 (003)면의 피크 반가폭은 0.16 내지 0.169, (104)면의 피크 반가폭은 0.219 내지 0.24이며, 강도비는 0.801 내지 1.16인 것으로 나타났다. 또한 격자 상수도 격자 상수 a는 2.8556Å 내지 2.8697Å이고, c는 14.695Å 내지 14.711Å로 나타났다. 그에 반하여 비교예 1 내지 3의 음극 활물질은 (003)면의 피크 반가폭 0.398 내지 0.515, (104)면의 피크 반가폭 0.51 내지 0.508이고, 강도비는 0.05 내지 1.021이고, 격자 상수 값은 나타나지 않았다. As shown in Table 1, the peak half width of the (003) plane of the negative electrode active materials of Examples 1 to 4 is 0.16 to 0.169, the peak half width of the (104) plane is 0.219 to 0.24, and the intensity ratio is 0.801 to 1.16. Appeared to be. In addition, the lattice constant lattice constant a was 2.8556 kPa to 2.8697 kPa, and c was found to be 14.695 kPa to 14.711 kPa. In contrast, the negative electrode active materials of Comparative Examples 1 to 3 had a peak half width of 0.398 to 0.515 and a peak half width of 0.51 to 0.508 for the (104) plane, an intensity ratio of 0.05 to 1.021, and no lattice constant value. .

* 전지 특성 평가* Battery characteristic evaluation

상기 실시예 1 내지 4 및 비교예 1 내지 3에 따라 제조된 음극 활물질의 전기화학적 특성 평가(용량 및 수명특성)를 다음과 같이 실시하였다. 즉, 음극 활물질/흑연 도전재/폴리비닐리덴 플루와이드 결착제 = 45/45/10의 무게비율로 측량한 후 N-메틸-2-피롤리돈 용매에 녹여 극판 제조용 슬러리를 제조하였다. 이 슬러리를 Cu 포일 위에 코팅하여 얇은 극판의 형태로 만든 후(40~50㎛, Cu 포일 두께 포함), 135℃ 오븐에서 3시간 이상 건조한 후 압연하여 음극을 제작하였다. 그리고 Li 금속을 대극으로 사용하여 2016 코인 타입의 반쪽 전지를 구성한 후 0.01V 내지 2.0V 사이에서 0.2C↔0.2C(1회), 0.01V 내지 1.0V 사이에서 0.2C↔0.2C(1회), 0.01V 내지 1.0V 사이에서 1C↔1C(50회)의 조건으로 전지의 전기적 특성을 평가하였다. 측정된 실시예 1 및 일반적으로 리튬 이차 전지에서 음극으로 주로 사용되는 그라파이트의 초기 충방전 특성을 도 3에 나타내었다. 도 3에 나타낸 것과 같이, 실시예 1의 음극 활물질이 그라파이트에 비해서 용량이 높고 충방전 전압도 다소 높음을 알 수 있다. Evaluation of the electrochemical characteristics (capacity and lifespan characteristics) of the negative electrode active materials prepared according to Examples 1 to 4 and Comparative Examples 1 to 3 was carried out as follows. That is, the negative electrode active material / graphite conductive material / polyvinylidene fluoride binder = was measured at a weight ratio of 45/45/10 and dissolved in N-methyl-2-pyrrolidone solvent to prepare a slurry for producing a plate. The slurry was coated on Cu foil to form a thin electrode plate (40-50 μm, including Cu foil thickness), dried in an oven at 135 ° C. for at least 3 hours, and then rolled to prepare a negative electrode. Then, a half coin-type half cell was constructed using Li metal as a counter electrode, and 0.2C↔0.2C (once) between 0.01V and 2.0V and 0.2C↔0.2C (once) between 0.01V and 1.0V. , Electrical characteristics of the battery were evaluated under the conditions of 1C↔1C (50 times) between 0.01V and 1.0V. The measured initial charge and discharge characteristics of graphite mainly used as a negative electrode in Example 1 and generally lithium secondary batteries are shown in FIG. 3. As shown in FIG. 3, it can be seen that the negative electrode active material of Example 1 has a higher capacity and a somewhat higher charge / discharge voltage than graphite.

또한, 상술한 충방전 조건으로 충방전을 실시하여, 초기 용량(0.2C) 및 50회 충방전 용량(1C)을 측정하여 하기 표 1에 나타내었다. 또한 1C로 50사이클의 충방전을 실시한 후의 용량을 초기용량에 대한 %비율인 사이클 수명 특성도 표 2에 함께 나타내었다.In addition, charge and discharge were performed under the above-described charge and discharge conditions, and the initial capacity (0.2C) and 50 charge / discharge capacities (1C) were measured and shown in Table 1 below. Table 2 also shows the cycle life characteristics, which is the ratio of the initial capacity to the capacity after 50 cycles of charge and discharge at 1C.

초기 용량(0.2C)(mAh/cc)Initial Capacity (0.2C) (mAh / cc) 50회 용량(1C)(mAh/cc)50 times of capacity (1C) (mAh / cc) 사이클 수명(%)Cycle life (%) 실시예 1Example 1 660660 602602 9191 실시예 2Example 2 715715 638638 8989 실시예 3Example 3 695695 633633 9191 실시예 4Example 4 708708 624624 8888 비교예 1Comparative Example 1 652652 326326 5050 비교예 2Comparative Example 2 602602 211211 3535 비교예 3Comparative Example 3 593593 243243 4141

상기 실시예 1 내지 4의 음극 활물질을 사용한 전지는 초기 용량은 비교예 1 내지 3과 약간 유사한 값을 나타내나, 충방전 횟수가 증가할수록 잔존 용량(즉, 용량 유지율)이 비교예 1 내지 3보다 매우 높음을 알 수 있다. 즉, 실시예 1 내지 4의 전지의 사이클 수명 특성이 비교예 1 내지 3에 비하여 매우 높게 나타남을 알 수 있다.In the battery using the negative electrode active materials of Examples 1 to 4, the initial capacity is slightly similar to that of Comparative Examples 1 to 3, but as the number of charge and discharge cycles increases, the remaining capacity (that is, capacity retention) is higher than that of Comparative Examples 1 to 3. It is very high. That is, it can be seen that the cycle life characteristics of the batteries of Examples 1 to 4 are very high compared to Comparative Examples 1 to 3.

본 발명의 음극 활물질은 고용량, 특히 고율로 충방전을 시켜도 고용량과 우수한 수명 특성을 나타내는 리튬 이차 전지를 제공할 수 있다.The negative electrode active material of the present invention can provide a lithium secondary battery that exhibits high capacity and excellent lifespan even when charged and discharged at a high capacity, particularly at a high rate.

도 1은 본 발명의 리튬 이차 전지를 개략적으로 나타낸 도면.1 is a view schematically showing a lithium secondary battery of the present invention.

도 2는 본 발명의 실시예 1 내지 3에 따라 제조된 음극 활물질의 X-선 회절 패턴을 나타낸 그래프.Figure 2 is a graph showing the X-ray diffraction pattern of the negative active material prepared according to Examples 1 to 3 of the present invention.

도 3은 본 발명의 실시예 1에 따라 제조된 음극 활물질 및 그라파이트의 초기 충방전 특성을 나타낸 그래프.Figure 3 is a graph showing the initial charge and discharge characteristics of the negative electrode active material and graphite prepared according to Example 1 of the present invention.

Claims (10)

하기 화학식 1을 갖으며, (003)면의 X-선 회절 피크 반가폭이 0.5 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.5 이하인 리튬 이차 전지용 음극 활물질.The negative electrode active material having the following general formula (1), wherein the half width of the X-ray diffraction peak half width of the (003) plane is 0.5 or less, and the half width of the X-ray diffraction peak of the (104) plane is 0.5 or less. [화학식 1][Formula 1] LixMyVzO2+d Li x M y V z O 2 + d (상기 식에서, 0.1 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이며, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 것임)Wherein 0.1 ≦ x ≦ 2.5, 0 ≦ y ≦ 0.5, 0.5 ≦ z ≦ 1.5, 0 ≦ d ≦ 0.5, and M is selected from the group consisting of Al, Cr, Mo, Ti, W and Zr. 제 1 항에 있어서, 상기 활물질은 (003)면의 X-선 회절 피크 반가폭이 0.3 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.4 이하인 리튬 이차 전지용 음극 활물질.The negative electrode active material of claim 1, wherein the half-width of the X-ray diffraction peak at the (003) plane is 0.3 or less, and the half-width of the X-ray diffraction peak at the (104) plane is 0.4 or less. 제 1 항에 있어서, 상기 활물질은 (003)면의 X선 회절 피크 강도 I(003)과 (104)면의 X선 회절 피크 강도 I(104)의 비인 I(003)/I(104) 값이 0.3 내지 2인 리튬 이차 전지용 음극 활물질.The I (003) / I (104) value of claim 1, wherein the active material is a ratio of X-ray diffraction peak intensity I (003) on the (003) plane to X-ray diffraction peak intensity I (104) on the (104) plane. The negative electrode active material for lithium secondary batteries which is 0.3-2. 제 1 항에 있어서, 상기 활물질은 (003)면의 X선 회절 피크 강도 I(003)과 (104)면의 X선 회절 피크 강도 I(104)의 비인 I(003)/I(104) 값이 0.5 내지 1.5인 리튬 이차 전지용 음극 활물질.The I (003) / I (104) value of claim 1, wherein the active material is a ratio of X-ray diffraction peak intensity I (003) on the (003) plane to X-ray diffraction peak intensity I (104) on the (104) plane. The negative electrode active material for lithium secondary batteries which is 0.5-1.5. 제 1 항에 있어서, 상기 활물질은 2.8Å < 격자 상수 a < 2.9Å, 14Å < 격자 상수 b < 15Å의 물성을 갖는 것인 리튬 이차 전지용 음극 활물질.The negative active material of claim 1, wherein the active material has physical properties of 2.8 kV <lattice constant a <2.9 kV and 14 kV <lattice constant b <15 kV. 하기 화학식 1을 갖으며, (003)면의 X-선 회절 피크 반가폭이 0.5 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.5 이하인 음극 활물질을 포함하는 음극;A negative electrode having the formula (1), the negative electrode active material having a half width of the X-ray diffraction peak half width of the (003) plane is 0.5 or less, 0.5 or less; 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하는 양극; 및A positive electrode including a positive electrode active material capable of reversibly intercalating and deintercalating lithium ions; And 전해액Electrolyte 을 포함하는 리튬 이차 전지.Lithium secondary battery comprising a. [화학식 1][Formula 1] LixMyVzO2+d Li x M y V z O 2 + d (상기 식에서, 0.1 ≤ x ≤ 2.5, 0 ≤ y ≤ 0.5, 0.5 ≤ z ≤ 1.5, 0 ≤ d ≤ 0.5이며, M은 Al, Cr, Mo, Ti, W 및 Zr로 이루어진 군에서 선택되는 것임)Wherein 0.1 ≦ x ≦ 2.5, 0 ≦ y ≦ 0.5, 0.5 ≦ z ≦ 1.5, 0 ≦ d ≦ 0.5, and M is selected from the group consisting of Al, Cr, Mo, Ti, W and Zr. 제 6 항에 있어서, 상기 활물질은 (003)면의 X-선 회절 피크 반가폭이 0.3 이하이고, (104)면의 X-선 회절 피크 반가폭이 0.4 이하인 리튬 이차 전지.The lithium secondary battery according to claim 6, wherein the active material has an X-ray diffraction peak half width of (003) plane of 0.3 or less and an X-ray diffraction peak half width of (104) plane of 0.4 or less. 제 6 항에 있어서, 상기 활물질은 (003)면의 X선 회절 피크 강도 I(003)과 (104)면의 X선 회절 피크 강도 I(104)의 비인 I(003)/I(104) 값이 0.3 내지 2인 리튬 이차 전지.7. The value of I (003) / I (104) according to claim 6, wherein the active material is a ratio of X-ray diffraction peak intensity I (003) on the (003) plane and X-ray diffraction peak intensity I (104) on the (104) plane. The lithium secondary battery which is 0.3-2. 제 6 항에 있어서, 상기 활물질은 (003)면의 X선 회절 피크 강도 I(003)과 (104)면의 X선 회절 피크 강도 I(104)의 비인 I(003)/I(104) 값이 0.5 내지 1.5인 리튬 이차 전지.7. The value of I (003) / I (104) according to claim 6, wherein the active material is a ratio of X-ray diffraction peak intensity I (003) on the (003) plane and X-ray diffraction peak intensity I (104) on the (104) plane. The lithium secondary battery which is 0.5-1.5. 제 6 항에 있어서, 상기 활물질은 2.8Å < 격자 상수 a < 2.9Å, 14Å < 격자 상수 b < 15Å의 물성을 갖는 것인 리튬 이차 전지.The lithium secondary battery according to claim 6, wherein the active material has physical properties of 2.8 kV <lattice constant a <2.9 kV, 14 kV <lattice constant b <15 kV.
KR1020040003260A 2003-08-21 2004-01-16 Negative active material for rechargeable lithium battery and rechargeable lithium battery KR100570650B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020040003260A KR100570650B1 (en) 2004-01-16 2004-01-16 Negative active material for rechargeable lithium battery and rechargeable lithium battery
US10/921,358 US8026003B2 (en) 2003-08-21 2004-08-19 Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same
EP04090319.7A EP1511101B1 (en) 2003-08-21 2004-08-19 Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
CNB2004100981259A CN100487960C (en) 2003-08-21 2004-08-20 Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery comprising same
JP2004242992A JP2005072008A (en) 2003-08-21 2004-08-23 Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery including it
JP2009242646A JP2010016005A (en) 2003-08-21 2009-10-21 Negative electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery containing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040003260A KR100570650B1 (en) 2004-01-16 2004-01-16 Negative active material for rechargeable lithium battery and rechargeable lithium battery

Publications (2)

Publication Number Publication Date
KR20050075888A true KR20050075888A (en) 2005-07-25
KR100570650B1 KR100570650B1 (en) 2006-04-12

Family

ID=37263891

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040003260A KR100570650B1 (en) 2003-08-21 2004-01-16 Negative active material for rechargeable lithium battery and rechargeable lithium battery

Country Status (1)

Country Link
KR (1) KR100570650B1 (en)

Also Published As

Publication number Publication date
KR100570650B1 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
KR100560540B1 (en) Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR100508941B1 (en) Method of preparing positive active material for rechargeable lithium battery and positive active material for rechargeable lithium battery fabricated using same
US8026003B2 (en) Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same
KR100670507B1 (en) Lithium secondary battery
KR100953615B1 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
US7608365B1 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4766991B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
KR100759410B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR101064729B1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery comprising same
KR101047450B1 (en) Anode active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising same
US20130171524A1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR20050077079A (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR20050079782A (en) Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
KR20050048452A (en) The surface-coated cathode material for lithium secondary battery
EP1936720B1 (en) Negative electrode and rechargeable lithium battery including the same
US7981545B2 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
KR20040052463A (en) Positive plate material and cell comprising it
KR20180014955A (en) Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode comprising the same
US7056622B2 (en) Nonaqueous electrolyte secondary battery
KR101224618B1 (en) Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof
KR100560537B1 (en) Negative active material for non-aqueous electrolyte battery, method of preparing same, and non-aqueous electrolyte battery
KR100794168B1 (en) Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
KR101244737B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
KR100570649B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR101173860B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120326

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee