KR20050072349A - Apparatus for correcting tool induced focus drift of pattern alignment measurement device - Google Patents

Apparatus for correcting tool induced focus drift of pattern alignment measurement device Download PDF

Info

Publication number
KR20050072349A
KR20050072349A KR1020040000746A KR20040000746A KR20050072349A KR 20050072349 A KR20050072349 A KR 20050072349A KR 1020040000746 A KR1020040000746 A KR 1020040000746A KR 20040000746 A KR20040000746 A KR 20040000746A KR 20050072349 A KR20050072349 A KR 20050072349A
Authority
KR
South Korea
Prior art keywords
tifd
wafer
measuring
optical axis
correction
Prior art date
Application number
KR1020040000746A
Other languages
Korean (ko)
Inventor
박정렬
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020040000746A priority Critical patent/KR20050072349A/en
Publication of KR20050072349A publication Critical patent/KR20050072349A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7034Leveling

Abstract

반도체 제조공정의 리소그래피 공정에서 사용되는 패턴 정렬도 계측장치와 같은 패턴 정렬도 측정장치의 툴 인듀스드 포커스 드리프트(TIFD; tool induced focus drift) 보정장치가 개시된다. 개시된 TIFD 보정장치는 광검출 장치를 구비하는 광축 정렬 장치와, 웨이퍼 스테이지를 좌우로 움직이면서 초점의 변동량을 측정하면 웨이퍼의 경사도를 측정할 수 있는 웨이퍼 경사 보정장치 및 TIFD에 따라 웨이퍼 스테이지의 경사보정을 수행하는 액츄에이터를 포함한다. 따라서, TIS를 보정하는 장치를 가진 계측기에도 현재는 전혀 탑재되어 있지 않으며 이런 개념도 정립되어 있지 않으나 모든 웨이퍼 상의 데이터를 읽어내는 계측기는 TIFD를 가지고 있으며, 그 정도의 차이만 있을 뿐인데 이를 보정할 방법을 제시한 것으로, 거의 모든 계측기에 적용될 수 있으며, 계측기의 신뢰도를 크게 향상시킬 수 있는 효과가 있다. Disclosed is a tool induced focus drift (TIFD) correcting apparatus of a pattern alignment degree measuring device such as a pattern alignment degree measuring device used in a lithography process of a semiconductor manufacturing process. The disclosed TIFD compensator includes an optical axis alignment device having a photodetector, a wafer inclination compensator capable of measuring the inclination of the wafer by measuring the amount of variation in focus while moving the wafer stage from side to side, and correcting the inclination of the wafer stage according to the TIFD. Actuator to perform. Therefore, instruments that have a TIS calibration device are not currently installed at all, and this concept is not established. However, the instrument that reads data on all wafers has a TIFD, and there is only a slight difference. As proposed, it can be applied to almost all measuring instruments, and can greatly improve the reliability of measuring instruments.

Description

툴 인듀스드 포커스 드리프트 보정장치{APPARATUS FOR CORRECTING TOOL INDUCED FOCUS DRIFT OF PATTERN ALIGNMENT MEASUREMENT DEVICE} Tool-induced focus drift compensation device {APPARATUS FOR CORRECTING TOOL INDUCED FOCUS DRIFT OF PATTERN ALIGNMENT MEASUREMENT DEVICE}

본 발명은 반도체 공정에 관한 것으로서, 보다 상세하게는, 반도체 제조공정의 리소그래피 공정에서 사용되는 패턴 정렬도 계측장치와 같은 툴 인듀스드 포커스 드리프트(TIFD; tool induced focus drift) 보정장치에 관한 것이다. TECHNICAL FIELD The present invention relates to a semiconductor process, and more particularly, to a tool induced focus drift (TIFD) correction apparatus such as a pattern alignment degree measurement device used in a lithography process of a semiconductor manufacturing process.

종래의 패턴 정렬도 측정장치는 TIS(Tool Induced Shift)란 개념을 적용하여 그 값을 보정하며, 이러한 방법은 이미 잘 알려진 기술이다. Conventional pattern alignment measurement device to apply the concept of Tool Induced Shift (TIS) to correct the value, this method is a well known technique.

일반적으로, 이러한 TIS는 계측장치 자체의 오류로 인한 계측결과의 편향성으로 계측 알로리듬이나 기계장치간의 부정합, 계측자, 측정 변수 등 다양한 요인에 의해 발생된다. In general, such a TIS is caused by various factors such as measurement algorithms, mismatches between measurement algorithms, measuring instruments, and measurement variables due to deflection of measurement results due to errors in the measuring device itself.

도 1는 종래의 TIS(tool induced shift)의 개념을 설명하기 위한 개념도이다. 1 is a conceptual diagram illustrating a concept of a conventional tool induced shift (TIS).

도 1을 참조하면, 종래의 TIS를 보정하는 방법으로 패턴 정렬도 측정장치에서는 수학식 1과 같은 방법을 사용하여 보정하는 것을 알 수 있다. Referring to FIG. 1, it can be seen that the pattern alignment measurement apparatus is used to correct the TIS using a method similar to Equation 1 as a method of correcting a conventional TIS.

[수학식 1][Equation 1]

0°웨이퍼 측정값 + 180°웨이퍼 측정값 = 2 x TIS0 ° wafer measurement + 180 ° wafer measurement = 2 x TIS

실제값 = 0°웨이퍼 측정값 - TIS Actual value = 0 ° Wafer measurement-TIS

즉, 기존의 설정치로 측정을 행하고, 웨이퍼를 180ㅀ 회전한 다음 다시 한번 측정한다. 이 두 값의 차이가 0이되게 하는 방법으로서 소프트 웨어적으로 출력된 값을 가감하는 방법을 사용한다. That is, the measurement is performed at the existing set value, the wafer is rotated 180 s and then measured again. As a method of making the difference between these two values equal to zero, a method of adding or subtracting the value printed by software is used.

도 2a는 종래의 계측기의 광축이 웨이퍼에 대하여 오정렬된 상태를 나타내며, 도 2b는 계측기의 광축에 대하여 웨이퍼가 틀어진 경우를 나타낸다. 2A shows a state in which an optical axis of a conventional measuring instrument is misaligned with respect to a wafer, and FIG. 2B shows a case where the wafer is misaligned with respect to the optical axis of the measuring instrument.

도 2a에 도시한 바와 같이, 계측장치 자체의 광축이 기울어져 있는 경우는 보정가능하지만, 도 2b에 도시한 바와 같이, 웨이퍼(10)가 광축에 대하여 기울어진 경우에는 보정이 불가능하다. As shown in FIG. 2A, correction is possible when the optical axis of the measuring device itself is inclined. However, correction is not possible when the wafer 10 is inclined with respect to the optical axis as shown in FIG. 2B.

이 경우, 주사 전자 현미경(SEM; scanning electron microscope) 등 다른 계측장치와 차이를 보정할 수는 있으나 그렇게 되면 TIS는 두배로 틀어지게 되어 계측기 자체의 신뢰성은 크게 떨어지게 된다. 이는 측정 시료의 초점을 변화하면 측정값은 광축이 틀어진 방향에 대해 일정한 비율로 변화한다. 이것을 TIFD(Tool Induced Focus Drift)라고 칭한다. In this case, the difference can be corrected with other measuring devices such as a scanning electron microscope (SEM), but the TIS is doubled, and the reliability of the measuring device itself is greatly reduced. This changes the focus of the measurement sample and the measured value changes at a constant rate with respect to the direction in which the optical axis is twisted. This is called TIFD (Tool Induced Focus Drift).

따라서, 종래의 TIS 보정 장치로는 TIFD를 보정할 수 없다는 문제점이 있다. Therefore, there is a problem that the TIFD cannot be corrected by the conventional TIS correction apparatus.

본 발명은 상기와 같은 문제점을 개선하기 위해 창작된 것으로서, 본 발명의 주목적은 광축의 비틀림량과 웨이퍼 스테이지의 틸트(tilt) 정도를 측정하여 기운 각을 계산한 후, 이를 광축 정렬 메카니즘과 웨이퍼 틸트 스테이지에 전달하여 보상할 수 있는 TIFD 보정장치를 제공하는 것이다. The present invention was created to solve the above problems, and the main purpose of the present invention is to calculate the tilt angle by measuring the amount of twist of the optical axis and the degree of tilt of the wafer stage, and then calculating the tilt angle. It is to provide a TIFD correction device that can be delivered to the stage to compensate.

상기와 같은 목적을 실현하기 위한 본 발명은 웨이퍼 스테이지에 장착된 웨이퍼와 계측장치 사이의 정렬도를 보정하기 위한 보정 장치에 있어서, 광검출 장치를 구비하는 광축 정렬 장치와, 웨이퍼 스테이지를 좌우로 움직이면서 초점의 변동량을 측정하면 웨이퍼의 경사도를 측정할 수 있는 웨이퍼 경사 보정장치, - 광축 정렬 장치의 광축이 틀어져 있는 경우 상기 웨이퍼 경사 보정 장치는 측정된 값을 이용하여 웨이퍼 스테이지를 상하로 움직이면 틀어져 있는 광축의 입장에서는 패턴의 드리프트(TIFD)가 광검출 장치에서 발생한다-; 및 TIFD에 따라 웨이퍼 스테이지의 경사보정을 수행하는 액츄에이터를 포함하는 것을 특징으로 하는 TIFD 보정장치가 제공된다. The present invention for achieving the above object is a correction device for correcting the degree of alignment between the wafer mounted on the wafer stage and the measuring device, the optical axis alignment device having a light detection device, while moving the wafer stage from side to side Wafer inclination correcting device that can measure the inclination of the wafer when the variation of the focus is measured,-When the optical axis of the optical axis alignment device is misaligned, the wafer inclination correcting device uses the measured value to move the wafer stage up and down In view of the pattern drift (TIFD) occurs in the photodetecting device; And an actuator for performing tilt correction of the wafer stage according to the TIFD.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 또한 본 실시예는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시된 것이다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this embodiment is not intended to limit the scope of the present invention, but is presented by way of example only.

도 3은 본 발명의 바람직한 실시예에 따른 TIFD 보정장치를 설명하기 위한 개략도이다. 3 is a schematic diagram illustrating a TIFD correction apparatus according to a preferred embodiment of the present invention.

도 3에 도시한 바와 같이, 본 발명의 바람직한 실시예에 따르면, 광축 정렬 장치(110)와 웨이퍼 경사 보정장치(102, 104, 106)를 기본으로 탑재하여야 한다. 광축의 정렬도는 웨이퍼 스테이지(108)를 상하로 움직였을 때 화면이 옆으로 움직이는 정도를 측정하는 것인데 화면의 이동량을 측정하면 되므로 쉽다. As shown in FIG. 3, according to a preferred embodiment of the present invention, the optical axis alignment device 110 and the wafer tilt correction devices 102, 104, and 106 should be mounted as a base. The degree of alignment of the optical axis is to measure the degree to which the screen moves to the side when the wafer stage 108 is moved up and down, so it is easy to measure the amount of movement of the screen.

또한 웨이퍼 스테이지(108)를 좌우로 움직이면서 초점의 변동량을 측정하면 웨이퍼 스테이지(108)에 장착된 웨이퍼의 경사도를 측정할 수 있다. 이 방법으로 먼저 웨이퍼의 세곳에서 초점 변동량을 계측한다. 측정된 초점의 차이는 벡터로 합성되어 웨이퍼의 기울어진 방향과 크기를 나타내며 웨이퍼의 경사보정장치를 구동하여 경사를 우선 보정한다. In addition, by measuring the amount of change in focus while moving the wafer stage 108 from side to side, the inclination of the wafer mounted on the wafer stage 108 can be measured. In this way, focus fluctuations are first measured at three locations on the wafer. The measured difference in focus is synthesized as a vector to indicate the tilt direction and size of the wafer, and the tilt correction device is first corrected by driving the tilt correction device.

경사보정이 끝난 웨이퍼 스테이지(108)는 광축이 틀어져 있는 경우 웨이퍼를 상하로 움직이면 틀어져 있는 광축의 입장에서는 패턴의 드리프트가 발생한다. 이것을 TIFD라고 명명하며 TIFD 측정장치는 CMOS 이미지 센서나 CCD의 중앙에 빛이 도달할 때 TIFD는 0이며 다른 위치에서 빛이 감지되면 그 픽셀(pixel) 수 만큼의 크기로 움직인 방향만큼 TIFD가 생긴 것으로, 이 신호는 웨이퍼 스테이지(108)의 위치 보정 액츄에이터에 전달되어 경사보정을 실행한다. When the tilt correction is performed on the wafer stage 108, the drift of the pattern occurs when the wafer is moved up and down when the optical axis is distorted. This is called TIFD. The TIFD measuring device has a TIFD of 0 when light reaches the center of the CMOS image sensor or CCD. When light is detected at other locations, the TIFD is generated as much as the number of pixels. This signal is transmitted to the position correction actuator of the wafer stage 108 to perform tilt correction.

다시, TIFD 센서에 빛이 중앙에 들어오면 정상적으로 경사보정이 실행된 것으로 TIS에 이어 중요한 요인인 TIFD를 효과적으로 자기 보정할 수 있다.Again, when the light enters the center of the TIFD sensor, the slope correction is normally performed. Therefore, the TIFD, which is an important factor following the TIS, can be effectively self-calibrated.

본 발명의 경사 보정장치는 계측기용으로 고안되었으나 상식적인 범위내에서 그 활용범위가 광범위하며, 모든 종류의 경사 보정장치에도 값싸게 응용될 수 있다. The inclination correcting device of the present invention is designed for measuring instruments, but it is widely used within the common sense range, and can be applied inexpensively to all kinds of inclination correcting devices.

본 발명의 바람직한 실시예에 따르면, 광검출기는 CCD로 이루어지며 CCD의 중심에 반사된 빛이 들어와 평면 맵을 읽어 TIFD를 벡터 성분으로 읽도록 설계된 알고리듬으로 동작하는 것을 특징으로 한다. According to a preferred embodiment of the present invention, the photodetector is composed of a CCD and is characterized by operating with an algorithm designed to read a planar map by reading light reflected at the center of the CCD and reading the TIFD as a vector component.

또한, 본 발명의 바람직한 실시예에 따르면, TIFD를 경사 보정장치에 연결함으로써 실시간 경사보정이 가능하도록 한 것을 특징으로 한다. In addition, according to a preferred embodiment of the present invention, by connecting the TIFD to the tilt correction device is characterized in that to enable real-time tilt correction.

상기한 바와 같이 본 발명은 TIS를 보정하는 장치를 가진 계측기에도 현재는 전혀 탑재되어 있지 않으며 이런 개념도 정립되어 있지 않으나 모든 웨이퍼 상의 데이터를 읽어내는 계측기는 TIFD를 가지고 있으며, 그 정도의 차이만 있을 뿐인데 이를 보정할 방법을 제시한 것으로, 거의 모든 계측기에 적용될 수 있으며, 계측기의 신뢰도를 크게 향상시킬 수 있는 효과가 있다. As described above, the present invention is not currently installed in a measuring instrument having a device for calibrating TIS, and this concept is not established. However, a measuring instrument that reads data on all wafers has a TIFD, and there is only a difference. As a method of correcting the problem, the present invention can be applied to almost all measuring instruments, and the reliability of the measuring instrument can be greatly improved.

도 1는 종래의 TIS의 개념을 설명하기 위한 개념도이다. 1 is a conceptual diagram illustrating a concept of a conventional TIS.

도 2a 및 도 2b는 종래의 계측기의 광축이 웨이퍼에 대하여 오정렬된 상태와 계측기의 광축에 대하여 웨이퍼가 틀어진 경우를 각각 설명하기 위한 도면들이다. 2A and 2B are diagrams for explaining a case in which an optical axis of a conventional measuring instrument is misaligned with respect to a wafer and a case where the wafer is misaligned with respect to the optical axis of the measuring instrument, respectively.

도 3은 본 발명의 바람직한 실시예에 따른 TIFD 보정장치를 설명하기 위한 개략도이다. 3 is a schematic diagram illustrating a TIFD correction apparatus according to a preferred embodiment of the present invention.

- 도면의 주요부분에 대한 부호의 설명 -   -Explanation of symbols for the main parts of the drawings-

102, 104, 106 : 경사 보정장치 108 : 웨이퍼 스테이지102, 104, 106: tilt correction device 108: wafer stage

110 : TIFD 측정장치 110: TIFD measuring device

Claims (5)

웨이퍼 스테이지에 장착된 웨이퍼와 계측장치 사이의 정렬도를 보정하기 위한 보정 장치에 있어서, In the correction device for correcting the degree of alignment between the wafer mounted on the wafer stage and the measuring device, 광검출 장치를 구비하는 광축 정렬 장치와; An optical axis alignment device having a light detection device; 상기 웨이퍼 스테이지를 좌우로 움직이면서 초점의 변동량을 측정하여 상기 웨이퍼의 경사도를 측정할 수 있는 웨이퍼 경사 보정장치 및 Wafer inclination correcting apparatus capable of measuring the inclination of the wafer by measuring the amount of change in focus while moving the wafer stage left and right; 상기 TIFD에 따라 웨이퍼 스테이지의 경사보정을 수행하는 액츄에이터를Actuator for performing tilt correction of the wafer stage in accordance with the TIFD 포함하는 것을 특징으로 하는 TIFD 보정장치. TIFD correction apparatus comprising a. 제 1항에 있어서, The method of claim 1, 상기 초점 변동량의 측정은 상기 웨이퍼의 적어도 3곳 이상에서 측정한 것을 특징으로 하는 TIFD 보정장치. TIFD correction apparatus characterized in that the measurement of the amount of focus variation is measured in at least three places of the wafer. 제 1항에 있어서, The method of claim 1, 상기 광검출기는 CCD로 이루어지며 CCD의 중심에 반사된 빛이 들어와 평면 맵을 읽어 TIFD를 벡터 성분으로 읽도록 설계된 알고리듬으로 동작하는 것을 특징으로 하는 TIFD 보정장치. The photodetector is a TIFD correction apparatus, characterized in that the CCD is operated by an algorithm designed to read the TIFD as a vector component by reading the planar map light is reflected in the center of the CCD. 제 1 항에 있어서, The method of claim 1, 상기 TIFD를 경사 보정장치에 연결함으로써 실시간 경사보정이 가능하도록 한 것을 특징으로 하는 TIFD 보정장치. TIFD correction apparatus, characterized in that to enable real-time tilt correction by connecting the TIFD to the tilt correction device. 제 1항에 있어서, The method of claim 1, 상기 광축 정렬 장치의 광축이 틀어져 있는 경우 상기 웨이퍼 경사 보정 장치는 측정된 값을 이용하여 상기 웨이퍼 스테이지를 상하로 움직여 틀어져 있는 광축 패턴의 드리프트(TIFD)가 상기 광검출 장치에서 발생하도록 하는 것을 특징으로 하는 TIFD 보정장치. When the optical axis of the optical axis alignment device is misaligned, the wafer tilt correction device moves the wafer stage up and down using the measured value so that the drift (TIFD) of the distorted optical axis pattern is generated in the optical detection device. TIFD compensator.
KR1020040000746A 2004-01-06 2004-01-06 Apparatus for correcting tool induced focus drift of pattern alignment measurement device KR20050072349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040000746A KR20050072349A (en) 2004-01-06 2004-01-06 Apparatus for correcting tool induced focus drift of pattern alignment measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040000746A KR20050072349A (en) 2004-01-06 2004-01-06 Apparatus for correcting tool induced focus drift of pattern alignment measurement device

Publications (1)

Publication Number Publication Date
KR20050072349A true KR20050072349A (en) 2005-07-11

Family

ID=37261826

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040000746A KR20050072349A (en) 2004-01-06 2004-01-06 Apparatus for correcting tool induced focus drift of pattern alignment measurement device

Country Status (1)

Country Link
KR (1) KR20050072349A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466728A (en) * 2019-07-26 2022-05-10 朗姆研究公司 Integrated adaptive positioning system and routines for automated wafer handling robot teaching and health check

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466728A (en) * 2019-07-26 2022-05-10 朗姆研究公司 Integrated adaptive positioning system and routines for automated wafer handling robot teaching and health check

Similar Documents

Publication Publication Date Title
US8502871B2 (en) Gauge line position measuring device, program for measuring a gauge line position, and gauge line mark
US5671056A (en) Three-dimensional form measuring apparatus and method
US7024041B2 (en) Pattern inspection apparatus and method
CN102519510B (en) Calibration device and calibration method of position sensitive sensor
US20060255272A1 (en) Calibration method for electron-beam system and electron-beam system
US7683313B2 (en) Charged particle beam measurement equipment, size correction and standard sample for correction
US7227627B1 (en) Optical biaxial angle sensor
EP2376965B1 (en) Scanning microscope
US7443516B2 (en) Optical-distortion correcting apparatus and optical-distortion correcting method
JPH0735964B2 (en) Interval measuring device
JP3958328B2 (en) Sample inspection apparatus, sample inspection method, and program
JP2006129473A (en) Method and apparatus for correction of nonlinear field of view distortion of digital imaging system
US7514679B2 (en) Scanning probe microscope for measuring angle and method of measuring a sample using the same
KR20050072349A (en) Apparatus for correcting tool induced focus drift of pattern alignment measurement device
JP2009204382A (en) Mtf measuring method and mtf measuring instrument
US20090316978A1 (en) Manufacturing method for inspection device
JPH10281736A (en) Magnification calibrator and profile measuring system
JP4533766B2 (en) Method for measuring height in electron beam lithography system
JPH11351836A (en) Solid shape detecting device and method thereof
JP3823488B2 (en) IC lead float inspection device and inspection method
US20100211344A1 (en) Method for calibrating and/or correcting a display device having a needle, the needle being able to move in rotation about an axis of rotation
JP3959223B2 (en) Inspection condition correction method for pattern inspection system, pattern inspection system, and recording medium
JP4957027B2 (en) Overlay measuring device
JP2003316441A (en) Apparatus for precise position control and method therefor using the same
KR19990001730A (en) Alignment Key Formation Structure of Stepper Equipment

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination