KR20050066237A - Method for manufacturing grain-oriented electrical steel sheet with excellent glass film properties - Google Patents

Method for manufacturing grain-oriented electrical steel sheet with excellent glass film properties Download PDF

Info

Publication number
KR20050066237A
KR20050066237A KR1020030097498A KR20030097498A KR20050066237A KR 20050066237 A KR20050066237 A KR 20050066237A KR 1020030097498 A KR1020030097498 A KR 1020030097498A KR 20030097498 A KR20030097498 A KR 20030097498A KR 20050066237 A KR20050066237 A KR 20050066237A
Authority
KR
South Korea
Prior art keywords
amount
annealing
temperature
coating
hot
Prior art date
Application number
KR1020030097498A
Other languages
Korean (ko)
Other versions
KR101059216B1 (en
Inventor
박종호
최규승
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020030097498A priority Critical patent/KR101059216B1/en
Publication of KR20050066237A publication Critical patent/KR20050066237A/en
Application granted granted Critical
Publication of KR101059216B1 publication Critical patent/KR101059216B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

본 발명은 중량비로 Si : 2.9∼3.3%, C : 0.040∼0.059%, 용존 Al : 0.021∼0.030%, N : 0.006∼0.010%, Mn : 0.008∼0.012%, Cr : 0.04~0.12%를 기본으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 구성된 조성의 슬라브를 1250℃이하에서 재가열후 열간압연하여 2.0~2.3mm의 열간압연판을 만든 후, 이어서 1100℃이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종 두께인 0.27~0.30mm두께로 조정하고, 이후 수소가 주종인 습윤분위기하의 840∼890℃부근에서 탈탄판의 산화물을 SiO2상태의 [O]량을 380~540ppm하에서 [O]량의 분석치 X(ppm)에 따라서, 이후 MgO주성분의 소둔분리제의 수화수분(LOI)량 Y(%) 및 도포량 Z(g/m2)량을 식 1에 의하여 Z = (634 - X) / 5.6 Y ± 0.2 ------(식 1) 제어관리하는 탈탄처리를 행하고, 이어서 소둔분리제로 MgO 및 소량의 TiO2 및 Na2B4O7의 혼합물을 슬러리상태로 하여 도포, 건조한 다음 권취하여 대형코일로 만든 후, 700∼1200℃구간의 승온속도를 15℃/hr이상 유지하면서 승온하여 최고온도 1200℃에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리 고온소둔을 행하는 것을 특징으로 하는 그라스피막특성이 우수한 방향성 전기강판 제조방법에 관한 것이다.The present invention is based on Si: 2.9 to 3.3%, C: 0.040 to 0.059%, dissolved Al: 0.021 to 0.030%, N: 0.006 to 0.010%, Mn: 0.008 to 0.012%, Cr: 0.04 to 0.12% After reheating the slab composed of Fe with other components inevitably mixed under 1250 ℃ and hot rolling to make a hot rolled plate of 2.0 ~ 2.3mm, and then hot-rolled sheet annealing at a temperature of 1100 ℃ After pickling and cold rolling, the final thickness was adjusted to 0.27-0.30 mm, and then the oxide of the decarburized plate was sintered in the vicinity of 840-890 ° C. under a humid atmosphere mainly composed of hydrogen under [380] of 380-540 ppm. According to the analysis value of O] amount X (ppm), the amount of hydrated water (LOI) Y (%) and the amount of coating Z (g / m 2) of the annealing separator of the MgO main component are then calculated by Equation 1 Z = (634-X). ) / 5.6 Y ± 0.2 ------ (Equation 1) Controlled decarburization, followed by a mixture of MgO and a small amount of TiO2 and Na2B4O7 as an annealing separator. After applying, drying, and winding to make it into a large coil, it is heated up while maintaining the temperature increase rate of 700 ~ 1200 ℃ over 15 ℃ / hr, and cracked for more than 20 hours at the maximum temperature of 1200 ℃. The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent glass coating characteristics, characterized by performing a high temperature finish annealing.

Description

그라스피막특성이 우수한 방향성 전기강판 제조방법{Method for manufacturing grain-oriented electrical steel sheet with excellent glass film properties}Method for manufacturing grain-oriented electrical steel sheet with excellent glass film properties

본 발명은 방향성 전기강판 생산시 그라스피막의 특성 즉 그라스피막의 표면 외관결함이 없으면서 우수한 장력 부여능력을 갖는 그라스피막을 형성시킬 수 있는 제조 방법에 관한 것이다. 특히, 탈탄소둔시 형성된 산화물중의 SiO2화합물 상태의 [O]량에 따라 이후 소둔분리제의 주성분인 MgO중심 분말의 수화수분(LOI, Loss on Ignition)량과 도포량을 특정한 값으로 관리함으로써 고온소둔시 고장력 피막특성의 그라스피막을 갖는 방향성 전기강판의 제조방법에 관한 것이다. The present invention relates to a production method capable of forming a glass film having excellent tension imparting ability without producing a characteristic of the glass film, that is, the surface appearance defect of the glass film in the production of grain-oriented electrical steel sheet. In particular, according to the amount of [O] of the SiO 2 compound state in the oxide formed during the decarbonization annealing, the high temperature annealing is managed by controlling the amount of hydration (LOI, loss on ignition) and coating amount of the MgO core powder, which is the main component of the annealing separator, afterwards. The present invention relates to a method for producing a grain-oriented electrical steel sheet having a glass coating having high tensile coating properties.

통상 방향성 전기강판이란 3.0% Si성분을 함유한 것을 특징으로 하여 결정립의 방위가 (110)[001]방향으로 정렬된 집합조직을 가지고 있으며 이 제품은 압연방향으로 극히 우수한 자기적 특성을 가지고 있으므로 이 특성을 이용하여 변압기, 전동기, 발전기 및 기타 전자기기 등의 철심 재료로 사용된다.Ordinary oriented electrical steel sheets contain 3.0% Si and have a grain structure where grain orientations are aligned in the (110) [001] direction. This product has very good magnetic properties in the rolling direction. It is used as a core material for transformers, electric motors, generators and other electronic devices.

방향성 전기강판은 일반적으로 2~4%의 Si와 입성장 억제제로 AlN 및 MnS를 함유하는 강을 이용하여 (열간압연) - (예비소둔) - (1회 또는 소둔공정이 낀 2회 냉간압연) - (탈탄소둔) - (MgO주성분의 소둔분리제 도포) - (고온 마무리소둔) - (장력코팅)등의 공정을 거처서 제조된다. A grain-oriented electrical steel sheet is generally made of 2-4% Si and steel containing AlN and MnS as a grain growth inhibitor. (Hot rolled)-(Pre-annealed)-(1 or 2 cold rolled by annealing) It is manufactured through the process of-(Decarbon annealing)-(MgO main component annealing separator)-(High temperature finishing annealing)-(Tension coating).

여기서 고온소둔공정은 소둔분리제로 도포된 MgO와 소재 표면에 형성된 페얄라이트(Fayalite, Fe2SiO4) 및 SiO2 등과 반응하여 통상의 그라스피막(Forsterite, Mg2SiO4)을 형성하여 전기절연성 및 밀착성을 부여할 뿐만 아니라, 최종제품에서 소재에 불필요한 S나 N성분을 제거하고, 가장 중요한 목적은 자기적 특성을 갖게 되는 2차 재결정형성을 완성시켜 제품의 자기적 특성을 부여하는 공정이다.Here, the high temperature annealing process reacts with MgO coated with annealing separator and Fayalite (Fayalite, Fe2SiO4) and SiO2 formed on the surface of the material to form a conventional glass film (Forsterite, Mg2SiO4) to provide electrical insulation and adhesion, In the final product, unnecessary S or N components are removed from the material, and the most important purpose is to complete the secondary recrystallization which has magnetic properties to give the magnetic properties of the product.

우수한 그라스피막은 기본적으로 외관에 결함이 없는 균일한 색상을 가져야 하지만, 기능성을 부여하려는 여러가지 기술의 접목에 의하여 전기절연성을 향상시키고 피막의 밀착성을 강화시키는 것이 주로 이용되는 기술이었다. 그러나 최근 고자속밀도급의 방향성 전기강판이 상용화되면서 소재면에 최종 절연피막으로서 장력코팅제를 적용하고 있으며, 또한 하부층의 그라스피막 장력부여능이 역시 최종제품의 자기적 특성 개선에 크게 기여함이 확인되어 그라스피막의 고장력화 기능 부여가 새로운 기술로 개발되고 있는 실정이다.The excellent glass film should basically have a uniform color without defects in appearance, but it was mainly used to improve electrical insulation and enhance the adhesion of the film by incorporating various technologies to provide functionality. However, with the recent commercialization of high-strength oriented electrical steel sheets, tension coating is applied to the surface of the material as the final insulating film, and the glass coating tension imparting ability of the lower layer also contributes to the improvement of the magnetic properties of the final product. Improving the high tensioning function of the glass film is being developed with a new technology.

지금까지 그라스피막의 특성 향상을 위해서 여러 가지 공정인자의 제어 기법이 응용되고 있었으며, 한국특허출원 제94-21390호, 제97-49226호와 같은 탈탄소둔시의 분위기가스중의 산화능(PH2O/PH2)등의 적정 제어에 의해 최적의 조성을 갖는 산화물층을 형성시키는 기술이 핵심으로 되어 있으며, 일본 국 특개평6-184638호에서는 탈탄 산화물의 조성을 적정히 제어하는 기술의 제공에 의하여 그라스피막의 특성을 개선하고자 하였다. 그러나 그라스피막의 최종 품질성능의 결정은 탈탄산화물층, 소둔분리제로 사용되는 MgO 중의 수화수분(LOI)량과 도포량으로, 이러한 총 수분이 고온소둔공정 약 900℃까지의 승온과정에서 방출정도 및 이 때에 형성되는 산화물의 질 및 양의 총합에 의하여 결정된다. 더구나, 각 제조사의 고온소둔 설비 및 조업조건에 의한 여러 가지의 복합 인자의 조정에 의하여 그라스피막의 최종품질은 결정될 수밖에 없는 실정이므로, 여러 가지로 요구되는 기능성 특성의 확보에는 미흡한 상태로 제품이 생산되고 있는 실정이다. Until now, various process factors control techniques have been applied to improve the characteristics of glass coatings, and the oxidation performance in atmospheric gas during decarbonization such as Korean Patent Application Nos. 94-21390 and 97-49226 has been applied (PH2O / PH2). A technique for forming an oxide layer having an optimum composition by proper control of the core) is the core. Japanese Patent Laid-Open No. Hei 6-184638 provides a technique for properly controlling the composition of decarburized oxide to provide characteristics of a glass film. It was intended to improve. However, the final quality performance of the glass film is determined by the amount of hydrated water (LOI) and coating amount in the MgO used as the decarburization layer and the annealing separator. It is determined by the sum of the quality and amount of oxides formed at the time. Moreover, the final quality of the glass film is inevitably determined by the adjustment of various complex factors according to the high-temperature annealing facilities and operating conditions of each manufacturer, so that the product is produced in a state in which it is insufficient to secure various required functional characteristics. It's happening.

본 발명은 종래 기술상의 문제점 해소를 위하여 마련된 것으로서, 그라스피막형성에 관련된 모든 관련 인자들의 종합적인 검토 결과 관리 핵심인자들을 선정하였고, 이들의 관리기법을 완성하게 되었으며, 동 기법으로 각 제조사 고유의 고온소둔 설비에서 탈탄소둔시의 SiO2계 산화물 및 소둔분리제 수화수분의 총량 관리에 의해 추가 형성되는 고온소둔공정 중의 SiO2량의 종합관리에 의해 고장력 부여능을 갖는 최적의 그라스피막을 형성시키는 제조방법의 제공을 그 목적으로 한다.The present invention has been prepared to solve the problems in the prior art, a comprehensive review of all relevant factors related to the formation of glass film management core factors were selected, and their management techniques were completed, and the high temperature unique to each manufacturer by the same technique. A method for producing an optimum glass film having high tensile strength by comprehensive management of SiO2 content during the high temperature annealing process, which is additionally formed by managing the total amount of SiO2 oxide and annealing separator hydration during decarbonization in an annealing facility. It is provided for that purpose.

본 발명은 크게 세가지 공정 인자의 조합에 의하여 특성 개선을 가능하게 하였으며, 이것을 크게 두개의 관리기술로 제어하고 있다. The present invention enables the improvement of characteristics by a combination of three process factors, which are largely controlled by two management techniques.

첫째는 최적의 그라스 피막을 형성하기 위해서는 여러가지 특성 인자들 중에서 탈탄산화물중의 SiO2산화물을 구성하는 [O]량의 필수적인 관리 항목으로, 이때의 [O]량은 380~540ppm이다.First of all, in order to form an optimal glass film, an essential management item for the amount of [O] constituting SiO 2 oxide in decarburized oxide among various characteristic factors, and the amount of [O] at this time is 380 to 540 ppm.

둘째는 탈탄산화물 중의 SiO2산화물의 [O]량의 분석 결과 X(ppm)에 따라 이후 소둔분리제의 수화수분량 및 도포량을 특정식에 따라 조정해 주어야 최적의 그라스피막을 얻을 수 있다는 것이다. 이 때의 MgO중의 수화수분 Y(%)량과 도포량 Z(g/m2)와의 관계식은 다음과 같다.Second, according to the analysis result of [O] amount of SiO2 oxide in the decarburized oxide, the hydration water content and coating amount of the annealing separator are subsequently adjusted according to a specific formula to obtain an optimum glass film. The relationship between the amount of hydrated water Y (%) in MgO and the amount of coating Z (g / m 2) at this time is as follows.

[식 1][Equation 1]

Z = (634 - X) / 5.6 Y ± 0.2 Z = (634-X) / 5.6 Y ± 0.2

이하, 본 발명에 대하여 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량비로 Si : 2.9∼3.3%, C : 0.040∼0.059%, 용존 Al : 0.021∼0.030%, N : 0.006∼0.010%, Mn : 0.080∼0.120%, Cr : 0.04~0.12%를 기본으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 구성된 조성의 슬라브를 1250℃ 이하에서 재가열후 열간압연하여 2.0~2.5mm의 열연판을 만든다, 이어서 1100℃이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종 두께인 0.27~0.30mm로 조정하고, 이후 수소가 주종인 840∼890℃부근에서 탈탄처리를 행한다. 이어 소둔분리제로 MgO를 주성분으로 하는 조성물을 슬러리상태로 하여 코타롤로 도포하고 700℃이하의 온도에서 건조한 다음 권취하여 대형코일로 만든다. 최종 마무리 고온소둔은 승온 1100℃까지는 50%이하의 질소 함유 수소분위기이고, 이후 승온 및 1200℃에서 20시간이상의 균열 및 이후 냉각분위기에서는 100%의 수소분위기이며, 700∼1200℃구간의 승온속도는 15℃/hr이상 유지하는 열사이클을 거치는 2차 재결정소둔을 행한다. 이어서 미반응 조성물을 제거한 다음 최종적으로 마그네슘, 알루미늄 및 칼슘의 혼합 인산염과 콜로이달 실리카성분에 미량의 무수크롬산으로 구성된 절연코팅제를 도포하여 생산하는 방향성 전기강판을 제조한다. The present invention is based on Si: 2.9 to 3.3%, C: 0.040 to 0.059%, dissolved Al: 0.021 to 0.030%, N: 0.006 to 0.010%, Mn: 0.080 to 0.120%, Cr: 0.04 to 0.12% After reheating the slab of the composition consisting of Fe and other components inevitably mixed at 1250 ° C. or lower and hot rolling to form a hot rolled sheet of 2.0 to 2.5 mm, followed by hot rolling annealing at a temperature of 1100 ° C. or below, After pickling and cold rolling, the final thickness is adjusted to 0.27 to 0.30 mm, and then decarburization is performed near 840 to 890 ° C, which is mainly hydrogen. Subsequently, as an annealing separator, a composition mainly composed of MgO is applied as a slurry in a slurry state, dried at a temperature of 700 ° C. or lower, and wound up to form a large coil. The final finishing high temperature annealing is 50% or less of hydrogen-containing hydrogen atmosphere up to 1100 ℃, then a temperature of 20 hours or more at 1200 ℃, and a 100% hydrogen atmosphere in the cooling atmosphere afterwards. Secondary recrystallization annealing is performed through a thermal cycle maintained at 15 ° C / hr or more. Subsequently, the unreacted composition is removed, and finally, a grain-oriented electrical steel sheet is produced by applying an insulating coating agent consisting of a small amount of chromic anhydride to a mixed phosphate and colloidal silica component of magnesium, aluminum, and calcium.

상기의 탈탄소둔시 탈탄판의 산화물을 SiO2상태의 [O]량을 380~540ppm으로 하고, 이때의 [O]량의 분석치 X(ppm)에 따라서, 이후 MgO주성분의 소둔분리제의 수화수분(LOI)량 Y(%) 및 도포량 Z(g/m2)량의 관계를 상기 식 1에 따라 제어 관리함에 의하여 이후 마무리소둔후의 고장력 그라스피막을 형성시키는 것을 특징으로 하는 그라스피막특성이 우수한 방향성 전기강판 제조방법에 관한 것이다.In the decarburization annealing, the oxide of the decarburized plate has an amount of [O] in the SiO2 state of 380 to 540 ppm, and according to the analysis value X (ppm) of the amount of [O] at this time, the hydration moisture of the annealing separator of the main MgO component ( The directional electrical steel sheet having excellent glass coating properties, characterized by forming a high-strength glass film after finishing annealing by controlling and managing the relationship between the LOI amount Y (%) and the coating amount Z (g / m2) in accordance with Equation 1 above. It relates to a manufacturing method.

이하 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.

방향성 전기강판의 제조공정은 제조사마다 다소의 차이는 있지만 통상적으로 제강에서의 성분조정, 연주슬라브 제조, 재가열 및 열간압연, 열연판소둔 및 냉간압연으로 두께조정, 탈탄소둔, 2차 재결정형성을 위한 고온소둔 및 최종 절연코팅공정으로 제조되는 것이 보통이다. 이러한 제조공정의 확립은 대량 생산체제를 기본으로 한 공정이며, 대량 생산체제의 중요한 핵심인자가 마무리고온소둔 공정의 확립이다. 최근 고자속밀도급의 방향성 전기강판생산이 전기강판 생산의 중심이 되고, 더구나 박물 제품화로 생산비의 중심이 이동하면서 더욱 우수한 자기적 특성의 확보가 중요해지고 있으며, 이러한 자기적특성 개선법의 하나로 그라스피막의 고장력화에 의한 철손감소법이라는새로운 기능적 역할이 부가된 것이다.Although the manufacturing process of oriented electrical steel sheet varies somewhat from manufacturer to manufacturer, it is common to adjust the thickness in steelmaking, manufacture slabs, reheat and hot roll, hot-rolled sheet annealing and cold rolling to adjust thickness, decarbon annealing, and secondary recrystallization. It is usually manufactured by hot annealing and final insulation coating process. The establishment of such a manufacturing process is a process based on a mass production system, and an important key factor of the mass production system is the establishment of a finishing high temperature annealing process. In recent years, directional electrical steel sheet production of high magnetic flux density has become the center of electrical steel sheet production. Moreover, as the center of production cost is shifted due to the production of thin products, it is important to secure better magnetic properties. The new functional role of iron loss reduction method by the high tension of

통상의 그라스 피막에 의한 장력 부여능은 0.25~0.35kg/mm2의 수준이 되고, 이 정도의 장력부여에 의해서도 최종 제품에 자성은 약 2~3%의 개선효과가 있다고 보고되고 있다. 따라서 그라스피막의 고장력부여능력 증가는 그대로 자성 개선율에 기여할 수 있다. 피막층의 고장력부여에 의한 자성개선은 자성중의 철심손실 즉 철손에 영향을 주고 있으며, 소재에 부여하는 장력에 의하여 자구가 미세화 됨에 따라 와류손실을 감소되므로 자성이 개선된다.It is reported that the tension imparting ability of the conventional glass coating is 0.25 to 0.35 kg / mm2, and the magnetization of the final product has an improvement effect of about 2 to 3% even by applying such tension. Therefore, the increase in high tensile ability of the glass film may contribute to the magnetic improvement rate. Magnetic improvement due to high tension of the coating layer affects the iron core loss, or iron loss, in the magnetic layer. As the magnetic domain becomes finer by the tension applied to the material, the vortex loss is reduced, and the magnetism is improved.

따라서 본 발명자는 그라스피막의 형성량을 중심으로 장력부여능과의 관계를 연구하던 중 그라스피막 형성량이 너무 많아도 장력 부여능력이 줄어들고, 또한 피막형성량이 부족하여도 장력부여능력이 줄어든다는 사실을 확인하였다. 특히, 그라스피막 형성량이 과잉일 경우 표면에 소둔산화, 산화변색 및 방출구 구멍등의 피막결함이 동시에 나타나고, 이 피막의 구성성분이 장력부여에 우수한 Mg2SiO4계통의 성분이 아닌 Fe2SiO4계의 FeO중심의 성분들이 피막 중에 혼입되어 있어 피막결함 및 장력부여능에 악영향을 준다는 사실을 확인하였다.Therefore, the present inventors studied the relationship with the tension imparting ability centering on the amount of glass film formation, and confirmed that even when the amount of glass film formation was too large, the tension imparting capacity was reduced, and even when the amount of film formation was insufficient, the tension imparting capacity was reduced. It was. In particular, when the amount of glass film formation is excessive, film defects such as annealing oxidation, discoloration, and discharge hole appear simultaneously on the surface, and the composition of the film is a Fe2SiO4 based FeO center, which is not a component of Mg2SiO4 which is excellent in tensioning. It was confirmed that the components were incorporated into the coating, which adversely affected the coating defect and the tension imparting ability.

최적의 장력부여능과 동시에 외관특성이 우수한 그라스 피막은 순 Mg2SiO4성분으로 구성된 피막층으로서, 최적 도포량은 3.2g/m2의 피막형성량의 확인이 본 발명의 기본 핵심 기술이다. 이 3.2g/m2의 그라스피막량을 SiO2량으로 환산해 보면 형성된 1.37g/m2이 되며, 이것을 양면으로 하여 [O]량으로 계산하면 634ppm이 된다. 즉 최고의 장력을 부여하기 위한 산화물 SiO2중의 [O]량이 634ppm이라는 사실의 확인함이 본 발명을 구성하게 되었다.The glass coating having the best tension imparting ability and excellent appearance characteristics is a coating layer composed of pure Mg 2 SiO 4 components, and the optimum coating amount is 3.2 g / m 2. The 3.2 g / m2 glass film amount is 1.37 g / m2 formed in terms of SiO2 amount, which is 634 ppm when calculated on both sides. That is, the fact that the amount of [O] in the oxide SiO 2 for imparting the highest tension was 634 ppm, constituted the present invention.

한편, 마무리 고온소둔 중에 형성되는 그라스피막은 소재 표면산화물 중의 SiO2와 소둔분리제로 도포되는 MgO와의 화학적 결합이며, 이 때의 소재 표면의 SiO2는 초기 탈탄소둔시 형성된 산화물중의 SiO2와 고온소둔시 형성되는 SiO2와의 합에 의하여 최종 결정된다. On the other hand, the glass film formed during finishing hot annealing is a chemical bond between SiO 2 in the material surface oxide and MgO applied with an annealing separator, and SiO 2 in the material surface is formed during the high temperature annealing with SiO 2 in the oxide formed during the initial decarbonization annealing. Final determination is made by the sum with SiO 2.

고온소둔시 형성되는 산화물은 고온소둔 승온과정에 소둔분리제의 주성분인 MgO의 수화수분 함유량 및 이들의 도포량의 합인 총 수분량 중에 일부는 외부로 방출되지만 많은 수분들은 소재 표면을 추가 산화시키면서 형성되는 산화물이다. Oxides formed during high temperature annealing are partially released to the outside of the total water content, which is the sum of the water content of MgO, which is the main component of the annealing separator, and the amount of their application during the high temperature annealing, but many moisture are formed by further oxidizing the material surface. to be.

대형 권취코일에 과잉 수분이 있을 경우 그라스피막의 형성반응 개시온도인 승온 900℃경에 주로 FeO계통의 산화물을 만들지만, 반면에, 수분량이 적을 경우 Fe2SiO4 및 SiO2계통의 산화물을 만든다.When there is excess water in the large coil, the FeO-based oxide is mainly formed at about 900 ° C, which is the start temperature of the glass film formation reaction, whereas Fe 2 SiO 4 and SiO 2 -based oxides are formed when the moisture content is small.

이때 MgO중의 수화수분량과 도포량의 곱으로 나타나는 총 수분량이 고온소둔의 통상의 조업조건에서 추가 형성되는 산화물 중 그라스피막형성에 유효한 SiO2량을 확인 하여 [O]량으로 환산해 본 결과, 소재면 m2당에 0.01gram의 수분이 존재시 5.6ppm의 [O]를 추가 생성함을 확인하였다. 따라서 환산되는 총수분량(MgO중의 수화수분 % x 도포량 g/m2)은 환산인자(Factor) 5.6으로 나누면 SiO2상태로 구성되는 [O]량이 계산된다. 한편 이때의 도포량 관리 측면에서의 현장 작업시의 편의성을 고려하여 관리 편차를 상하 0.2g/m2으로 관리함이 최적 피막형성에 적정량이다.At this time, the total amount of water represented by the product of the amount of water hydrated in MgO and the amount of coating was confirmed by converting the amount of SiO2 effective for forming a glass film among the oxides additionally formed under normal operating conditions of high temperature annealing. In the presence of 0.01 grams of water in the sugar it was confirmed that additional generation of 5.6ppm [O]. Therefore, the total amount of water converted (% of hydrated water in MgO x coating amount g / m 2) is divided by a factor of 5.6 to calculate the amount of [O] composed of SiO 2. On the other hand, taking into account the convenience of on-site work in terms of coating amount management at this time, managing the management deviation to the upper and lower 0.2g / m2 is an appropriate amount for the optimum film formation.

따라서 MgO도포공정 중 수화수분량 및 도포량의 관리법은 먼저 탈탄소둔시 형성된 산화물중 SiO2상태의 [O]량을 분석한 다음, 추후 도포되는 소둔분리제의 수화수분량과 도포량을 적절히 제어관리 함으로써 최적의 그라스피막을 형성시킬 수 있는 것이다.Therefore, the management method of hydration water content and coating amount during MgO coating process is to analyze the [O] amount of SiO2 state in the oxides formed during decarbonization annealing, and then to control and control the hydration water content and coating amount of annealing separator applied later. It can form a film.

이것을 종합하여 식으로 나타내면, 탈탄판의 SiO2상태의 [O]량을 X(ppm), 소둔분리제의 MgO주성분의 분말의 수화수분량을 Y(%), 이 때의 도포량을 Z(g/m2)라고 하면 이들 3개인자의 상관 관계는 상기 식 1로 나타낼 수 있다.Putting this together, the formula shows that the amount of [O] in the SiO 2 state of the decarburized plate is X (ppm), the amount of hydrated water of the powder of the MgO main component of the annealing separator is Y (%), and the coating amount at this time is Z (g / m 2). ), The correlation of these three individuals can be represented by the above formula (1).

따라서 이식을 이용하며 현장 핵심 인자들을 관리할 수 있다.Thus, transplantation can be used and site key factors can be managed.

이하, 본 발명강의 범위의 한정 이유에 대해 설명한다. Hereinafter, the reason for limitation of the range of this invention steel is demonstrated.

C는 AlN석출물의 미세 고용 분산, 압연조직을 형성, 냉간압연시 가공에너지를 부여 등의 역할을 하며 최소 0.040%이상과 이후 탈탄공정의 어려움을 고려하여 0.059%까지로 한정하였다.C plays a role in dispersing fine solid solution of AlN precipitates, forming a rolled structure, giving processing energy during cold rolling, and limiting it to 0.059% at least 0.040% in consideration of the decarburization process.

Si는 비저항치를 증가시켜 철심손실 즉 철손을 낮추는 역할을 한다. 2.9%이하에서는 철손특성이 나빠지고, 과잉 함유시 강이 취약해져 냉간압연성이 극히 나빠지므로 3.3%이하로 관리해야 한다.    Si increases the resistivity and lowers iron core loss. Below 2.9%, the iron loss characteristics deteriorate, and when excessively contained, the steel becomes vulnerable and cold rolling is extremely bad.

Mn은 재가열시 석출물의 고용온도를 낮추며, 열간압연시 소재 양 끝부분에 생성되는 크랙을 방지의 역활을 하므로 최소 0.08%이상 첨가가 필요하며 Mn산화물에 의해 철손악화로 0.12%이상은 억제한다.   Mn lowers the solubility temperature of precipitates during reheating and prevents cracks formed at both ends of the material during hot rolling. Therefore, Mn needs to be added at least 0.08% and suppresses 0.12% due to deterioration of iron by Mn oxide.

Al성분은 N과 함께 AlN의 석출물을 형성하여 입성장 억제력을 확보하는 중심원소이며 0.021%이하에서는 2차 재결정에 필요한 충분한 억제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나며, 0.030%이상에서는 억제력이 너무 강해 2차 재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 성분이다.    The Al component forms a precipitate of AlN together with N to secure grain growth inhibition. At 0.021% or less, it does not have sufficient inhibitory power for secondary recrystallization, resulting in small grain size and incomplete fine particles. It is a component that needs to be managed because the restraining force is so strong that it makes the second recrystallization difficult and the magnetic properties deteriorate rapidly.

다음, 본 제품의 제조공정에 대하여 설명한다. Next, the manufacturing process of this product is demonstrated.

상기 조성의 강슬라브는, 열간압연성과 자기적 특성 확보 측면을 고려하여 1250℃이하의 온도에서 재가열한 후 열간압연하여 2.0∼2.3mm두께의 열간압연판을 만든다. 이어서 1100℃이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종 두께인 0.27~0.30mm두께로 조정한다. 이후 수소가 주종인 습윤분위기하의 840∼890℃부근에서 탈탄처리를 행한다. 이러한 제조공정은 기존 처리방법을 이용하므로 특별히 한정하지 않는다.Steel slabs having the above composition are hot rolled after being reheated at a temperature of 1250 ° C. or less in consideration of hot rolling and securing a magnetic property to make a hot rolled plate having a thickness of 2.0 to 2.3 mm. Subsequently, hot-rolled sheet annealing is carried out at a temperature of 1100 ° C. or lower, and adjusted to a thickness of 0.27-0.30 mm, which is the final thickness by pickling and cold rolling. Thereafter, decarburization is performed at about 840 ° C to 890 ° C under a humid atmosphere mainly composed of hydrogen. This manufacturing process is not particularly limited because it uses an existing treatment method.

그러나 탈탄처리시의 산화물중의 SiO2 상태의 [O]량을 380~540ppm으로 관리하는게 이후 최적 그라스피막을 형성하는 데 필수조건이다. 이때 380ppm이하에서는 이후 조건을 제어하여도 피막이 얇아지거나 그라스피막에 산화성 결함이 생긴다. 한편, 560ppm이상에서는 이후 공정조건의 관리에 의해서도 산화성결함 생성에 의한 고장력의 그라스피막을 생성시킬 수 없어서 본 발명의 범위에서 제외하였다.However, managing the [O] amount of SiO 2 in the oxide during decarburization to 380 to 540 ppm is an essential condition for forming an optimum glass film thereafter. At this time, the film becomes thinner or oxidative defects occur in the glass film even after controlling the conditions below 380ppm. On the other hand, at 560 ppm or more, the glass film of high tension due to the generation of oxidative defects could not be produced even by the management of the process conditions, which were excluded from the scope of the present invention.

이어 소둔분리제는 주성분인 활성 MgO에 첨가제로 TiO2 및 Na2B4O7을 보조제로 추가 첨가하여 물로서 슬러리상태로 만든 후 롤 코팅으로 소재 표면에 도포한 다음 건조하고 권취하여 대형코일로 만든다.Then, the annealing separator is added to the active component MgO as an additive, TiO2 and Na2B4O7 as an additive to make a slurry as water, and then applied to the surface of the material by roll coating, dried and wound into a large coil.

이때 소둔분리제의 조성물의 수화수분량 및 도포량은 본 발명인 식 1을 따라야 한다. At this time, the amount of hydrated water and the amount of the coating of the composition of the annealing separator should follow Equation 1 of the present invention.

최종 마무리 고온소둔은 승온 1200℃까지는 50%이하의 질소 함유 수소분위기이고, 이후 1200℃에서 20시간이상의 균열 및 이후 냉각분위기에서는 100%의 수소분위기이다. 한편 이때 700∼1200℃구간의 승온율을 15℃/hr이상 유지하는 열사이클을 거치는 2차 재결정소둔을 행한다. 최종적으로 마그네슘, 알루미늄 및 칼슘의 혼합 인산염과 콜로이달 실리카성분에 미량의 무수크롬산으로 구성된 절연코팅제를 도포하여 최종 방향성 전기강판 제품을 제조한다. 여기서 최종 마무리 고온소둔 조건 및 절연코팅제 도포 등은 타 특허에 기술되어 있어 특별히 한정하지 않는다.  The final finishing high temperature annealing is a nitrogen atmosphere of 50% or less up to an elevated temperature of 1200 ° C., followed by a crack of 20 hours or more at 1200 ° C. and a 100% hydrogen atmosphere in a cooling atmosphere thereafter. At this time, secondary recrystallization annealing is performed through a thermal cycle that maintains the temperature increase rate of 700 to 1200 ° C. over 15 ° C./hr. Finally, an insulating coating agent composed of a small amount of chromic anhydride is applied to a mixed phosphate and colloidal silica component of magnesium, aluminum, and calcium to prepare a final grain-oriented electrical steel sheet product. Here, the final finishing hot annealing conditions and the application of the insulating coating agent are described in other patents and are not particularly limited.

이하, 실시예를 통하여 보다 구체적으로 설명한다.   Hereinafter, the present invention will be described in more detail.

실시예 1Example 1

중량비로Si : 3.1%, C : 0.048%, 용존 Al: 0.028%, N: 0.008%, Mn : 0.12%, Cr : 0.11%를 기본으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 구성된 조성의 슬라브를 1250℃이하에서 재가열후 열간압연하여 2.2mm의 열간압연판을 만든다, 이어서 1100℃의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종 두께인 0.30mm로 조정하고, 이후 수소가 주종인 이슬점온도를 변화시킨 습윤분위기하의 855℃에서 탈탄처리를 행하여 탈탄판의 산화물중 SiO2상태의 [O]량을 350~610ppm까지 변화시켰다.Composition based on Fe: 3.1%, C: 0.048%, dissolved Al: 0.028%, N: 0.008%, Mn: 0.12%, Cr: 0.11% The slab of is reheated at 1250 ° C. or lower and hot rolled to make a hot rolled plate of 2.2 mm. Then, the hot rolled sheet is annealed at a temperature of 1100 ° C., adjusted to a final thickness of 0.30 mm by pickling and cold rolling, and then hydrogen is The decarburization treatment was performed at 855 ° C. under a humid atmosphere having a predominant dew point temperature. The amount of [O] in the SiO 2 state in the oxide of the decarburized plate was changed to 350 to 610 ppm.

이어 소둔분리제로 활성MgO 100중량부에 TiO2 5중량부 및 Na2B4O7 0.3중량부를 혼합한 조성물을 슬러리상태로 하여 코타롤로 도포하고 700℃이하의 온도에서 건조하여 도포량을 9.5~13.5g/m2까지 변화 관리한 다음 권취하여 대형코일로 만든다. 최종 마무리 고온소둔은 승온 1200℃까지는 25% 질소 함유 수소분위기이고, 이후 승온 및 1200℃에서 20시간 이상의 균열 및 이후 냉각분위기에서는 100%수소분위기이며, 700∼1200℃구간의 승온율을 15℃/hr로 유지하는 열사이클을 거치는 2차 재결정소둔을 행하여 그라스피막 및 자기적 특성을 완성하였다. Subsequently, a composition obtained by mixing 5 parts by weight of TiO2 and 0.3 parts by weight of Na2B4O7 to 100 parts of active MgO as an annealing separator was applied as a slurry and dried at a temperature of 700 ° C. or below to control the coating amount to 9.5 to 13.5 g / m2. It is then wound up to make a large coil. The final finishing high temperature annealing is a hydrogen atmosphere containing 25% nitrogen up to 1200 ° C, followed by 20 hours or more of cracking at elevated temperature and 1200 ° C, and a 100% hydrogen atmosphere in the cooling atmosphere afterwards. Secondary recrystallization annealing was performed through a thermal cycle maintained at hr to complete the glass coating and magnetic properties.

이때 탈탄산화물의 SiO2상태의 [O]량, 소둔분리제의 수화수분(LOI)량 및 도포량에 따른 그라스피막의 특성을 비교하여 표1에 나타냈다. 그라스피막의 특성은 형성량을 화학습식법으로 검출하여 g/m2으로 산출하였으며, 장력부여능력은 단면휨정도로 측정하여 kg/mm2으로 나타냈으며, 전체적인 외관특성은 육안으로 관찰한 결과이다. At this time, the characteristics of the glass film according to the amount of [O] in the SiO 2 state of the decarburized oxide, the amount of hydration water (LOI) of the annealing separator, and the coating amount were compared. The characteristics of the glass coating were calculated by g / m2 by detecting the amount formed by the chemical wet method, and the tension imparting capacity was expressed by kg / mm2 by measuring the degree of cross-section bending. The overall appearance characteristics were observed by visual observation.

구분division SiO2상태의 [O]량 (ppm)[O] content of SiO2 state (ppm) 소둔분리제의 수화수분 (%)Hydration Moisture of Annealed Separator (%) 도포량 (g/m2)Coating amount (g / m2) 그라스피막형성량 (g/m2)Glass film formation amount (g / m2) 장력부여능 (kg/mm2)Tensioning ability (kg / mm2) 외관특성Appearance Characteristics 비교재1Comparative Material 1 350350 4.54.5 12.212.2 3.563.56 0.310.31 산화변색Oxidation discoloration 비교재2Comparative Material 2 395395 3.33.3 13.513.5 3.483.48 0.350.35 소둔산화Annealing Oxidation 비교재3Comparative Material 3 "" 2.82.8 10.510.5 3.063.06 0.370.37 양호Good 발명재1Invention 1 "" 3.83.8 11.211.2 3.233.23 0.410.41 양호Good 비교재4Comparative Material 4 450450 3.83.8 10.110.1 3.463.46 0.360.36 방출구Outlet 발명재2Invention 2 "" 2.22.2 14.814.8 3.183.18 0.390.39 양호Good 발명재3Invention 3 "" 2.82.8 11.811.8 3.213.21 0.400.40 양호Good 비교재5Comparative Material 5 "" 3.23.2 9.59.5 2.982.98 0.340.34 얇음tenuity 비교재6Comparative Material 6 510510 3.33.3 10.510.5 3.533.53 0.330.33 산화변색Oxidation discoloration 발명재4Invention 4 "" 2.12.1 10.510.5 3.203.20 0.410.41 양호Good 비교재7Comparative Material7 "" 1.81.8 11.111.1 3.053.05 0.340.34 방출구Outlet 비교재8Comparative Material 8 610610 2.52.5 11.511.5 3.333.33 0.310.31 소둔산화Annealing Oxidation

표 1에서 보면, 비교재 1 및 8처럼 SiO2상태의 [O]량이 본 발명의 범위를 벗어난 경우, 외관결함이 생성되고 따라서 고장력부여가 불가능하다.As shown in Table 1, when the amount of [O] in the SiO 2 state, such as Comparative Materials 1 and 8, is out of the scope of the present invention, appearance defects are generated and therefore high tensile strength is impossible.

한편, SiO2상태의 [O]량이 395ppm의 경우, 수화수분량과 도포량의 곱이 본 발명식을 벗어난 경우(비교재2 및 3)도 외관특성 및 피막형성량이 부적절하여 장력부여능력이 요구수준에 다소 떨어진다.On the other hand, when the amount of [O] in the SiO2 state is 395 ppm, even when the product of the hydration water content and the coating amount is out of the present invention (Comparative Materials 2 and 3), the appearance property and the film formation amount are inadequate, and thus the tension imparting capacity is somewhat lower than the required level. .

SiO2상태의 [O]량이 450ppm의 경우에도, 수화수분량과 도포량의 곱이 본 발명식을 벗어난 경우(비교재4 및 5)도 외관특성 및 피막형성량이 부적절하여 장력부여능력이 역시 관리수준에 비하여 부족하다.Even when the amount of [O] in the SiO 2 state was 450 ppm, even when the product of the amount of hydrated water and the amount of coating was outside the present invention (Comparative Materials 4 and 5), the appearance property and the amount of film formation were inadequate, so that the tension imparting ability was also insufficient compared to the control level. Do.

SiO2상태의 [O]량이 510ppm의 경우, 수화수분량과 도포량의 곱이 본 발명식을 벗어난 경우(비교재6 및 7)도 외관특성 및 피막형성량이 부적절하여 장력부여능력이 요구수준에 비해 저하되었다. When the amount of [O] in the SiO 2 state was 510 ppm, even when the product of the amount of hydrated water and the amount of coating was outside the present invention (Comparative Materials 6 and 7), the appearance property and the amount of film formation were inadequate, so that the tension imparting ability was lower than the required level.

그러나 SiO2상태의 [O]량이 본 발명의 380~540ppm의 범위에 있고, 또한 수화수분량과 도포량의 곱이 본 발명식을 만족하는 발명재 1~4의 경우는 외관특성도 양호하면서 그라스피막이 적절하여 장력부여능력이 요구 수준인 0.39kg/mm2을 상회하는 우수한 그라스피막 특성을 나타내고 있다.However, in the case of Inventive Materials 1 to 4 in which the amount of [O] in the SiO 2 state is in the range of 380 to 540 ppm of the present invention, and the product of the amount of hydrated water and the amount of coating satisfies the present formula, the appearance property is good and the glass film is appropriately tensioned. It has excellent glass coating properties exceeding the required level of 0.39kg / mm2.

상술한 바와 같이, 본 발명은 탈탄소둔판 SiO2상태의 [O]량이 기본 요구량인 380~540ppm을 만족하고, 동시에 탈탄판의 [O]량, 소둔분리제의 MgO주성분의 분말의 수화수분량 및 이 때의 도포량과의 관계식으로 제어 관리함으로써 이후 마무리소둔후의 형성되는 그라스피막은 외관특성이 우수할 뿐만 아니라 우수한 고장력 부여능력을 갖는 그라스피막을 제조할 수 있는 효과가 있다. As described above, in the present invention, the amount of [O] in the decarbonized annealing SiO 2 state satisfies the basic requirement of 380 to 540 ppm, and at the same time, the amount of [O] in the decarburized plate, the powder of hydrated powder of the MgO main component of the annealing separator, and The glass film formed after finishing annealing by controlling and managing in relation to the coating amount at the time has an effect of producing a glass film having not only excellent appearance characteristics but also excellent high tensile strength imparting ability.

Claims (1)

중량비로 Si : 2.9∼3.3%, C : 0.040∼0.059%, 용존 Al : 0.021∼0.030%, N : 0.006∼0.010%, Mn : 0.008∼0.012%, Cr : 0.04~0.12%를 기본으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 구성된 조성의 슬라브를 1250℃이하에서 재가열후 열간압연하여 2.0~2.3mm의 열간압연판을 만든 후, 이어서 1100℃이하의 온도에서 열연판소둔을 하고, 산세 및 냉간압연으로 최종 두께인 0.27~0.30mm두께로 조정하고, 이후 수소가 주종인 습윤분위기하의 840∼890℃부근에서 탈탄판의 산화물을 SiO2상태의 [O]량을 380~540ppm하에서 [O]량의 분석치 X(ppm)에 따라서, 이후 MgO주성분의 소둔분리제의 수화수분(LOI)량 Y(%) 및 도포량 Z(g/m2)량을 식 1에 의하여 Si: 2.9 to 3.3% by weight, C: 0.040 to 0.059%, dissolved Al: 0.021 to 0.030%, N: 0.006 to 0.010%, Mn: 0.008 to 0.012%, Cr: 0.04 to 0.12% After reheating the slab of composition composed of Fe and the hot rolled sheet after making it reheat at 1250 ℃ or less to make 2.0 ~ 2.3mm hot rolled plate, and then hot-rolled sheet annealing at the temperature below 1100 ℃ And cold rolling to adjust the final thickness to 0.27 ~ 0.30mm thickness, and then the amount of [O] in the decarburized plate in the vicinity of 840 ~ 890 ℃ under the wet atmosphere, which is mainly hydrogen, under the amount of [O] in 380 ~ 540ppm. According to the analysis value of X (ppm), the amount of hydrated water (LOI) Y (%) and coating amount Z (g / m2) of the annealing separator of the main MgO component are then calculated by Equation 1. Z = (634 - X) / 5.6 Y ± 0.2 ------(식 1)                 Z = (634-X) / 5.6 Y ± 0.2 ------ (Equation 1) 제어관리하는 탈탄처리를 행하고, 이어서 소둔분리제로 MgO 및 소량의 TiO2 및 Na2B4O7의 혼합물을 슬러리상태로 하여 도포, 건조한 다음 권취하여 대형코일로 만든 후, 700∼1200℃구간의 승온속도를 15℃/hr이상 유지하면서 승온하여 최고온도 1200℃에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리 고온소둔을 행하는 것을 특징으로 하는 그라스피막특성이 우수한 방향성 전기강판 제조방법.After controlling and controlling the decarburization, the mixture of MgO and a small amount of TiO2 and Na2B4O7 as a slurry is applied as a slurry, dried and wound up to make a large coil, and then the temperature rising rate of 700 to 1200 ° C is increased to 15 ° C /. A method of manufacturing a grain-oriented electrical steel sheet having excellent glass coating characteristics, characterized in that the film is heated at a temperature of more than hr and cracked at a maximum temperature of 1200 ° C. for at least 20 hours, followed by a high temperature finish followed by cooling.
KR1020030097498A 2003-12-26 2003-12-26 Method for manufacturing oriented electrical steel sheet with excellent glass coating properties KR101059216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030097498A KR101059216B1 (en) 2003-12-26 2003-12-26 Method for manufacturing oriented electrical steel sheet with excellent glass coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097498A KR101059216B1 (en) 2003-12-26 2003-12-26 Method for manufacturing oriented electrical steel sheet with excellent glass coating properties

Publications (2)

Publication Number Publication Date
KR20050066237A true KR20050066237A (en) 2005-06-30
KR101059216B1 KR101059216B1 (en) 2011-08-24

Family

ID=37257339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030097498A KR101059216B1 (en) 2003-12-26 2003-12-26 Method for manufacturing oriented electrical steel sheet with excellent glass coating properties

Country Status (1)

Country Link
KR (1) KR101059216B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020140A (en) * 2019-12-17 2020-04-17 无锡晶龙华特电工有限公司 Magnesium oxide annealing separant for oriented silicon steel with excellent magnetism and coating process thereof
WO2024111567A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 Model for predicting oxygen amount per unit area after decarburization annealing, method for producing same, and method for manufacturing grain-oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020140A (en) * 2019-12-17 2020-04-17 无锡晶龙华特电工有限公司 Magnesium oxide annealing separant for oriented silicon steel with excellent magnetism and coating process thereof
WO2024111567A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 Model for predicting oxygen amount per unit area after decarburization annealing, method for producing same, and method for manufacturing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR101059216B1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
KR100596115B1 (en) Method for producing grain-oriented silicon steel plate with mirror surface
KR101294624B1 (en) A method of manufacturing oriented si steel containing cu
KR100597772B1 (en) Grain-oriented silicon steel sheet having excellent coating film properties and magnetic properties and method for making the same
KR100900662B1 (en) Coating composition and, method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property using thereof
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
US5571342A (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
JP2014201806A (en) Oriented electromagnetic steel sheet and manufacturing method therefor
CN110218853B (en) Process method for preparing low-temperature high-magnetic-induction oriented silicon steel
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP4484711B2 (en) Method for producing high silicon grained electrical steel sheet
KR101089303B1 (en) Method for making forsterite film of grain-oriented electrical steel sheets
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
KR101059216B1 (en) Method for manufacturing oriented electrical steel sheet with excellent glass coating properties
KR101356053B1 (en) Oriented electrical steel sheets and method for manufacturing the same
KR101410474B1 (en) Gran-oriented electrical steel sheet and manufacturing method for the same
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP4422385B2 (en) Method for producing grain-oriented electrical steel sheet
US5269853A (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
KR100711470B1 (en) Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100946069B1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior magnetic properties
KR100544535B1 (en) chromium-free Insulation coating material for grain-oriented electrical steel sheet having no glass film and method for manufacturing grain-oriented electrical steel sheet by using it
KR100544615B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet without glass film
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170816

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190723

Year of fee payment: 9