KR20050045793A - Ion-exchange type lithium manganese oxide adsorbent using urethane foam and method for preparing the same - Google Patents

Ion-exchange type lithium manganese oxide adsorbent using urethane foam and method for preparing the same Download PDF

Info

Publication number
KR20050045793A
KR20050045793A KR1020040012767A KR20040012767A KR20050045793A KR 20050045793 A KR20050045793 A KR 20050045793A KR 1020040012767 A KR1020040012767 A KR 1020040012767A KR 20040012767 A KR20040012767 A KR 20040012767A KR 20050045793 A KR20050045793 A KR 20050045793A
Authority
KR
South Korea
Prior art keywords
blowing agent
lithium
manganese oxide
urethane
ion exchange
Prior art date
Application number
KR1020040012767A
Other languages
Korean (ko)
Other versions
KR100557824B1 (en
Inventor
정강섭
이재천
정진기
김은진
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Publication of KR20050045793A publication Critical patent/KR20050045793A/en
Application granted granted Critical
Publication of KR100557824B1 publication Critical patent/KR100557824B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent

Abstract

본 발명은 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제 및 그의 제조 방법에 관한 것으로서, 스피넬 구조를 갖는 하기 화학식1The present invention relates to an ion exchange type lithium-manganese oxide adsorbent using a urethane blowing agent and a method for preparing the same, having the spinel structure

(화학식1)Formula 1

LinMn2-xO4 Li n Mn 2-x O 4

(식중, 1≤n≤1.33, 0≤x≤0.33, n≤1+x 임)의 전구체 분말을 합성하는 단계; 상기 전구체 분말에 바인더를 가하고 균등 혼합하여 혼합 용액을 제조하는 단계; 상기 혼합 용액에 우레탄 발포제를 침지시키는 단계; 상기 우레탄 발포제를 건조시키는 단계; 및 건조된 우레탄 발포제를 산처리하는 단계;를 포함하는 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법 및 그러한 방법에 따라 제조한 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제를 제공한다.Synthesizing a precursor powder, wherein 1 ≦ n ≦ 1.33, 0 ≦ x ≦ 0.33, n ≦ 1 + x; Adding a binder to the precursor powder and uniformly mixing to prepare a mixed solution; Immersing a urethane blowing agent in the mixed solution; Drying the urethane blowing agent; And acid treating the dried urethane blowing agent; and providing an ion exchangeable lithium-manganese oxide adsorbent using the urethane blowing agent, and an ion-exchangeable lithium-manganese oxide adsorbent using the urethane blowing agent prepared according to the method. do.

Description

우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제 및 그의 제조 방법{ION-EXCHANGE TYPE LITHIUM MANGANESE OXIDE ADSORBENT USING URETHANE FOAM AND METHOD FOR PREPARING THE SAME} ION-EXCHANGE TYPE LITHIUM MANGANESE OXIDE ADSORBENT USING URETHANE FOAM AND METHOD FOR PREPARING THE SAME}

본 발명은 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제 및 그의 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 다공성의 우레탄 발포제를 이용하여 상기 우레탄 발포제에 이온 교환형의 리튬-망간산화물 분말을 부착시킴으로써, 수용액 중에 포함되어 있는 리튬 이온을 선택적으로 흡착하여 회수할 수 있는 흡착제 및 그의 제조 방법에 관한 것이다.The present invention relates to an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent and a method for producing the same. More specifically, the present invention by adhering the ion-exchange type lithium-manganese oxide powder to the urethane blowing agent using a porous urethane blowing agent, an adsorbent capable of selectively adsorbing and recovering lithium ions contained in the aqueous solution and its It relates to a manufacturing method.

리튬 및 리튬 화합물들은 세라믹, 2차 전지 재료, 냉매 흡착제, 촉매, 의약품 등의 매우 넓은 분야에 이용되고 있으며, 또한 핵 융합 에너지 자원으로서 주목받고 있다. 또한, 리튬 및 리튬 화합물들은 앞으로 대용량 전지, 전기 자동차 등이 실용화될 경우 그 수요가 더욱 증가할 것으로 예상되는 자원이다. 이러한 시점에서 리튬 육상 자원의 세계 매장량이 200~900만톤에 불과한 것을 고려하면, 리튬 자원의 확보를 위한 신기술의 개발이 절실하다고 할 수 있다. 이를 위해, 현재 해수, 간수, 리튬 배터리 폐액 등의 수용액 중에 미량으로 녹아있는 리튬을 효과적으로 채취하기 위한 연구들이 진행되고 있고, 이러한 연구들의 주된 관건은 리튬 이온에 대한 높은 선택성과 흡, 탈착 성능이 우수한 고성능 흡착제를 개발하는 것이다.Lithium and lithium compounds are used in a very wide field of ceramics, secondary battery materials, refrigerant adsorbents, catalysts, pharmaceuticals, etc., and are also attracting attention as nuclear fusion energy resources. In addition, lithium and lithium compounds are resources that are expected to further increase when large-capacity batteries, electric vehicles and the like become practical. At this point, considering that the world reserves of lithium land resources are only 2 ~ 9 million tons, the development of new technologies for securing lithium resources is urgently needed. To this end, studies are being conducted to effectively collect a small amount of lithium dissolved in an aqueous solution such as seawater, brine, and lithium battery waste, and the main key of these studies is high selectivity to lithium ions and excellent adsorption and desorption performance. To develop a high performance adsorbent.

종래, 그러한 연구들의 결실로서 망간 산화물을 재료로 하여 고상 반응법 또는 겔 공법으로 리튬의 흡/탈착이 용이한 분말을 제조하는 방법이 공지되어 있고, 그러한 방법으로 제조한 분말은 리튬 2차 전지용 양극 재료(대한민국 특허등록 제10-0245808호 공보, 대한민국 특허공개 제10-2003-28447호 공보 등), 리튬 흡착제의 재료 등으로 이용되어왔다. 그러나, 분말 상태의 리튬 흡착제를 사용하는 것은 취급상 불편이 따르기 때문에 이를 성형하여 이용할 필요가 있고, 예를 들면 대한민국 특허공개 제10-2003-9509호 공보에 개시된 바와 같이, 분말을 알루미나 파우더와 혼합한 후, PVC와 같은 공극 형성제를 사용하여 상기 분말 및 알루미나 파우더의 혼합물을 덩어리지게 함으로써 구슬 형태로 흡착제를 제조하는 방법을 응용하여 성형할 수 있다. Conventionally, as a result of such studies, a method of preparing powders which are easily absorbed / desorbed of lithium by a solid phase reaction method or a gel method using manganese oxide as a material is known, and the powders produced by such a method are positive electrodes for lithium secondary batteries. Materials (eg, Korean Patent Registration No. 10-0245808, Korean Patent Publication No. 10-2003-28447, etc.) and lithium adsorbent materials. However, since the use of powdered lithium adsorbent is inconvenient in handling, it is necessary to use it by shaping it. For example, as disclosed in Korean Patent Publication No. 10-2003-9509, the powder is mixed with alumina powder. Thereafter, by using a pore forming agent such as PVC to agglomerate the mixture of the powder and the alumina powder, the method of preparing the adsorbent in the form of beads may be applied.

일반적으로 리튬 흡착제는 다양한 환경의 수용액 상에서 물리적 및 화학적인 안정성을 유지해야 하고, 아울러 높은 흡착 효율을 보장할 수 있는 흡착 자리를 제공해 줄 수 있어야 하며, 리튬 이온에 대한 높은 선택성을 유지하여 리튬 이외의 원소를 흡착하지 않아야 하고, 흡착 후 리튬의 회수를 위한 탈착 과정도 용이해야 하는 등의 필수적인 특성을 갖추어야 한다. 그러나, 상기와 같은 종래의 PVC 첨가법을 이용하여 구슬 형태로 흡착제를 제조할 경우에는, 취급은 용이하나, 리튬의 흡/탈착을 위한 흡착 자리가 분말 흡착제에 비해 약 30% 이상 저하되는 것으로 보고되어 있기 때문에, 리튬 흡착제로서 사용시에 리튬 회수능이 떨어진다는 문제점이 지적된다.In general, lithium adsorbents must maintain physical and chemical stability in aqueous solutions in a variety of environments, and must be able to provide adsorption sites that ensure high adsorption efficiency. It should not have adsorption of elements, and it should have essential characteristics such as easy desorption process for recovery of lithium after adsorption. However, in the case of preparing the adsorbent in the form of beads by using the conventional PVC addition method as described above, the adsorption site for adsorption / desorption of lithium is reported to be reduced by about 30% or more compared to the powder adsorbent. It is pointed out that the problem is that the lithium recoverability is poor when used as a lithium adsorbent.

본 발명의 목적은, 취급이 용이하고, 리튬 이온과 선택적으로 반응할 수 있는 보다 많은 흡착 반응 자리를 가지며, 물리적 및 화학적으로 안정적인, 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제 및 그것을 제조하는 방법을 제공하는데 있다. It is an object of the present invention to prepare ion-exchangeable lithium-manganese oxide adsorbents using urethane blowing agents, which are easy to handle, have more adsorption reaction sites that can selectively react with lithium ions, and are physically and chemically stable To provide a method.

본 발명은 수용액 중에 포함되어 있는 리튬 이온을 선택적으로 흡착하여 회수할 수 있는 흡착제 분말의 활용도를 높이기 위하여 안출된 것으로서, 기존의 방법을 따라 제조한 이온 교환형 리튬-망간산화물 분말을 적절한 바인더를 사용하여 다공성의 우레탄 발포제에 부착시킴으로써, 이온 교환 방식으로 리튬 이온 만을 선택적으로 흡착, 회수할 수 있는 고성능의 리튬 흡착제를 제조할 수 있음에 착안하여 본 발명을 완성하게 되었다.The present invention is devised to increase the utilization of the adsorbent powder that can selectively adsorb and recover the lithium ions contained in the aqueous solution, using an ion exchange type lithium-manganese oxide powder prepared according to the conventional method using an appropriate binder The present invention has been completed by focusing on the fact that by attaching to a porous urethane foaming agent, a high-performance lithium adsorbent capable of selectively adsorbing and recovering only lithium ions by ion exchange can be completed.

본 발명은, 스피넬 구조를 갖는 하기 화학식1The present invention has a spinel structure

LinMn2-xO4 Li n Mn 2-x O 4

(식중, 1≤n≤1.33, 0≤x≤0.33, n≤1+x 임)(Wherein 1 ≦ n ≦ 1.33, 0 ≦ x ≦ 0.33, n ≦ 1 + x)

의 전구체 분말을 합성하는 단계; 상기 전구체 분말에 바인더를 가하고 균등 혼합하여 혼합 용액을 제조하는 단계; 상기 혼합 용액에 우레탄 발포제를 침지시키는 단계; 상기 우레탄 발포제를 건조시키는 단계; 및 건조된 우레탄 발포제를 산처리하는 단계;를 포함하는 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법에 관한 것이다. 이때, 스피넬 구조를 갖는 상기 화학식1의 전구체 분말은 하기 반응식1Synthesizing a precursor powder of; Adding a binder to the precursor powder and uniformly mixing to prepare a mixed solution; Immersing a urethane blowing agent in the mixed solution; Drying the urethane blowing agent; And acid treating the dried urethane blowing agent. The present invention relates to a method for preparing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. At this time, the precursor powder of Formula 1 having a spinel structure is represented by the following Reaction Scheme 1

(Li)[Li0.33Mn(Ⅳ)1.67]O4 ↔ (H)[H0.33Mn(Ⅳ)1.67 ]O4 (Li) [Li 0.33 Mn (Ⅳ) 1.67 ] O 4 ↔ (H) [H 0.33 Mn (Ⅳ) 1.67 ] O 4

(식 중, ( )는 스피넬 구조 내에서의 8a 사면체 자리를 나타내고, [ ]는 스피넬 구조에서 16d 팔면체 자리를 나타냄)Where () represents an 8a tetrahedral site in the spinel structure and [] represents a 16d octahedral site in the spinel structure)

과 같이 이온 교환 방식으로 리튬을 흡/탈착할 수 있는 하기 화학식2As shown in Chemical Formula 2, lithium may be adsorbed / desorbed by ion exchange.

Li1.33Mn1.67O4 Li 1.33 Mn 1.67 O 4

의 이온 교환형 전구체 분말인 것이 바람직하다. 이러한 이온 교환형의 전구체 분말은 종래의 공지된 방법에 따라 합성하여 수득할 수 있고, 고상 반응법에 의한 것이나, 겔 공법에 의한 것이어도 좋다. It is preferable that it is the ion exchange type precursor powder of. Such ion-exchange precursor powder can be obtained by synthesis according to a conventionally known method, and may be obtained by a solid phase reaction method or a gel method.

본 발명에서 사용하는 우레탄 발포제로서는 상기 전구체 분말을 용이하게 부착시킬 수 있는 연질폼의 우레탄 발포제가 바람직하고, 이때 적절한 바인더를 선택하여 상기 전구체 분말을 연질 우레탄 발포제에 부착시킬 수 있다. 그러한 바인더로서는, 유기계 세라믹 바인더를 사용할 수 있지만, 목적으로 하는 흡착제에 물리적 강도를 부여하고, 본 발명에 의해 최종적으로 완성된 흡착제를 해수를 비롯한 다양한 환경의 수용액 상에 적용할 때에도 그 물리적 강도가 유지되도록 하며, 흡착제가 수용액 상에서 녹거나 풀어지는 현상을 방지하기 위해서는, 특히 에틸렌비닐아세테이트를 사용하는 것이 바람직하다. As the urethane foaming agent used in the present invention, a urethane foaming agent of a flexible foam capable of easily attaching the precursor powder is preferable. At this time, an appropriate binder may be selected to attach the precursor powder to the flexible urethane foaming agent. As such a binder, an organic ceramic binder can be used, but the physical strength is imparted to the target adsorbent, and the physical strength is maintained even when the adsorbent finally completed by the present invention is applied onto aqueous solutions of various environments including seawater. In order to prevent the adsorbent from melting or loosening in the aqueous solution, it is particularly preferable to use ethylene vinyl acetate.

상기 전구체 분말과 바인더를 혼합할 때에는, 바인더 1ℓ 당 전구체 분말 50~100g의 비율로 혼합하는 것이 바람직하다. 이러한 비율 미만으로 전구체 분말을 혼합할 경우, 우레탄 발포제에 부착되는 전구체 분말의 양이 충분하지 못하게 되어 이후 흡착제로서의 사용시에 충분한 리튬 흡착 효과를 얻을 수 없으며, 상기 비율을 초과한 양으로 전구체 분말을 혼합할 경우에는, 혼합된 용액의 점도가 높아져 혼합 용액이 우레탄 발포제의 내부까지 깊숙히 침투하지 못하게 되므로, 흡착 반응 자리가 축소되어 이 경우에도 이후 흡착제로서의 사용시에 충분한 리튬 흡착 효과를 얻을 수 없다. 상기에서 제시한 적절한 혼합비로 제조한 혼합 용액이 우레탄 발포제의 겉면 및 내부까지 고루 도포되어 충분한 흡착 반응 자리가 형성되도록 하기 위해서는, 상기 혼합 용액에 우레탄 발포제를 5분 이상 침지시키는 것이 바람직하고, 20분 이하로 침지시킴으로써 상기 혼합 용액으로 충분히 도포된 우레탄 발포제를 수득할 수 있다.When mixing the said precursor powder and a binder, it is preferable to mix in the ratio of 50-100 g of precursor powder per 1 L of binders. If the precursor powder is mixed in less than this ratio, the amount of precursor powder adhering to the urethane foaming agent may not be sufficient, so that sufficient lithium adsorption effect may not be obtained at the time of use as the adsorbent, and the precursor powder is mixed in an amount exceeding the ratio. In this case, since the viscosity of the mixed solution becomes high so that the mixed solution does not penetrate deeply into the interior of the urethane foaming agent, the adsorption reaction site is reduced, and even in this case, sufficient lithium adsorption effect cannot be obtained at the time of use as the adsorbent. In order for the mixed solution prepared at the appropriate mixing ratio described above to be evenly applied to the outer and inner sides of the urethane foaming agent to form a sufficient adsorption reaction site, it is preferable to immerse the urethane foaming agent in the mixed solution for 5 minutes or more, and 20 minutes The urethane foaming agent fully apply | coated with the said mixed solution can be obtained by dipping below.

상기 산처리는 0.3~1.0M의 산성 용액에서 행할 수 있으며, 이때 이용할 수 있는 바람직한 산성 용액으로서는, 염산 용액을 들 수 있다. 이러한 산처리에 의하면, 상기 우레탄 발포제에 부착되어 있는 이온 교환형 리튬-망간산화물 흡착제에서 상기 반응식1과 같은 반응 기작에 의해 리튬 이온이 수소 이온으로 교환되어, 이온체(ion sieve)와 같은 원리로 수용액 중에 녹아있는 리튬 이온만을 선택적으로 흡/탈착하여 용이하게 회수할 수 있는 리튬 흡착제가 완성된다. 상기와 같은 이온 교환 반응시에 리튬 이온과 수소 이온의 보다 효과적인 가역 반응을 위한 리튬홀(lithium hole)의 최대 생성 및 망간 이온의 용출 방지를 위해서는, 산처리 단계에서 0.5M의 염산 용액을 이용하여, 1회당 24시간씩 3회 산처리를 행하는 것이 특히 바람직하다.The acid treatment can be carried out in an acid solution of 0.3 to 1.0 M, and a hydrochloric acid solution may be mentioned as a preferable acid solution which can be used at this time. According to this acid treatment, in the ion exchange type lithium-manganese oxide adsorbent adhering to the urethane blowing agent, lithium ions are exchanged to hydrogen ions by a reaction mechanism similar to that of Scheme 1 above. A lithium adsorbent that can be easily recovered by selectively absorbing / desorbing only lithium ions dissolved in an aqueous solution is completed. In order to prevent the maximum generation of lithium holes and the elution of manganese ions for more effective reversible reaction of lithium ions and hydrogen ions during the ion exchange reaction, 0.5M hydrochloric acid solution was used in an acid treatment step. It is particularly preferable to perform acid treatment three times for 24 hours per time.

또한, 본 발명은 우레탄 발포제에 리튬-망간산화물 분말이 부착되어 이루어진 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제를 제공한다. 상기 리튬-망간산화물 분말은 상기에 나타낸 바와 같이, 화학식1의 스피넬 구조를 갖는 것이 바람직하고, 특히, 화학식2의 스피넬 구조를 가지는 이온 교환형 리튬-망간산화물인 것이 바람직하다.The present invention also provides an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent formed by attaching lithium-manganese oxide powder to a urethane blowing agent. As described above, the lithium-manganese oxide powder preferably has a spinel structure of Formula 1, and particularly preferably an ion exchange lithium-manganese oxide having a spinel structure of Formula 2.

이하, 본 발명에 따른 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제 및 그의 제조 방법에 대해, 하기 실시예 및 첨부된 도면을 참조하여 보다 상세하게 설명한다. 하기 실시예 및 첨부된 도면은 본 발명을 제한하는 것은 아니며, 본 발명은 청구 범위에 기재된 사항을 바탕으로 적절한 변형 및 수정이 가능하다.Hereinafter, an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent according to the present invention and a method for preparing the same will be described in more detail with reference to the following examples and accompanying drawings. The following examples and the accompanying drawings are not intended to limit the invention, the invention may be appropriately modified and modified based on the matter described in the claims.

실시예1Example 1

먼저, LiCO3 및 MnCO3를 몰비 1.33 : 1.67로 각각 교반기에 넣고 20분간 충분히 교반한 후, 전기로 내에서 500℃로 4시간 동안 열처리하여 Li1.33Mn1.67O 4 전구체 분말을 합성하였다.First, LiCO 3 and MnCO 3 were put in a stirrer with a molar ratio of 1.33: 1.67, respectively, and sufficiently stirred for 20 minutes, followed by heat treatment at 500 ° C. for 4 hours in an electric furnace to synthesize Li 1.33 Mn 1.67 O 4 precursor powder.

합성된 전구체 분말 50g을 취하여 2L 용기에 넣고, 여기에 에틸렌비닐아세테이트를 1L 가하여 강력하게 교반하면서 혼합하였다. 혼합된 용액에 미리 준비한 연질 우레탄 발포제를 5분간 침지하여 상기 용액이 상기 발포제 내부까지 충분히 도포, 부착되도록 반응시킨 후, 상온 하에서 건조시켰다. 완전히 건조된 건조물을 0.3M의 염산 용액에 1회당 24시간 동안 침지시키는 과정을 3회 행한 후 건조시켜, 최종 결과물을 관찰하였다.50 g of the synthesized precursor powder was taken into a 2 L container, and 1 L of ethylene vinyl acetate was added thereto and mixed with vigorous stirring. A soft urethane blowing agent prepared in advance in the mixed solution was immersed for 5 minutes to allow the solution to be sufficiently applied and adhered to the inside of the blowing agent, and then dried at room temperature. The completely dried dried product was immersed in 0.3 M hydrochloric acid solution for 3 hours at a time for 3 hours, and then dried to observe the final result.

실시예2Example 2

먼저, 각각 에탄올에 용해시킨 CH3COOLi와 Mn(CH3COO)2·4H2 O를 몰비 1.33 : 1.67로 각각 취하여 혼합한 후 강력하게 교반하였다. 여기에 에탄올에 용해시킨 0.1M의 타르타르산 용액을 서서히 첨가하여 겔화 반응을 유도함으로써, 나노 크기로 응결된 침전물을 수득하였다. 수득한 침전물을 70℃의 오븐에 넣고 서서히 가열하여 에탄올 성분이 완전히 제거될 때까지 건조하여 엷은 분홍색의 리튬-망간타르타르산염(lithium manganese tartrate) 전구체를 수득하였다. 이것을 200℃에서 6시간 동안 재가열하여 잔존하는 수분을 완전히 제거한 후, 500℃에서 24시간 동안 열처리하여 나노 크기의 Li1.33Mn1.67O4 전구체 분말을 합성하였다.First, CH 3 COOLi and Mn (CH 3 COO) 2 .4H 2 O dissolved in ethanol, respectively, were taken at a molar ratio of 1.33: 1.67, mixed, and vigorously stirred. A 0.1 M tartaric acid solution dissolved in ethanol was slowly added thereto to induce a gelation reaction, thereby obtaining a precipitate condensed to nano size. The obtained precipitate was placed in an oven at 70 ° C. and slowly heated to dryness until the ethanol component was completely removed to obtain a pale pink lithium manganese tartrate precursor. This was reheated at 200 ° C. for 6 hours to completely remove residual moisture, and then heat-treated at 500 ° C. for 24 hours to synthesize nano-sized Li 1.33 Mn 1.67 O 4 precursor powder.

합성된 전구체 분말 75g을 취하여 2L 용기에 넣고, 여기에 에틸렌비닐아세테이트를 1L 가하여 강력하게 교반하면서 혼합하였다. 혼합된 용액에 미리 준비한 연질 우레탄 발포제를 10분간 침지하여 상기 용액이 상기 발포제 내부까지 충분히 도포, 부착되도록 반응시킨 후, 상온 하에서 건조시켰다. 완전히 건조된 건조물을 0.5M의 염산 용액에 1회당 24시간 동안 침지시키는 과정을 3회 행한 후 건조시켜, 최종 결과물을 관찰하였다.75 g of the synthesized precursor powder was taken into a 2 L container, and 1 L of ethylene vinyl acetate was added thereto and mixed with vigorous stirring. The soft urethane blowing agent prepared in advance was immersed in the mixed solution for 10 minutes to allow the solution to be sufficiently applied and adhered to the inside of the blowing agent, and then dried at room temperature. The completely dried dried product was immersed in 0.5 M hydrochloric acid solution three times for 24 hours, and then dried, and the final result was observed.

실시예3Example 3

상기 실시예1의 고상 반응법 또는 실시예2의 겔공법을 이용하여, Li1.33Mn1.67O4 전구체 분말을 합성하였다.Li 1.33 Mn 1.67 O 4 precursor powder was synthesized using the solid phase reaction method of Example 1 or the gel method of Example 2.

합성된 전구체 분말 100g을 취하여 2L 용기에 넣고, 여기에 에틸렌비닐아세테이트를 1L 가하여 강력하게 교반하면서 혼합하였다. 혼합된 용액에 미리 준비한 연질 우레탄 발포제를 20분간 침지하여 상기 용액이 상기 발포제 내부까지 충분히 도포, 부착되도록 반응시킨 후, 상온 하에서 건조시켰다. 완전히 건조된 건조물을 1.0M의 염산 용액에 1회당 24시간 동안 침지시키는 과정을 3회 행한 후 건조시켜, 최종 결과물을 관찰하였다.100 g of the synthesized precursor powder was taken into a 2 L container, and 1 L of ethylene vinyl acetate was added thereto and mixed with vigorous stirring. The soft urethane foaming agent prepared in advance was immersed in the mixed solution for 20 minutes, and the solution was reacted to be sufficiently applied and adhered to the inside of the foaming agent, and then dried at room temperature. The completely dried product was immersed in 1.0 M hydrochloric acid solution three times for 24 hours, and then dried, and the final result was observed.

실시예4Example 4

상기 실시예1의 고상 반응법 또는 실시예2의 겔공법을 이용하여, Li1.33Mn1.67O4 전구체 분말을 합성하였다.Li 1.33 Mn 1.67 O 4 precursor powder was synthesized using the solid phase reaction method of Example 1 or the gel method of Example 2.

합성된 전구체 분말 100g을 취하여 2L 용기에 넣고, 여기에 에틸렌비닐아세테이트를 1L 가하여 강력하게 교반하면서 혼합하였다. 혼합된 용액에 미리 준비한 연질 우레탄 발포제를 15분간 침지하여 상기 용액이 상기 발포제 내부까지 충분히 도포, 부착되도록 반응시킨 후, 상온 하에서 건조시켰다. 완전히 건조된 건조물을 0.5M의 염산 용액에 1회당 24시간 동안 침지시키는 과정을 3회 행한 후 건조시켜, 최종 결과물을 관찰하였다.100 g of the synthesized precursor powder was taken into a 2 L container, and 1 L of ethylene vinyl acetate was added thereto and mixed with vigorous stirring. The soft urethane blowing agent prepared in advance was immersed in the mixed solution for 15 minutes to allow the solution to sufficiently apply and adhere to the inside of the blowing agent, and then dried at room temperature. The completely dried dried product was immersed in 0.5 M hydrochloric acid solution three times for 24 hours, and then dried, and the final result was observed.

도1에 나타낸 바와 같이, 상기 실시예1 내지 실시예4에서 수득한 최종 결과물은, 미립의 이온 교환형 리튬-망간산화물 흡착제가 다공성의 연질 우레탄 발포제에 균일하게 도포, 부착된 것임을 확인할 수 있고, 이는 분말 흡착제에 비해 흡착 효율이 약 10% 이하만이 저하된 매우 우수한 흡착제임을 알 수 있다.As shown in Figure 1, the final result obtained in Examples 1 to 4, it can be confirmed that the fine ion-exchange lithium-manganese oxide adsorbent is uniformly applied and adhered to the porous flexible urethane foaming agent, It can be seen that the adsorption efficiency is only about 10% or less compared to the powder adsorbent is a very good adsorbent.

본 발명에 의하면, 다공성의 우레탄 발포제에 리튬 흡착능이 뛰어난 이온 교환형의 리튬-망간산화물 분말을 부착시킴으로써, 취급이 용이하고, 기존의 성형된 흡착제에 비해 보다 많은 흡착 반응 자리를 제공하여 리튬 흡착 효율이 높은 이온 교환형의 리튬-망간산화물 흡착제를 제공할 수 있다. 또한, 본 발명에 따라 제조된 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제는 다양한 환경의 수용액 상에서 물리적 및 화학적 안정성이 뛰어나고, 리튬 이온에 대한 높은 선택성을 나타내므로, 해수, 간수, 리튬 배터리 폐액 등의 리튬이 용존되어 있는 수용액으로부터 리튬 만을 선택적으로 흡착하여 분리, 회수하는데 매우 효과적으로 사용할 수 있다.According to the present invention, by adhering the ion-exchange type lithium-manganese oxide powder having excellent lithium adsorption capacity to the porous urethane blowing agent, it is easy to handle and provides more adsorption reaction sites compared to the conventional molded adsorbents, thereby providing lithium adsorption efficiency. This high ion exchange type lithium-manganese oxide adsorbent can be provided. In addition, the ion-exchange lithium-manganese oxide adsorbent using the urethane blowing agent prepared according to the present invention has excellent physical and chemical stability in aqueous solutions of various environments, and exhibits high selectivity for lithium ions. It can be used very effectively to selectively adsorb, separate and recover only lithium from an aqueous solution in which lithium is dissolved.

도1은 본 발명의 실시예1 내지 실시예4에서 수득한, 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 사진.1 is a photograph of an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent obtained in Examples 1 to 4 of the present invention.

Claims (11)

스피넬 구조를 갖는 하기 화학식1Formula 1 having a spinel structure (화학식1)Formula 1 LinMn2-xO4 Li n Mn 2-x O 4 (식중, 1≤n≤1.33, 0≤x≤0.33, n≤1+x 임)의 전구체 분말을 합성하는 단계;Synthesizing a precursor powder, wherein 1 ≦ n ≦ 1.33, 0 ≦ x ≦ 0.33, n ≦ 1 + x; 상기 전구체 분말에 바인더를 가하고 균등 혼합하여 혼합 용액을 제조하는 단계;Adding a binder to the precursor powder and uniformly mixing to prepare a mixed solution; 상기 혼합 용액에 우레탄 발포제를 침지시키는 단계;Immersing a urethane blowing agent in the mixed solution; 상기 우레탄 발포제를 건조시키는 단계; 및Drying the urethane blowing agent; And 건조된 우레탄 발포제를 산처리하는 단계;Acid treating the dried urethane blowing agent; 를 포함하는 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.Method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent comprising a. 제1항에 있어서,The method of claim 1, 상기 스피넬 구조를 갖는 화학식1의 전구체 분말은 하기 화학식2The precursor powder of Formula 1 having the spinel structure is represented by the following Formula 2 (화학식2)(Formula 2) Li1.33Mn1.67O4 Li 1.33 Mn 1.67 O 4 의 이온 교환형 전구체 분말인 것을 특징으로 하는It is characterized in that the ion exchange precursor powder 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제1항에 있어서,The method of claim 1, 상기 우레탄 발포제는 연질폼인 것을 특징으로 하는The urethane foam is characterized in that the flexible foam 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제1항에 있어서,The method of claim 1, 상기 바인더는 에틸렌비닐아세테이트인 것을 특징으로 하는The binder is characterized in that the ethylene vinyl acetate 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제1항에 있어서,The method of claim 1, 상기 혼합 용액에서의 전구체 분말 및 바인더의 혼합비는 바인더 1ℓ 당 전구체 분말 50~100g인 것을 특징으로 하는The mixing ratio of the precursor powder and the binder in the mixed solution is characterized in that 50 ~ 100g precursor powder per liter of the binder 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제1항에 있어서,The method of claim 1, 상기 혼합 용액에 우레탄 발포제를 침지시키는 단계에서, 침지 시간은 5~20분으로 하는 것을 특징으로 하는In the step of immersing the urethane foaming agent in the mixed solution, the immersion time is characterized in that 5 to 20 minutes 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제1항에 있어서,The method of claim 1, 건조된 우레탄 발포제를 산처리하는 단계에서의 산처리는 0.3~1.0M의 산성 용액에서 행하는 것을 특징으로 하는The acid treatment in the step of acid treatment of the dried urethane blowing agent is characterized in that the acid solution of 0.3 ~ 1.0M 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 제7항에 있어서,The method of claim 7, wherein 상기 산처리는 0.5M의 염산 용액에서 1회당 24시간씩 3회 행하는 것을 특징으로 하는The acid treatment is performed three times for 24 hours each time in a 0.5 M hydrochloric acid solution. 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제의 제조 방법.A method for producing an ion exchange lithium-manganese oxide adsorbent using a urethane blowing agent. 우레탄 발포제에 리튬-망간산화물 분말이 부착되어 이루어진Lithium-manganese oxide powder is attached to urethane blowing agent 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제.Ion exchange type lithium-manganese oxide adsorbent using urethane blowing agent. 제9항에 있어서,The method of claim 9, 상기 리튬-망간산화물 분말은, 하기 화학식1The lithium manganese oxide powder is represented by the following Formula 1 (화학식1)Formula 1 LinMn2-xO4 Li n Mn 2-x O 4 (식중, 1≤n≤1.33, 0≤x≤0.33, n≤1+x 임)의 스피넬 구조를 갖는 것임을 특징으로 하는(Wherein 1 ≦ n ≦ 1.33, 0 ≦ x ≦ 0.33, n ≦ 1 + x), and has a spinel structure 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제.Ion exchange type lithium-manganese oxide adsorbent using urethane blowing agent. 제9항에 있어서,The method of claim 9, 상기 리튬-망간산화물 분말은, 하기 화학식2The lithium manganese oxide powder is represented by the following formula (2) (화학식2)(Formula 2) Li1.33Mn1.67O4 Li 1.33 Mn 1.67 O 4 의 스피넬 구조를 가지는 이온 교환형 리튬-망간산화물인 것을 특징으로 하는Ion exchange lithium-manganese oxide having a spinel structure of 우레탄 발포제를 이용한 이온 교환형 리튬-망간산화물 흡착제.Ion exchange type lithium-manganese oxide adsorbent using urethane blowing agent.
KR1020040012767A 2003-11-10 2004-02-25 Ion-exchange type lithium manganese oxide adsorbent using urethane foam and method for preparing the same KR100557824B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030079194 2003-11-10
KR1020030079194 2003-11-10

Publications (2)

Publication Number Publication Date
KR20050045793A true KR20050045793A (en) 2005-05-17
KR100557824B1 KR100557824B1 (en) 2006-03-10

Family

ID=37245422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040012767A KR100557824B1 (en) 2003-11-10 2004-02-25 Ion-exchange type lithium manganese oxide adsorbent using urethane foam and method for preparing the same

Country Status (1)

Country Link
KR (1) KR100557824B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248551B1 (en) * 2012-09-24 2013-04-03 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure and method for preparing the same
WO2014069699A1 (en) * 2012-11-01 2014-05-08 충남대학교산학협력단 Absorbent ball particle for recovering porous lithium by carbonization, and method for preparing same
KR20150106329A (en) 2014-03-11 2015-09-21 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
US9745644B2 (en) 2014-03-11 2017-08-29 Myongji University Industry And Academia Cooperation Foundation Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
US9795943B2 (en) 2015-01-28 2017-10-24 Korea Institute Of Geoscience And Mineral Resources Method of preparing lithium adsorption structure having large surface area

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896054B1 (en) 2006-11-20 2009-05-07 한국지질자원연구원 Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
KR101753905B1 (en) 2015-06-15 2017-07-05 명지대학교 산학협력단 Polyvinyl alcohol composite foam comprising lithium ion sieve and preparing method thereof
KR101780248B1 (en) 2017-03-31 2017-09-20 한국지질자원연구원 Apparatus for Lithium ions adsorption and desorption process on land and Recovery method using thereof
KR101928888B1 (en) 2018-06-25 2018-12-13 한국지질자원연구원 Manufacturing apparatus for lithium adsorbent porous material and making method using thereof
KR101915684B1 (en) 2018-07-06 2018-11-06 한국지질자원연구원 Apparatus for adsorption and desorption of lithium and recovery method using thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101248551B1 (en) * 2012-09-24 2013-04-03 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure and method for preparing the same
WO2014046359A1 (en) * 2012-09-24 2014-03-27 한국지질자원연구원 Ion-exchange manganese oxide lithium adsorbent using porous structure, and method for preparing same
WO2014069699A1 (en) * 2012-11-01 2014-05-08 충남대학교산학협력단 Absorbent ball particle for recovering porous lithium by carbonization, and method for preparing same
KR20150106329A (en) 2014-03-11 2015-09-21 명지대학교 산학협력단 Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
US9745644B2 (en) 2014-03-11 2017-08-29 Myongji University Industry And Academia Cooperation Foundation Composite nanofiber membrane for adsorbing lithium, method of manufacturing the same and apparatus and method for recovering lithium using the same
US9795943B2 (en) 2015-01-28 2017-10-24 Korea Institute Of Geoscience And Mineral Resources Method of preparing lithium adsorption structure having large surface area

Also Published As

Publication number Publication date
KR100557824B1 (en) 2006-03-10

Similar Documents

Publication Publication Date Title
KR101182271B1 (en) Porous manganese oxide absorbent for Lithium having spinel type structure and a method of manufacturing the same
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
KR100536957B1 (en) Honeycomb-shaped ion-exchange type lithium manganese oxide adsorbent and method for preparing the same
KR100557824B1 (en) Ion-exchange type lithium manganese oxide adsorbent using urethane foam and method for preparing the same
CN108579661B (en) A kind of doped modified lithium ion sieve and preparation method thereof, application
WO2022016763A1 (en) Method for preparing ni-containing cus/c composite material, and use thereof
CN111106335A (en) Preparation method of lithium ion battery composite negative electrode material
CN110817881B (en) Silicon-transition metal silicide nano composite material and preparation method and application thereof
CN108554366B (en) Method for preparing manganese oxide ion sieve precursor LixMn3-xO4 by one-step method
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
KR101735814B1 (en) Magnetic lithium adsorbent, method for preparing the same, and method of recovering lithium by using the same
JPH06305724A (en) Synthetic porous material and its production
WO2013015531A2 (en) Porous manganese oxide-based lithium absorbent having a spinel type structure, and method of fabricating same
KR100896054B1 (en) Ion-exchange type lithium adsorbent using ceramic filter and method for preparing the same
KR100912095B1 (en) Ion-exchange type lithium adsorbent using uf membrane filter and method for preparing the same
KR100569863B1 (en) Method for preparing of ion-exchange type nano-lithium manganese oxide powder adsorbent by gel process
JP3388406B2 (en) Method for producing lithium adsorbent
CN113979425A (en) Co/N double-doped carbon nanoribbon and Li-SeS2Battery positive electrode material, preparation method thereof and secondary battery
Liu et al. Lithiation reactions of Zn-and Li-birnessites in non-aqueous solutions and their stabilities
JP2003119028A (en) Method of producing lithium-manganese compound oxide
WO2012149163A1 (en) Sieve systems useful for extracting lithium from brine and processes for making and using the sieve systems
KR100896053B1 (en) Ion-exchange type lithium adsorbent using narrow weaved fabric filter and method for preparing the same
JP2004002097A (en) Manufacturing method for lithium/manganese double oxide
JP3170587B2 (en) Spinel-type lithium manganese oxide and method for producing manganese oxide
Hong et al. Synthesis and characterization of mesoporous manganese oxides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171219

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 14