KR20050041594A - Manufacturing method of electrode for lead storage battery - Google Patents

Manufacturing method of electrode for lead storage battery Download PDF

Info

Publication number
KR20050041594A
KR20050041594A KR1020030076814A KR20030076814A KR20050041594A KR 20050041594 A KR20050041594 A KR 20050041594A KR 1020030076814 A KR1020030076814 A KR 1020030076814A KR 20030076814 A KR20030076814 A KR 20030076814A KR 20050041594 A KR20050041594 A KR 20050041594A
Authority
KR
South Korea
Prior art keywords
microfiber
electrode
manufacturing
lead
active material
Prior art date
Application number
KR1020030076814A
Other languages
Korean (ko)
Other versions
KR100549322B1 (en
Inventor
최석모
Original Assignee
주식회사 아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37243051&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20050041594(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 아트라스비엑스 filed Critical 주식회사 아트라스비엑스
Priority to KR1020030076814A priority Critical patent/KR100549322B1/en
Publication of KR20050041594A publication Critical patent/KR20050041594A/en
Application granted granted Critical
Publication of KR100549322B1 publication Critical patent/KR100549322B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 연축전지의 전극 제조방법에 관한 것으로, 더욱 상세하게는 유기합성 극세사(Microfiber)를 활물질에 첨가하여 고율방전특성이 우수한 전극을 제조하는 전극 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode of a lead-acid battery, and more particularly, to an electrode manufacturing method for producing an electrode excellent in high rate discharge characteristics by adding an organic synthetic microfiber to an active material.

Description

연축전지 전극의 제조방법{Manufacturing method of electrode for lead storage battery}Manufacturing method of lead-acid battery electrode {Manufacturing method of electrode for lead storage battery}

본 발명은 연축전지의 전극 제조방법에 관한 것으로, 더욱 상세하게는 미크론 사이즈의 유기합성 극세사를 활물질에 첨가하여 전극을 제조하는 전극 제조방법에 관한 것이다The present invention relates to a method for producing an electrode of a lead-acid battery, and more particularly to an electrode manufacturing method for producing an electrode by adding a micron-size organic synthetic microfiber to an active material.

일반적으로, 연축전지의 전극은 활물질의 기계적 강도의 향상을 위하여 활물질 혼합시 유기합성 단섬유를 0.01 ~ 0.5 wgt %를 첨가하고 있다. 이때 첨가되는 유기합성 단섬유는 통상적으로 2~5 데니어의 섬도를 갖으며, 길이는 2 ~10밀리미터 정도이다. 유기합성 단섬유의 성분은 내산성 및 내산화성이 우수한 폴리프로필렌, 폴리에스테르, 모드아크릴 계열이 주종을 이루고 있다.In general, the electrode of the lead-acid battery is added 0.01 ~ 0.5 wgt% of the organic synthetic short fibers when the active material is mixed in order to improve the mechanical strength of the active material. At this time, the organic short fibers are added usually has a fineness of 2 ~ 5 denier, the length is about 2 ~ 10mm. The main components of the organic synthetic short fibers are polypropylene, polyester, and modacrylic series having excellent acid resistance and oxidation resistance.

근래의 연축전지 업계는 하이브리드 전기자동차용 고출력전지 개발에 힘쓰고 있으며, 이를 위해 활물질의 전기 및 이온전도도 향상을 위한 연구가 이루어지고 있다. In recent years, the lead-acid battery industry has been making efforts to develop high-output batteries for hybrid electric vehicles. To this end, research has been conducted to improve the electrical and ion conductivity of active materials.

전지의 고율 방전 특성 향상을 위해서 본 발명에서는, 활물질의 기계적 강도 보강을 위해 첨가하던 유기합성 단섬유를 미크론 사이즈의 유기합성 극세사로 대체하여, 활물질내에 분포한 유기합성 극세사 내부 및 표면의 모세관 현상을 통해 이온전도도를 증가시키는 방안을 검토하였다.In order to improve the high rate discharge characteristics of the battery, the present invention replaces the organic synthetic short fibers, which are added to reinforce the mechanical strength of the active material, with a micron-sized organic synthetic microfiber, thereby preventing the capillary phenomenon inside and the surface of the organic synthetic microfiber distributed in the active material. The method of increasing ion conductivity was examined.

유기합성 단 섬유는 전지 활물질의 기계적 강도를 증가시킬 목적으로, 활물질의 혼합시 첨가하게 된다. 재질은 전해액인 황산수용액에 대한 내산성을 고려하여, 폴리프로필렌이나 폴리에스테르 및 모드아크릴계열이 사용되고 있다. 사용되는 유기합성 단섬유는, 직접 방사법으로 제조되는 통상적인 합성 단 섬유의 사양인 2~5 데니어(직경은 약 12~20 마이크로미터)의 섬도를 갖으며, 길이는 2~10 밀리미터이다. 혼합시 투입되는 양은 0.01 ~ 0.5 wgt % 로, 이를 통해 최종적인 전극 활물질의 기계적 강도를 향상시켜 진동 및 충방전에 의한 활물질의 수축팽창으로 인해 활물질 구조가 파괴되는 현상을 억제하게 된다.Organic synthetic short fibers are added when the active material is mixed for the purpose of increasing the mechanical strength of the battery active material. As a material, in consideration of acid resistance to an aqueous solution of sulfuric acid, polypropylene, polyester, and modacrylic series are used. The organic synthetic short fibers used have a fineness of 2 to 5 deniers (about 12 to 20 micrometers in diameter), which is the specification of the conventional synthetic short fibers produced by direct spinning, and has a length of 2 to 10 millimeters. The amount added during mixing is 0.01 to 0.5 wgt%, thereby improving the mechanical strength of the final electrode active material, thereby suppressing the phenomenon of the active material structure being destroyed due to shrinkage expansion of the active material by vibration and charging and discharging.

극세사는 일반적인 섬유 제조방법인 직접 방사법의 한계인 0.5 ~ 1 데니어 사이의 섬유를 말하였으나, 해도형 초극세사와 분할형 초극세사가 개발됨에 따라 최소 0.001 데니어 까지 확장되었다. 이러한 극세사로 만든 직물 또는 부직포는 우수한 흡수성으로 인해 주방용품, 청소용품 목욕용품으로 사용되고 있으며, 기공이 미세해짐에 따라 고성능 방진 및 정수 필터 등으로 사용되고 있다.Microfiber refers to fibers between 0.5 and 1 denier, which is the limit of the direct spinning method, which is a general fiber manufacturing method, but expanded to at least 0.001 denier with the development of island-in-the-sea microfiber yarn and split microfiber yarn. Fabrics or non-woven fabrics made of such microfibers are used as kitchen utensils and cleaning utensils due to their excellent absorbency, and are used as high-performance dustproof and water filters as the pores become finer.

본 발명은, 투입되는 유기합성 단섬유(직경 10 ~ 50 마이크로미터)를 유기합성 극세사(직경 0.5 ~ 10 마이크로미터)로 대체함으로써, 단섬유의 표면적을 증가시키고, 섬유간 또는 섬유내부의 모세관 현상을 이용해 전해액의 확산을 용이하게 하여 이온전도도를 향상시키고 최종적으로 전지의 고율방전 특성을 향상시키기 위한 것이다.The present invention, by replacing the organic synthetic short fibers (diameter of 10 to 50 micrometers) into organic synthetic microfibers (0.5 to 10 micrometers in diameter), thereby increasing the surface area of the short fibers, the capillary phenomenon between the fibers or in the fiber It is intended to facilitate the diffusion of the electrolyte solution to improve the ion conductivity and finally to improve the high rate discharge characteristics of the battery.

따라서, 전해액인 황산에 대한 내산성, 주기적인 산화환원반응에 대한 화학적 안정성이 요구되는 재질을 갖고, 마이크로 미터 수준(1~10마이크로미터)의 굵기를 갖는 유기합성 초극세사를 선정, 전극 활물질에 첨가하여 고율방전특성에 대한 영향을 확인하였다. Therefore, an organic synthetic microfiber having a material requiring acid resistance to sulfuric acid as an electrolyte and chemical stability against periodic redox reactions and having a thickness of micrometer level (1 to 10 micrometers) is selected and added to the electrode active material. The effect on high rate discharge characteristics was confirmed.

본 발명은 연축전지용 전극에 있어서, 전극의 활물질에 1 데니어 이하의 유기합성 극세사를 첨가하여 전극을 제조하는 것에 특징을 둔 것이다. The present invention is characterized in that an electrode for a lead-acid battery is prepared by adding an organic synthetic microfiber of 1 denier or less to an active material of the electrode.

상기 극세사는 다양한 재질의 극세사가 이용될 수 있다.The microfiber may be used microfiber of various materials.

즉, 폴리프로필렌, 폴리에스테르 또는 아크릴 재질로 형성시킬 수 있으며, 0.5~1 데니어의 섬도를 갖는 길이 1~10mm인 스테이플 화이버로 구성할 수 있는 것이다.That is, it can be formed of polypropylene, polyester or acrylic material, it can be composed of a staple fiber having a length of 1 ~ 10mm having a fineness of 0.5 ~ 1 denier.

또한 상기 극세사는 폴리에스테르 또는 폴리아미드 재질의 단일성분 이거나 두개이상의 복합성분으로 형성시킬 수 있으며, 복합방사 또는 고분자블렌드 방사법으로 제조되고, 0.001~0.5 데니어의 섬도를 갖는 해도형 또는 분할형 극세사로 길이 1~10mm인 스테이플 화이버로 구성시킬 수 있다.In addition, the microfiber may be formed of a single component or two or more composite components of polyester or polyamide, and may be formed by a composite spinning or polymer blend spinning method, and the island-in-the-sea or split microfiber having a fineness of 0.001 to 0.5 denier It can be composed of 1 ~ 10mm staple fiber.

상기 극세사는 활물질과의 혼합시 0.01~0.5 wgt% 첨가하여 주며, 혼합이 완료된 활물질은 전극에 도포하여 전극을 제조한다.The microfiber is added at 0.01 ~ 0.5 wgt% when mixing with the active material, and the active material is mixed to the electrode to prepare the electrode.

이상에서 상술한 바와 같이 본 발명은, 내산성 및 내산화성이 우수한 폴리프로필렌, 폴리에스테르, 모드아크릴 계열의 유기합성 극세사를 전극제조용 활물질에 소량첨가하여 전극 활물질내로의 이온전달을 향상시키기 위한 것이다. 발명의 효과를 파악하기 위해 활물질 혼합시, 기존에 투입되던 유기합성 단 섬유를 유기합성 극세사로 대체하여 동일 중량비로 첨가하였으며 후속 공정인 숙성, 조립, 충전 등의 공정을 통해 최종적인 제품을 제작하였다. 제작된 시험품은 KS C 8504 자동차 시동용 연축전지 시험규격(1999)에 의거 초기 성능 및 수명에 대한 시험을 실시하였으며, 그 결과는 다음과 같다.As described above, the present invention is to improve the ion transfer into the electrode active material by adding a small amount of an organic synthetic microfiber of polypropylene, polyester, and modacrylic series having excellent acid resistance and oxidation resistance to the electrode active material. In order to understand the effect of the invention, when the active material was mixed, the organic synthetic short fibers, which were previously introduced, were replaced with the organic synthetic microfiber, and added in the same weight ratio. . The manufactured test product was tested for initial performance and lifespan according to KS C 8504 automotive starter lead-acid battery test standard (1999). The results are as follows.

1.초기 성능 시험결과1. Initial performance test result

1) 보유용량 (Reserve Capacity, min)1) Reserve Capacity, min

- 25℃수조에서 25A 방전시, 10.5V 도달시 까지의 방전시간을 측정하는 것임.-It measures the discharge time up to 10.5V when 25A discharge in 25 ℃ water tank.

- 시험결과, 극세사를 적용한 전지의 RC(Reserve Capacity)는 기존품의 RC 대비 5%의 향상된 결과를 보임.-As a result of the test, the microfiber-recharged battery's RC (Reserve Capacity) shows a 5% improvement over the existing RC.

- 따라서, 극세사 사용에 따라 RC가 향상됨을 확인.-Therefore, RC is improved by using microfiber.

2) 저온시동력 (Cold Cranking Ampere, A)2) Cold Cranking Ampere, A

- 저온에서의 시동력을 보기 위한 고율 방전시험임.(-18℃에서 630A로 30초 방전시의 전압을 측정.)-High rate discharge test to see the starting force at low temperature. (Measure the voltage at 30 seconds discharge at 630A at -18 ℃)

- 7.2V 이상일 경우 합격판정을 받으나 30초 전압이 높을수록 저온시동능력이 우수하다고 평가됨.-If it is more than 7.2V, it is judged as acceptable, but the higher the 30-second voltage, the better the low temperature starting ability.

- 시험결과, 극세사를 적용한 전지의 CCA(Cold Cranking Ampere)는, 기존품의 CCA 대비 약 10%의 상승효과를 보임.-As a result of the test, CCA (Cold Cranking Ampere) of microfiber battery shows a synergistic effect of about 10% compared to CCA of conventional products.

- 따라서, 극세사 사용에 따라 CCA가 약 10% 상승함을 확인.-As a result, CCA rose about 10% with the use of microfiber.

3) 20시간율 용량 (C20, AH)3) 20 hour rate capacity (C20, AH)

- 25℃수조에서 3.75 A로 방전하여, 10.5 V 까지의 방전용량 (AH)를 측정-Discharge at 3.75 A in a 25 ° C water bath and measure the discharge capacity (AH) up to 10.5 V

- 시험결과, 극세사를 적용한 전지의 20시간율 용량은, 기존품의 20시간율 용량대비, 5%의 상승효과를 보임.-As a result of the test, the 20 hour rate capacity of the microfiber-applied battery shows a 5% synergistic effect compared to the 20 hour rate capacity of the conventional product.

- 따라서, 극세사 사용에 따라 20시간율 용량이 약 5% 상승함을 확인.-As a result, the 20 hour rate capacity is increased by about 5% according to the use of microfiber.

4) 수명시험 ( SAE J 240 at 75 ℃)4) Life test (SAE J 240 at 75 ℃)

- 75℃수조에서 4분 방전(25A), 10분 충전(14.8V, 최대 25A)을 1주 480회 반복-480 cycles of 4 minute discharge (25A), 10 minute charge (14.8V, 25A max) in 75 ℃ water bath

- 1주 충방전후, 고율방전(630A)하여 30초 전압 측정-After 1 week charging and discharging, high rate discharge (630A) for 30 seconds voltage measurement

- 30초 전압이 7.2 V 이상일 경우, 충방전 1주 반복. 7.2 V 미만일 경우 수명 종지임.-Repeat the charge / discharge 1 week if the 30 second voltage is 7.2 V or higher. End of life if less than 7.2 V.

- 시험결과, 극세사를 적용한 전지의 수명은, 기존품의 수명 대비 약 20%의 상승효과를 보임. -As a result of the test, the life span of the microfiber-applied battery shows a synergistic effect of about 20% compared to the life of the existing product.

- 따라서, 극세사 사용에 따라 수명이 약 20% 상승함을 확인.-As a result, the service life is increased by about 20% according to the use of microfiber.

전지의 초기 성능과 수명시험결과, 보유용량(RC,분)은 5%, 고율방전특성(CCA, A)은 10%, 20시간용량(C20,Ah)는 5%, 수명(SAE J240 at 75℃)은 20% 향상됨을 확인할 수 있었다.Initial performance and life test results of the battery showed 5% retention capacity (RC, minute), 10% for high-rate discharge characteristics (CCA, A), 5% for 20 hours capacity (C20, Ah), and lifetime (SAE J240 at 75). ℃) was confirmed to improve 20%.

< 시험결과 표 ><Test Result Table>

이상에서와 같이 본 발명에 따르면 연축전지의 품질조건인 보유용량 (Reserve Capacity, min), 저온시동력 (Cold Cranking Ampere, A), 20시간율 용량 (C20, AH), 내구수명 등이 종래품보다 월등한 성능을 가지는 효과가 있다.As described above, according to the present invention, the lead-acid battery quality conditions (Reserve Capacity, min), low temperature starting power (Cold Cranking Ampere, A), 20 hour rate capacity (C20, AH), durability life, etc. This has the effect of superior performance.

Claims (5)

연축전지용 전극에 있어서, 전극의 활물질에 1 데니어 이하의 유기합성 극세사를 첨가하여 전극을 제조하는 것을 특징으로 하는 연축전지 전극의 제조방법.A lead-acid battery electrode, wherein the electrode is manufactured by adding an organic synthetic microfiber of 1 denier or less to an active material of the electrode, thereby producing a lead-acid battery electrode. 제 1항에 있어서, 극세사는 폴리프로필렌, 폴리에스테르 또는 아크릴 재질이며, 0.5~1 데니어의 섬도를 갖는 길이 1~10mm인 스테이플 화이버인 것을 특징으로 하는 연축전지 전극의 제조방법.The method of manufacturing a lead-acid battery electrode according to claim 1, wherein the microfiber is made of polypropylene, polyester or acrylic, and is a staple fiber having a length of 1 to 10 mm having a fineness of 0.5 to 1 denier. 제 1항에 있어서, 극세사는 폴리에스테르 또는 폴리아미드 재질의 단일성분 이거나 두개이상의 복합성분으로 이루어진 것으로, 복합방사 또는 고분자블렌드 방사법으로 제조된, 0.001~0.5 데니어의 섬도를 갖는 해도형 또는 분할형 극세사로 길이 1~10mm인 스테이플 화이버인 것을 특징으로 하는 연축전지 전극의 제조방법.The microfiber yarn according to claim 1, wherein the microfiber yarn is composed of a single component or two or more composite components made of polyester or polyamide, and has a fineness of 0.001 to 0.5 denier, prepared by a composite spinning or polymer blend spinning method. The method for manufacturing a lead-acid battery electrode, characterized in that the staple fiber having a furnace length of 1 ~ 10mm. 제 1항에 있어서, 극세사는 아크릴재질로, 복합방사 또는 고분자블렌드 방사법으로 제조된, 0.001~0.5 데니어의 섬도를 갖는 해도형 또는 분할형 극세사로 길이 1~10mm의 스테이플 화이버인 것을 특징으로 하는 연축전지 전극의 제조방법.The method according to claim 1, wherein the microfiber yarn is an island-like or split type microfiber having a fineness of 0.001 to 0.5 denier, made of a composite spinning or polymer blend spinning method, is a staple fiber having a length of 1 to 10 mm. Method for manufacturing a battery electrode. 제 1항 내지 제 4 항 중 어느 하나의 항에 있어서, 극세사는 활물질과의 혼합시 0.01~0.5 wgt% 첨가함을 특징으로 하는 것을 특징으로 하는 연축전지 전극의 제조방법.The method for manufacturing a lead-acid battery electrode according to any one of claims 1 to 4, wherein the microfiber yarn is added at 0.01 to 0.5 wgt% when mixed with the active material.
KR1020030076814A 2003-10-31 2003-10-31 Manufacturing method of electrode for lead storage battery KR100549322B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030076814A KR100549322B1 (en) 2003-10-31 2003-10-31 Manufacturing method of electrode for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030076814A KR100549322B1 (en) 2003-10-31 2003-10-31 Manufacturing method of electrode for lead storage battery

Publications (2)

Publication Number Publication Date
KR20050041594A true KR20050041594A (en) 2005-05-04
KR100549322B1 KR100549322B1 (en) 2006-02-02

Family

ID=37243051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030076814A KR100549322B1 (en) 2003-10-31 2003-10-31 Manufacturing method of electrode for lead storage battery

Country Status (1)

Country Link
KR (1) KR100549322B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803091B1 (en) * 2006-01-19 2008-02-13 주식회사 코오롱 Supporter for lead-laid battery and preparation method thereof
KR100987697B1 (en) * 2005-09-14 2010-10-13 코오롱인더스트리 주식회사 A support of activie material in polar plate used in lead-acid battery
US8846252B2 (en) 2009-02-26 2014-09-30 Johnson Controls Technology Company Battery electrode and method for manufacturing same
US10581046B2 (en) 2008-12-18 2020-03-03 Clarios Germany Gmbh & Co. Kgaa Laminar textile material for a battery electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100987697B1 (en) * 2005-09-14 2010-10-13 코오롱인더스트리 주식회사 A support of activie material in polar plate used in lead-acid battery
KR100803091B1 (en) * 2006-01-19 2008-02-13 주식회사 코오롱 Supporter for lead-laid battery and preparation method thereof
US10581046B2 (en) 2008-12-18 2020-03-03 Clarios Germany Gmbh & Co. Kgaa Laminar textile material for a battery electrode
US11233293B2 (en) 2008-12-18 2022-01-25 Clarios Germany Gmbh & Co. Kg Laminar textile material for a battery electrode
US8846252B2 (en) 2009-02-26 2014-09-30 Johnson Controls Technology Company Battery electrode and method for manufacturing same
US10044043B2 (en) 2009-02-26 2018-08-07 Johnson Controls Technology Company Fiber scrim, battery electrode and method for manufacturing same

Also Published As

Publication number Publication date
KR100549322B1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US20240021840A1 (en) Electrical power storage devices
Yanilmaz et al. Evaluation of electrospun SiO2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries
US20120070729A1 (en) Glass compositions with high levels of bismuth oxide
US20120070728A1 (en) Compositions and delivery systems with leachable metal ions
US10535853B2 (en) Glass compositions with leachable metal oxides and ions
EA029971B1 (en) Single-layer lithium ion battery separator
KR20180045327A (en) Manufacturing method of active material for lead-acid battery
US20040265699A1 (en) Eletrode for lead srorage battery and method for manufacturing thereof
CN104769756A (en) A composition that enhances deep cycle performance of valve- regulated lead-acid batteries filled with gel electrolyte
KR100549322B1 (en) Manufacturing method of electrode for lead storage battery
KR102105992B1 (en) Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery
KR20180045244A (en) Plate for lead storage battery and manufacturing method of it
KR101737320B1 (en) Manufacturing method of active material for lead-acid battery
JP7424371B2 (en) Separators for liquid lead-acid batteries and liquid lead-acid batteries
KR20090027791A (en) Electrode of lead-acid battery
JP6981978B2 (en) Lithium-ion battery manufacturing method
KR101775360B1 (en) Manufacturing method of active material for lead-acid battery
KR20210017164A (en) Manufacturing method of active material for lead-acid battery using Diatomaceous earth fiber
JP4814392B1 (en) Battery separator
EP0834939B1 (en) Alkaline storage battery and separator therefor
KR102305192B1 (en) Manufacturing method of active material for lead-acid battery Addition of Deep groove on the surface polyester fiber
JPH10255752A (en) Separator for sealed type lead storage battery
JP2005108617A (en) Separator for lead storage battery
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
EA039132B1 (en) Lithium ion battery and method of manufacturing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 12

J206 Request for trial to confirm the scope of a patent right
J301 Trial decision

Free format text: TRIAL NUMBER: 2017100001307; TRIAL DECISION FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20170426

Effective date: 20171031

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 15