KR20050033581A - Pavement method of bridge surface using ductile concrete composites - Google Patents

Pavement method of bridge surface using ductile concrete composites Download PDF

Info

Publication number
KR20050033581A
KR20050033581A KR1020050020641A KR20050020641A KR20050033581A KR 20050033581 A KR20050033581 A KR 20050033581A KR 1020050020641 A KR1020050020641 A KR 1020050020641A KR 20050020641 A KR20050020641 A KR 20050020641A KR 20050033581 A KR20050033581 A KR 20050033581A
Authority
KR
South Korea
Prior art keywords
volume
weight
concrete
fiber
fibers
Prior art date
Application number
KR1020050020641A
Other languages
Korean (ko)
Inventor
한병찬
김재환
양일승
Original Assignee
(주)에이엠에스 엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이엠에스 엔지니어링 filed Critical (주)에이엠에스 엔지니어링
Priority to KR1020050020641A priority Critical patent/KR20050033581A/en
Publication of KR20050033581A publication Critical patent/KR20050033581A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A process for pavement of bridge surface is provided, which uses high ductile concrete composite to express superior strain hardening and multiple crack properties without reduction of stress caused by bridging state of fibers after initial cracking. The high ductile concrete composite used in the pavement of a bridge surface comprises water and a binder in W/B weight ratio of 25-50 wt.%; a miscible material, an additive and a CSA based rapid binder with a substitution ratio of 5-50 wt.%, 0-25 wt.% and 0-25 wt.% respectively; 0-2.0 wt.% of high performance water reducing agent and 0-15 wt.% of SBR polymer based on total weight of the binder; 0-1.5 wt.% of thickener; a concrete composite composed of 10-40 vol.% of fine aggregates and 0-25 vol.% of coarse aggregate, and each of polyethylene, polyvinyl alcohol and polypropylene fibers and/or a hybrid form in combination with two or more of them having 1.00-3.20 vol.% of VF.

Description

고인성 콘크리트 복합체를 활용한 교면포장 공법 {Pavement Method of Bridge Surface Using Ductile Concrete Composites}Bridge Method Using Ductile Concrete Composites

본 발명은 점성, 유동성 및 터프니스(Toughness)가 특수하게 조정된 매트릭스에 직경 및 길이가 작은 각종 합성섬유를 적정량 혼입하여 휨 및 인장하중 작용하에 변형경화거동 및 멀티플크랙특성을 발휘하는 고인성 콘크리트 복합체의 제조기술과 이를 신설 또는 노후화된 교량의 강상판 및 콘크리트상판 보호용 교면포장에 활용하여 높은 내구성, 인성 및 방수성능을 갖는 교량을 구축하는 공법에 관한 것이다.The present invention is a high toughness concrete that exhibits deformation hardening behavior and multiple cracking characteristics under bending and tensile load by incorporating various amounts of synthetic fibers of small diameter and length into a matrix having specially adjusted viscosity, flowability and toughness. The manufacturing technology of the composite and a method of constructing a bridge having high durability, toughness and waterproofing performance by utilizing it in the construction of new or aging bridges for the protection of steel and concrete decks.

기존 공법에 있어서는 교량의 상판보호용 교면포장으로서 교량상판에 방수층을 형성시킨 후 그 위에 아스팔트를 포장하는 공법이 경제성 및 시공성상의 이유로 주로 활용되었으나, 이러한 아스팔트 교면포장의 경우 교량상판과의 열적거동 및 탄성계수 차이로 인해 균열, 포트홀 및 소성변형 등 다양한 결함이 발생되고 있으며, 이로 인해 방수층이 파괴되고 수분이 교량상판에 침투하여 각종 열화현상이 발생되는 등 사회적인 문제로 되고 있는 실정이다.In the existing construction method, a method of forming a waterproof layer on a bridge deck and paving asphalt on it as a bridge pavement protection for bridge deck was mainly used for economic and construction reasons.However, in the case of such asphalt bridge paving, thermal behavior and elasticity of the bridge deck Due to the difference in coefficients, various defects such as cracks, potholes, and plastic deformations are generated. As a result, various problems such as destruction of the waterproof layer, moisture penetrating into the bridge deck, and various deterioration phenomena are generated.

최근 이러한 아스팔트 교면포장의 내구성 문제를 해결하기 위해 폴리머 및 초속경 시멘트를 사용한 LMC(Latex Modified Concrete) 교면포장재가 개발되어 상판보수용 교면포장재로 사용되고 있으나, LMC 포장재의 경우도 폴리머의 혼입에 의해 자체의 휨 및 인장강도만을 증가시켰을 뿐, 교량상판에 주로 작용하는 윤하중, 즉 피로하중에 대한 저항성은 문제시 되고 있다.Recently, in order to solve the durability problem of asphalt bridge pavement, LMC (Latex Modified Concrete) bridge pavement using polymer and super hard cement has been developed and used as a bridge pavement for top plate repair. The resistance to fatigue load, ie fatigue load, which mainly acts on bridge decks, is only a problem because it only increases the bending and tensile strength of.

한편, 콘크리트의 인성 및 균열제어성능을 개선시키기 위해 강섬유를 혼입한 섬유보강 콘크리트와 페이스트 또는 모르타르에 특수 합성섬유를 혼입한 고인성 시멘트 복합체(ECC ; Engineered Cementitious Composites)가 개발되었으나, 강섬유보강 콘크리트의 경우 일반콘크리트에 비해 휨강도 및 인성은 향상되었으나 균열제어성능을 유사한 수준이며, 고인성 시멘트 복합체의 경우에는 휨 및 인장하중 하에서의 변형성능, 인성능 및 균열제어성능은 대폭적으로 향상되었으나 페이스트 또는 모르타르를 매트릭스로 사용하고 있어 일반콘크리트에 비해 탄성계수가 크게 저하하는 문제가 지적되고 있다.Meanwhile, in order to improve the toughness and crack control performance of concrete, highly reinforced cement composites (ECC) have been developed, in which steel fibers are mixed with special synthetic fibers in paste or mortar. In this case, the flexural strength and toughness are improved compared to general concrete, but the crack control performance is comparable. In the case of high toughness cement composites, the deformation performance, toughness and crack control performance under bending and tensile loads are greatly improved, but the paste or mortar matrix It has been pointed out that the elastic modulus is greatly reduced compared to the general concrete.

본 발명에서는 아스팔트 교면포장의 내구성 저하 문제를 해결하기 위해 개발된 LMC 교면포장 및 강섬유보강 콘크리트 포장의 문제로 지적되고 있는 윤하중에 대한 피로성능 및 균열폭 제어성능을 해결할 수 있고, 더욱이 이러한 문제를 해결하기 위해 미국 및 일본 등에서 개발된 고인성 시멘트 복합체(ECC)의 탄성계수 저하에 대한 문제를 근본적으로 해결함으로서 사회간접자본시설인 교량의 장수명화 및 유지관리비용의 저감을 통한 LCC(Life Cycle Cost) 저감을 도모할 수 있는 교량상판 보호용 교면포장공법을 개발하고자 한다.In the present invention, it is possible to solve the fatigue performance and crack width control performance for the wheel load, which is pointed out as a problem of LMC bridge pavement and steel fiber reinforced concrete pavement developed to solve the problem of durability degradation of asphalt bridge pavement, and moreover to solve this problem To solve the problem of lowering the elastic modulus of high toughness cement composite (ECC) developed in the United States and Japan, the reduction of life cycle cost (LCC) by reducing the long life and maintenance cost of bridges, which are social overhead capital facilities. To develop bridge paving method for bridge deck protection.

이를 위해 본 발명에서는 휨 및 인장하중 작용하에서 초기균열이 발생한 후에도 응력의 저하 없이 변형의 증가와 함께 응력이 다시 증가하는 변형경화거동과 이 과정에서 초기균열의 폭이 진전되지 않고 초기균열부 주위에 다수의 미세균열(약 100㎛ 이하)이 발생하는 멀티플크랙특성을 지닌 고인성 콘크리트 복합체의 제조기술과 이를 교면포장재로 활용할 수 있는 기술을 개발하고자 하였으며, 이를 통해 교면포장재의 균열분산성 향상과 균열폭 제어에 의해 방수성능 및 Cl- 또는 CO2 등의 유해물질 침투저항성을 대폭 향상시킬 수 있을 뿐만 아니라 휨인성 및 변형성능을 향상시켜 교면의 윤하중에 대한 피로성능을 크게 개선시킬 수 있다.To this end, in the present invention, even after the initial crack occurs under the bending and tensile load action, the strain hardening behavior of the stress increases again with the increase of the strain without deterioration of the stress and in the process, the width of the initial crack does not progress, To develop a technique for manufacturing high toughness concrete composites with multiple cracking characteristics that generate a large number of microcracks (about 100 ㎛ or less) and to utilize them as cross-linking packaging materials, thereby improving crack dispersibility and cracking width of cross-linking packaging materials. By controlling, not only the waterproofing performance and the penetration resistance of harmful substances such as Cl - or CO 2 can be significantly improved, but also the flexural toughness and deformation performance can be improved to significantly improve the fatigue performance against lubricating load of the bridge.

본 발명의 고인성 콘크리트 복합체는 물/결합재비(W/B) 25∼50중량%, 결합재 중량에 대한 혼화재, 충전재 및 CSA계 급결제의 대체율이 각각 5∼50The high toughness concrete composite of the present invention has a water / binder ratio (W / B) of 25 to 50% by weight, and a replacement ratio of the admixture, filler, and CSA-based fastener to the binder weight is 5 to 50, respectively.

중량%, 0∼25중량% 및 0∼25Wt%, 0-25 wt% and 0-25

중량%, 결합재 중량에 대한 고성능감수제 및 SBR계 폴리머의 혼입율이 각각 0∼2.0중량% 및 0∼15The mixing ratios of the high-performance water reducing agent and the SBR polymer with respect to the weight% and the weight of the binder are 0 to 2.0 wt% and 0 to 15, respectively.

중량%, 단위수량에 대한 메틸셀룰로스계 증점제의 첨가율이 0∼1.5중량%, 콘크리트 총 용적에 대한 잔골재 및 굵은골재의 혼입율이 각각 20∼400 to 1.5% by weight of methylcellulose thickener based on the weight%, unit quantity, and the mixing ratio of fine aggregate and coarse aggregate to the total volume of concrete was 20 to 40, respectively.

용적% 및 0∼25용적%로 구성되는 매트릭스와 폴리에틸렌(PE)섬유, 폴리비닐알콜(PVA)섬유 및 폴리프로필렌(PP)섬유를 단독으로 혼입하거나 동종 또는 이종의 섬유를 혼합(Hybrid)한 섬유의 체적혼입율(Vf)이 매트릭스 총용적에 대하여 1.00∼3.20Fiber comprising a matrix composed of% by volume and 0 to 25% by volume, polyethylene (PE) fiber, polyvinyl alcohol (PVA) fiber and polypropylene (PP) fiber alone or hybrid of the same or different types of fiber The volumetric mixing ratio (V f ) of 1.00 to 3.20 is based on the total volume of the matrix.

용적%가 되도록 구성되며, 이를 현장믹서 및 레미콘플랜트에서 제조하여 현장에서 직접 타설함으로서 고내구성의 교면포장을 완성하는 공법이다.It is composed of volume%, and it is manufactured in the field mixer and ready-mixed concrete plant and poured directly in the field to complete the high durability bridge packaging.

이와 같이 본 발명에서는 섬유, 매트릭스 및 섬유/매트릭스 계면특성에 관한 파라메터를 적절히 조합함으로서 휨 및 인장하중 작용하에서 초기균열이 발생한 이후에도 금속과 같이 응력의 저하 없이 변형의 증가와 함께 응력이 다시 증가하는 변형경화거동과 이 과정에서 균열폭이 일정하게 제어된 다수의 미세균열인 멀티플크랙이 발생할 수 있는 고인성 콘크리트 복합체의 제조가 가능하며, 이를 교량상판의 교면포장재로 활용함으로서 윤하중 및 반복하중에 대한 피로성능이 향상될 뿐만 아니라 균열발생 후에도 균열폭이 제어되어 열화인자의 침입을 차단할 수 있고, 탄성계수가 일반콘크리트의 동등하여 동일한 구조적 거동이 가능하게 된다. 이러한 기능을 가진 교면포장용 고인성 콘크리트 복합체의 사용재료, 배합 및 제조특성을 상세히 살펴보면 아래에 서술한 바와 같다. As described above, according to the present invention, a combination of parameters related to fiber, matrix, and fiber / matrix interfacial properties is appropriately deformed to increase the stress with the increase of the strain without deterioration of the stress, such as metal, even after the initial cracking under bending and tensile load. In this process, it is possible to manufacture high-tough concrete composites that can produce multiple cracks, which are multiple microcracks with constant crack width control. Not only is this improved but also the crack width is controlled after the occurrence of cracking to block the ingress of deterioration factors, and the elastic modulus is equivalent to that of ordinary concrete, thereby enabling the same structural behavior. A detailed description of the materials, formulations, and manufacturing characteristics of the high toughness concrete composite for cross-section paving with these functions is given below.

즉, 본 발명의 고인성 콘크리트 복합체에 사용되는 결합재로서 시멘트는 보통포틀랜드시멘트, 조강포틀랜드시멘트, 초조강포틀랜드시멘트 및 초속경시멘트가 사용되며, 교면보수용 포장재로 사용할 경우에는 신속한 교통개방을 위해 초속경시멘트의 사용이 바람직하다. 또한, 고인성 콘크리트 복합체의 유동성 및 경제성을 향상시키기 위해 혼화재로서 산업부산물인 플라이애시 및 고로슬래그미분말이 결합재량에 대하여 각각 0∼35중량% 및 0∼50That is, cement as a binder used in the high toughness concrete composite of the present invention is usually used portland cement, crude steel portland cement, ultra-tight steel portland cement and cemented carbide cement, when used as a paving material for bridge repair, super speed for open traffic The use of light cement is preferred. In addition, fly ash and blast furnace slag powder, which are industrial by-products as admixtures, were added in an amount of 0 to 35% by weight and 0 to 50%, respectively, in order to improve flowability and economic efficiency of the high toughness concrete composite.

중량%, 양호하게는 15∼30중량% 및 35∼45Wt%, preferably 15-30 wt% and 35-45

중량% 사용되며, 충전재로서 석회석미분말이 결합재량에 대하여 0∼25중량%, 양호하게는 10∼15It is used by weight%, and the limestone fine powder is 0-25% by weight based on the amount of binder, preferably 10-15

중량% 사용되고, CSA계 급결제가 결합재량에 대하여 0∼25중량%, 양호하게는 15∼25Wt% is used, CSA-based fastener is 0-25 wt%, preferably 15-25 wt.

중량% 사용된다.% By weight is used.

단위수량은 결합재 100중량%에 대하여 25∼50Unit quantity is 25-50 with respect to 100 weight% of binders

중량%가 사용되며, 양호하게는 30∼45중량%가 사용된다. 한편, W/B가 25∼40Weight percent is used, preferably 30 to 45 weight percent. On the other hand, W / B is 25-40

중량%인 경우에는 유동성을 확보하기 위해 결합재에 대하여 고성능감수제 0∼2.0중량%, 양호하게는 0.5∼1.0In the case of weight%, 0-2.0 weight% of high performance water reducing agent with respect to a binder to ensure fluidity, Preferably it is 0.5-1.0

중량%가 첨가되며, W/B비가 40∼50%인 경우에는 섬유의 분산성 및 점성을 확보하기 위해 단위수량에 대하여 메틸셀룰로스계 증점제가 0∼1.5중량%, 양호하게는 0.5∼1.0If the weight% is added, and the W / B ratio is 40-50%, in order to ensure the dispersibility and viscosity of the fiber, the methylcellulose thickener is 0-1.5% by weight, preferably 0.5-1.0 per unit amount.

중량%가 첨가된다. 더욱이 고인성 콘크리트 복합체의 휨성능을 향상시키고자 할 경우에는 SBR계 폴리머가 결합재에 대하여 0∼15중량%, 양호하게는 5∼10% By weight is added. Furthermore, in order to improve the bending performance of the high toughness concrete composite, the SBR-based polymer is 0 to 15% by weight, preferably 5 to 10%, based on the binder.

중량% 사용된다. % By weight is used.

잔골재로는 규사, 해사, 강모래 또는 PS볼(급냉슬래그)가 사용되고, 콘크리트 총용적에 대하여 10∼40용적%, 양호하게는 20∼30As fine aggregate, silica sand, sea sand, steel sand or PS ball (quench slag) are used, and it is 10 to 40% by volume with respect to the total concrete volume, preferably 20 to 30%.

용적%가 사용되며, 2.5mm 이하의 것을 사용하는 것이 바람직하다. 또한, 굵은골재로는 최대치수 13mm, 10mm 및 8mm의 부순자갈 및 강자갈, 또는 7mm 이하의 PS볼이 사용되고, 콘크리트 총용적에 대하여 0∼25Volume% is used and it is preferable to use 2.5 mm or less. In addition, coarse aggregates are used in the maximum size 13mm, 10mm and 8mm crushed and strong grind, or PS ball of 7mm or less, 0-25 to the total concrete volume

용적%가 사용되며, 양호하게는 10∼20용적%가 사용되는 것이 바람직하다.Volume% is used, preferably 10 to 20 volume% is preferably used.

섬유로는 폴리에틸렌(PE)섬유(직경 10∼30㎛, 길이 6∼15mm), 폴리비닐알콜(PVA)섬유Fibers include polyethylene (PE) fibers (diameter 10-30 μm, length 6-15 mm), polyvinyl alcohol (PVA) fibers

(직경 30∼100㎛, 길이 6∼15mm), 폴리프로필렌(PP)섬유(직경 30∼60㎛, 길이 6∼15mm)가 단독으로 사용되거나 동종 또는 이종의 섬유를 혼합하여 사용하며, 콘크리트 총용적에 대한 섬유의 체적혼입율(Vf)은 1.00∼3.20(30 ~ 100㎛ in diameter, 6 ~ 15mm in length), polypropylene (PP) fiber (30 ~ 60㎛ in diameter, 6 ~ 15mm in length) are used alone or mixed with same or different types of fibers The volumetric mixing ratio (V f ) of the fibers with respect to 1.00-3.20

용적%, 양호하게는 1.50∼2.20용적%가 사용되고, 각 섬유종류별 적정 체적혼입율은 다음 표와 같다.Volume%, preferably 1.50 to 2.20% by volume is used, and the proper volume mixing ratio for each fiber type is shown in the following table.

구 분division 섬유의 종류Type of fiber 합 계Sum 비 고Remarks 폴리에틸렌(PE)Polyethylene (PE) 폴리비닐알콜(PVA)Polyvinyl Alcohol (PVA) 폴리프로필렌(PP)Polypropylene (PP) 적정체적혼입율(용적%)Proper volume incorporation rate (% by volume) 1.00∼1.501.00-1.50 -- -- 1.00∼1.501.00-1.50 단독사용Stand alone -- 1.50∼2.201.50-2.20 -- 1.50∼2.201.50-2.20 단독사용Stand alone -- -- 1.80∼2.501.80 to 2.50 1.80∼2.501.80 to 2.50 단독사용Stand alone 0.70∼1.000.70 to 1.00 1.00∼1.501.00-1.50 -- 1.70∼2.501.70 to 2.50 혼합사용Mixed use 0.70∼1.000.70 to 1.00 -- 1.00∼2.001.00 to 2.00 1.70∼3.001.70-3.00 혼합사용Mixed use -- 1.25∼1.801.25-1.80 1.00∼1.501.00-1.50 2.25∼3.202.25-3.20 혼합사용Mixed use ※ 본 표에 기재된 수치는 콘크리트 총용적부에 대한 섬유의 체적혼합율(Vf)임※ The numerical values shown in this table are the volumetric mixing ratio (Vf) of the fiber to the concrete total volume.

이상과 같이 구성된 고인성 콘크리트 복합체의 제조는 현장믹서 및 레미콘플랜트 모두 이용 가능하며, 사용되는 믹서는 현재 콘크리트용 믹서로 사용되는 것이면 모두 가능하고, 양호하게는 팬타입(Pan Type)믹서 또는 옴니(Omni)믹서의 사용이 바람직하다. 또한, 비빔시 재료의 투입순서는 현장여건에 따라 일괄적으로 투입하여 비비거나 섬유를 최후에 투입하여 제조하며, 비빔시간은 각 재료가 균등하게 분산될 때까지 실시하여야 한다.The manufacture of high toughness concrete composites constructed as described above is available for both field mixers and ready-mixed concrete plants, and the mixers used can be used as long as they are currently used as concrete mixers, and preferably, a pan type mixer or omni ( Omni) mixers are preferred. In addition, the order of input of materials during the bibim is prepared by mixing them in batches according to the site conditions, or by finally adding the fibers. The bibim time should be performed until each material is uniformly dispersed.

또한, 고인성 콘크리트 복합체의 시공은 일반적으로 도3에 나타낸 바와 같은 순서에 의해 실시하며, 최소포설두께는 40mm 이상으로 하고, 포설높이는 계획고보다 3∼10In addition, the construction of the high toughness concrete composite is generally carried out in the order shown in Fig. 3, the minimum laying thickness is 40 mm or more, and the laying height is 3 to 10 above the planned height.

mm 정도 높게 포설한 다음 콘크리트용 진동피니셔로 다짐하면서 표면을 마무리 한다. 한편, 모서리부 및 측벽부 등과 같이 충전이 취약한 부위에는 별도의 콘크리트 진동기로 다짐을 실시하며, 마무리면은 소요의 평탄성과 종·횡 계획고 및 내구적인 표면을 유지할 수 있도록 한다.Install it about mm high and finish the surface by compacting with concrete vibration finisher. On the other hand, in areas where the charging is weak, such as the corner portion and side wall portion is compacted with a separate concrete vibrator, and the finishing surface to maintain the required flatness, longitudinal and transverse height and durable surface.

포장의 평탄마무리가 종료되고 표면에 성형성이 유지되면 즉시 타이닝기에 의해 기계마무리를 실시하며, 이때 홈의 깊이는 3mm 이상, 홈의 간격은 2∼3When the finishing of the package is finished and the formability is maintained on the surface, the machine is finished by a tinning machine immediately. At this time, the groove depth is 3mm or more and the groove spacing is 2-3.

cm로 하여 충분한 마찰계수를 확보할 수 있도록 한다. 또한, 타이닝이 종료되면 즉시 양생제를 도포하여 표면에서의 수분증발이 방지되도록 한다.It should be cm to ensure a sufficient coefficient of friction. In addition, when the finish is finished, the curing agent is applied immediately to prevent the evaporation of moisture on the surface.

본 발명의 고인성 콘크리트 복합체는 섬유, 매트릭스 및 섬유/매트릭스의 계면 부착특성에 관한 파라메터를 적절히 조합하여 제조됨으로서 휨 및 인장하중 작용하에서 변형경화거동 및 멀티플크랙 특성을 안정하게 발휘할 수 있으며, 기존의 강섬유보강 콘크리트나 LMC 포장용 콘크리트 또는 고인성 시멘트 복합체에 비하여 높은 휨 및 인장강도를 발현할 수 있을 뿐만 아니라 균열제어성능, 피로성능, 변형성능, 에너지 흡수능 및 내구성 등을 크게 향상시킬 수 있다.The high toughness concrete composite of the present invention is manufactured by properly combining the parameters of the interfacial adhesion properties of the fiber, the matrix and the fiber / matrix so that the deformation hardening behavior and the multiple cracking characteristics can be stably exhibited under the bending and tensile loads. Compared to steel fiber reinforced concrete, LMC pavement concrete, or high toughness cement composite, high bending and tensile strength can be expressed, and crack control performance, fatigue performance, deformation performance, energy absorption and durability can be greatly improved.

이와 같은 성능을 가진 고인성 콘크리트 복합체를 신설 또는 노후화된 교량의 교면포장에 활용하여 교면포장재의 균열분산성을 향상시키고 균열폭을 제어함으로서 방수성능 및 Cl- 또는 CO2 등의 유해물질 침투저항성을 대폭 향상시킬 수 있을 뿐만 아니라 휨인성 및 변형성능을 향상시켜 교면의 윤하중에 대한 피로성능을 크게 개선시켜 신설 및 기존 교량의 고내구화 및 장수명화가 가능하게 되며, 최종적으로 유지관리비용을 저감시킴으로서 LCCBy utilizing the high toughness concrete composite with such performance in the bridge pavement of new or aging bridges, it improves the crack dispersibility of the bridge pavement and controls the crack width, greatly improving the waterproofing performance and the penetration resistance of harmful substances such as Cl - or CO 2 . In addition to improving the flexural toughness and deformation performance, the fatigue performance of the bridge's lubrication load can be greatly improved, enabling high durability and long life of new and existing bridges, and finally reducing maintenance costs.

(Life Cycle Cost)의 절감이 가능하게 된다.(Life Cycle Cost) can be reduced.

도1은 고인성 콘크리트 복합체의 휨시험에 의한 응력-변형곡선의 실측 일례1 is an example of the measurement of the stress-strain curve by the bending test of high toughness concrete composite

도2는 휨시험시 고인성 콘크리트 복합체의 밑면에 발생한 멀티플크랙의 일례Figure 2 is an example of multiple cracks generated on the bottom surface of the high toughness concrete composite during the bending test

도3은 고인성 콘크리트 복합체를 사용한 교면포장 시공순서의 일례Figure 3 is an example of the construction procedure of the bridge pavement using a high toughness concrete composite

Claims (5)

물/결합재비(W/B) 25∼50중량%, 결합재량에 대한 혼화재, 충전재 및 CSA계 급결제의 대체율이 각각 5∼50Water / Binder Ratio (W / B) 25-50% by weight, replacement ratios of admixtures, fillers, and CSA-based fasteners with respect to binder amounts are 5-50 중량%, 0∼25중량% 및 0∼25Wt%, 0-25 wt% and 0-25 중량%, 결합재량에 대한 고성능감수제 및 SBR계 폴리머의 혼입율이 각각 0∼2.0중량% 및 0∼15The mixing ratios of the high-performance water reducing agent and the SBR polymer with respect to the weight%, the binder content are 0 to 2.0% by weight and 0 to 15, respectively. 중량%, 단위수량에 대한 메틸셀룰로스계 증점제의 첨가율이 0∼1.5중량%, 콘크리트 총용적에 대한 잔골재 및 굵은골재의 혼입율이 각각 20∼400 to 1.5% by weight of methylcellulose thickener based on the weight%, unit quantity, and the mixing ratio of fine aggregate and coarse aggregate to the total volume of concrete was 20 to 40, respectively. 용적% 및 0∼25용적%로 구성되는 콘크리트와 폴리에틸렌(PE)섬유, 폴리비닐알콜(PVA)섬유 및 폴리프로필렌(PP)섬유를 단독으로 혼입하거나 동종 또는 이종의 섬유를 혼합한 섬유의 체적혼입율(Vf)이 콘크리트 총용적에 대하여 1.00∼2.50Volumetric mixing ratio of concrete composed of% by volume and 0 to 25% by volume of a mixture of polyethylene (PE) fibers, polyvinyl alcohol (PVA) fibers, and polypropylene (PP) fibers alone or a mixture of homogeneous or heterogeneous fibers (V f ) 1.00 to 2.50 for the total concrete volume 용적%가 되도록 구성되는 것을 특징으로 하는 고인성 콘크리트 복합체High toughness concrete composite, characterized in that the volume% 청구항 1에 있어서 혼화재로서 산업부산물인 플라이애시 및 고로슬래그미분말이 결합재량에 대하여 각각 0∼35중량% 및 0∼50The fly ash and blast furnace slag powder of industrial by-products as admixtures according to claim 1 are 0 to 35% by weight and 0 to 50%, respectively, based on the amount of the binder. 중량%, 충전재로서 석회석미분말이 0∼25중량%가 사용되는 것을 특징으로 하는 고인성 콘크리트 복합체Weight%, high toughness concrete composite, characterized in that 0-25% by weight of limestone fine powder is used as the filler 청구항 1에 있어서 잔골재로는 규사, 해사, 강모래 또는 PS볼 중 1종이 콘크리트 총용적에 대하여 10∼40용적%, 굵은골재로는 최대치수 13mm, 10mm 및 8mm의 부순자갈, 강자갈, 또는 7mm 이하의 PS볼 중 1종이 콘크리트 총용적에 대하여 0∼25According to claim 1, the fine aggregate is one of silica sand, sea sand, steel sand or PS ball 10 to 40% by volume with respect to the total volume of concrete, coarse aggregates of the maximum size 13mm, 10mm and 8mm crushed gravel, steel gravel, or less than 7mm One of the PS balls is 0 to 25 for the total concrete volume 용적%가 사용되는 것을 특징으로 하는 고인성 콘크리트 복합체High toughness concrete composite, characterized in that volume% is used 청구항 1에 있어서 섬유로서는 폴리에틸렌(PE)섬유(직경 10∼30㎛, 길이 6∼15mm), 폴리비닐알콜(PVA)섬유The fiber of claim 1, wherein the fiber is polyethylene (PE) fiber (diameter 10-30 μm, length 6-15 mm), polyvinyl alcohol (PVA) fiber (직경 30∼100㎛, 길이 6∼15mm), 폴리프로필렌(PP)섬유(직경 30∼60㎛, 길이 6∼15mm)가 단독으로 사용되거나 동종 또는 이종의 섬유를 혼합하여 사용하며, 콘크리트 총용적에 대한 섬유의 체적혼입율이 1.00∼3.20(30 ~ 100㎛ in diameter, 6 ~ 15mm in length), polypropylene (PP) fiber (30 ~ 60㎛ in diameter, 6 ~ 15mm in length) are used alone or mixed with same or different types of fibers The volumetric mixing ratio of the fiber with respect to 1.00-3.20 용적%인 것을 특징으로 하는 고인성 콘크리트 복합체High toughness concrete composite, characterized in that volume% 청구항 1∼4에 있어서 변형경화거동 및 멀티플크랙특성을 갖는 고인성 콘크리트 복합체를 신설 또는 기설 교량의 교면포장에 활용하는 것을 특징으로 하는 교면포장공법Bridge construction method according to claim 1 to 4, characterized in that a high toughness concrete composite having strain hardening behavior and multiple cracking properties is utilized for the bridge paving of new or existing bridges.
KR1020050020641A 2005-03-11 2005-03-11 Pavement method of bridge surface using ductile concrete composites KR20050033581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050020641A KR20050033581A (en) 2005-03-11 2005-03-11 Pavement method of bridge surface using ductile concrete composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050020641A KR20050033581A (en) 2005-03-11 2005-03-11 Pavement method of bridge surface using ductile concrete composites

Publications (1)

Publication Number Publication Date
KR20050033581A true KR20050033581A (en) 2005-04-12

Family

ID=37237683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050020641A KR20050033581A (en) 2005-03-11 2005-03-11 Pavement method of bridge surface using ductile concrete composites

Country Status (1)

Country Link
KR (1) KR20050033581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699451B1 (en) * 2005-03-11 2007-03-26 (주)에이엠에스 엔지니어링 Paving method of bridge having the excellent waterproofing performance and fatigue resistance
CN118290102A (en) * 2024-05-29 2024-07-05 中国电建集团西北勘测设计研究院有限公司 Ductile concrete containing coarse aggregate, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699451B1 (en) * 2005-03-11 2007-03-26 (주)에이엠에스 엔지니어링 Paving method of bridge having the excellent waterproofing performance and fatigue resistance
CN118290102A (en) * 2024-05-29 2024-07-05 中国电建集团西北勘测设计研究院有限公司 Ductile concrete containing coarse aggregate, preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR20050031097A (en) Manufacturing methods of ultra rapid hardening and high ductile concrete
EP2083121B1 (en) A porous concrete road surface structure made from polymer modified cement and a construction method thereof
KR100873391B1 (en) Quick-hardening concrete composite, manufacturing method thereof and repairing method for concrete pavement using the concrete composite
Poon et al. Paving blocks made with recycled concrete aggregate and crushed clay brick
KR100943312B1 (en) Quick-hardening cement concrete composite and reparing method for concrete pavement using the composite
KR100883326B1 (en) Polymer cement concrete composite and repairing method for concrete pavement using the concrete composite
KR100917410B1 (en) Polymer cement concrete composite, overlaying concrete pavement method, and repairing method for concrete pavement using the concrete composite
KR101284685B1 (en) Cold recycling asphalt mixtures and manufacturing method thereof
CN103866667A (en) Semi-flexible heavy-load pavement paving structure
KR101134459B1 (en) Cement concrete making method using micro and macro fiber and the cement concrete, the paving method therewith
KR100994195B1 (en) epoxy composite for asphalt pavement, asphalt pavement composite using the epoxy composite, repairing method for pavement on bridge and repairing method of road
CN110714409B (en) Resin combined type ultrahigh-performance concrete pavement structure and construction method
KR100549724B1 (en) Repair and retrofit methods of reinforced concrete structures using the strain-hardening cementitious composites
KR101536308B1 (en) Remicon composition using construction waste
CN110593044A (en) Sisal fiber reinforced cement-based composite material pavement road
Adamu et al. Flexural performance of nano silica modified roller compacted rubbercrete
Fatima et al. Use of ceramic waste as filler in semi-dense bituminous concrete
KR101288349B1 (en) Early strength polymer modified cement concrete composite, manufacturing method of the composite and repairing method of concrete structure using the composite
JP2016156127A (en) Concrete pavement
Mohammed et al. Establishing relationship between modulus of elasticity and strength of nano silica modified roller compacted rubbercrete
GB2525454A (en) Construction material
KR100872518B1 (en) A repairing mortar composition containing polymer and repairing method using the same
KR102127999B1 (en) Asphalt concrete compound containing of high strength asphalt modifier composition and a method using the same
KR101194555B1 (en) Cement concrete composite and repairing method of concrete structure using the composite
KR20050033581A (en) Pavement method of bridge surface using ductile concrete composites

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination