KR20050030500A - Method of single crystal zno thin film growth on si substrate using nitride intermediate layer - Google Patents

Method of single crystal zno thin film growth on si substrate using nitride intermediate layer Download PDF

Info

Publication number
KR20050030500A
KR20050030500A KR1020030067061A KR20030067061A KR20050030500A KR 20050030500 A KR20050030500 A KR 20050030500A KR 1020030067061 A KR1020030067061 A KR 1020030067061A KR 20030067061 A KR20030067061 A KR 20030067061A KR 20050030500 A KR20050030500 A KR 20050030500A
Authority
KR
South Korea
Prior art keywords
thin film
single crystal
zinc oxide
nitride
intermediate layer
Prior art date
Application number
KR1020030067061A
Other languages
Korean (ko)
Other versions
KR100576984B1 (en
Inventor
김일수
이병택
Original Assignee
김일수
이병택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김일수, 이병택 filed Critical 김일수
Priority to KR1020030067061A priority Critical patent/KR100576984B1/en
Publication of KR20050030500A publication Critical patent/KR20050030500A/en
Application granted granted Critical
Publication of KR100576984B1 publication Critical patent/KR100576984B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types

Abstract

A method is provided to acquire an excellent single crystal ZnO thin film by using a nitride intermediate layer. A nitride thin film(20) is grown on a silicon substrate(10). A single crystal ZnO thin film(30) is grown on the nitride thin film, so that defects and contaminants of the single crystal ZnO thin film are minimized. The thickness of the nitride thin film is in a range of 20 to 2000 nm. The nitride thin film and the single crystal ZnO thin film are formed by using sputtering.

Description

질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법{Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer} Method of manufacturing single crystal zinc oxide thin film on silicon substrate using nitride thin film intermediate layer {Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer}

본 발명은 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법에 관한 것으로, 보다 구체적으로는 실리콘기판 위에 질화물 박막 중간층을 성장하고 그 위에 다시 단결정 산화아연 박막층을 성장시켜서 된 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법에 관한 것이다.The present invention relates to a method for producing a single crystal zinc oxide thin film on a silicon substrate using a nitride thin film intermediate layer, and more specifically, to a nitride thin film intermediate layer grown on a silicon substrate and a single crystal zinc oxide thin film layer grown thereon. A method for producing a single crystal zinc oxide thin film on a silicon substrate.

지금까지 산화아연(ZnO) 박막은 발광소자의 소재로 활발히 연구되고 있으며, 상기한 산화아연 박막의 제조방법은 Al2O3(sapphire) 기판에 단결정 산화아연 박막을 성장하는 방법과 Si(silicon) 기판에 직접 산화아연 박막을 다결정(poly crystal)구조로 성장하는 방법이 있다.Until now, zinc oxide (ZnO) thin films have been actively researched as materials for light emitting devices, and the method for producing zinc oxide thin films is a method of growing a single crystal zinc oxide thin film on an Al 2 O 3 (sapphire) substrate and Si (silicon). There is a method of growing a zinc oxide thin film directly into a substrate with a poly crystal structure.

전자인 사파이어 기판에 산화아연 박막을 성장하는 방법은 기판재질인 사파이어가 실리콘에 비해 10배 이상 비싸서 생산제조비가 엄청나게 상승되는 문제점을 가지는 것이어서 생산업체에서는 제조를 기피하게 되는 방법이며, 후자인 실리콘기판에 직접 산화아연 박막을 성장하는 방법은 산화아연 박막이 실리콘기판 위에서 다결정구조로 성장하게 되므로 결정립경계(grain boundary)가 제품의 결함으로 작용하게 되므로 광학소자로서의 치명적인 품질 저하는 물론 내구성이 나빠져 수명이 현저히 단축되는 단점을 갖는 것이다.Electronic Sapphire The method of growing a zinc oxide thin film on a substrate has a problem that the manufacturing cost of the sapphire, which is a substrate material, is more than 10 times higher than that of silicon, and the manufacturing cost is greatly increased. In the method of growing a zinc thin film, since a zinc oxide thin film grows in a polycrystalline structure on a silicon substrate, the grain boundary acts as a defect of a product, so that the lifespan is significantly shortened due to the deterioration of the quality as well as the deterioration of durability as an optical element. It has a disadvantage.

이처럼 실리콘 기판에서 다결정구조를 갖는 종래의 산화아연 박막 성장방법에 의해 제조된 발광소자는 우수한 광학적, 구조적 특성을 얻기 곤란한 것이어서 발광효율이 좋고 수명이 긴 발광소자로 응용될 수 있는 우수한 박막을 얻기 위해서는 결함과 불순물을 최소화 하여야 하고, 따라서 저렴한 실리콘을 기판으로 사용하면서도 결함과 불순물을 최소화 할 수 있는 산화아연 단결정 박막제조기술이 어느때보다 절실한 실정이다.The light emitting device manufactured by the conventional zinc oxide thin film growth method having a polycrystalline structure in a silicon substrate is difficult to obtain excellent optical and structural properties, so to obtain an excellent thin film that can be applied as a light emitting device having good luminous efficiency and long life. Since defects and impurities must be minimized, zinc oxide single crystal thin film manufacturing technology that can minimize defects and impurities while using inexpensive silicon as a substrate is more urgent than ever.

그러나 아직까지 실리콘기판 위에 산화아연을 단결정으로 박막을 제조할 수 있는 기술은 안출된 바 없다.However, no technique has been devised to produce a thin film of zinc oxide on a silicon substrate using a single crystal.

따라서 본 발명은 저렴한 실리콘기판 위에 산화아연을 단결정으로 박막을 제조할 수 있도록 하기 위해서 실리콘기판에 질화물 박막 중간층을 먼저 형성하고, 상기 질화물 박막 중간층 위에 단결정 산화아연 박막을 성장시키므로써 결함과 불순물을 최소화 할 수 있었고, 또 이로인해 품질 및 내구성이 우수한 광소자로 응용될 수 있는 우수한 박막을 얻을 수 있었다. Therefore, the present invention minimizes defects and impurities by forming a nitride thin film intermediate layer first on a silicon substrate and growing a single crystal zinc oxide thin film on the nitride thin film intermediate layer in order to be able to manufacture a thin film of zinc oxide as a single crystal on an inexpensive silicon substrate. It was also possible to obtain an excellent thin film that can be applied as an optical device having excellent quality and durability.

상기 목적을 달성하기 위하여 본 발명은 실리콘 기판(10) 위에 질화물(GaN, AlN 등과 같은 모든 질화물 재료를 의미한다) 박막을 성장하도록 하였다.In order to achieve the above object, the present invention is to grow a nitride (meaning all nitride materials such as GaN, AlN, etc.) thin film on the silicon substrate 10.

다음 상기 실리콘 기판(10) 위에 성장한 질화물 박막을 중간층으로 하고, 상기 질화물 박막 위에 산화아연 단결정 박막을 성장하므로써 결함과 불순물이 최소인 우수한 박막을 얻을 수 있었다.Next, by using the nitride thin film grown on the silicon substrate 10 as an intermediate layer and growing a zinc oxide single crystal thin film on the nitride thin film, an excellent thin film having minimum defects and impurities could be obtained.

이때 질화물 박막 및 산화아연 단결정 박막의 성장은 스퍼터링방법을 이용하였다. 상기 스퍼터링(Sputtering)방법이란 수 십 KeV이상의 운동에너지를 가진 이온을 고체의 타겟트에 조사시켜 타겟트 표면 근방의 원자가 입사 이온이 가진 에너지의 일부를 얻어서 타겟트의 표면에서 분리되어 진 공중으로 방출되는 현상을 이용한 것으로, 이는 고에너지의 입자와 방출되는 표면 원자 사이의 충돌에 의해서 발생되는 것이고, 가속 입자로는 이온, 원자, 중성자, 전자 혹은 광전자 등이 이용되며,스퍼터링에 의한 박막의 성장은 타겟트에서 방출된 원자나 분자들이 플라즈마 속의 가스들과 충돌 과정을 거치면서 증착되므로써 이루어지는 것이다.At this time, the growth of the nitride thin film and the zinc oxide single crystal thin film using a sputtering method. The sputtering method is irradiated with ions with kinetic energy of several tens of keV or more to the target of the solid to obtain a part of the energy of the valence incident ions near the target surface and release it into the air separated from the surface of the target. This phenomenon is generated by collision between high energy particles and emitted surface atoms, and accelerated particles include ions, atoms, neutrons, electrons or optoelectronics, and the growth of thin films by sputtering Atoms and molecules released from the target are deposited by colliding with the gases in the plasma.

이때 박막의 성장을 위해서 스퍼터링방법 외에도 유기금속기상증착법(MOCVD) 및 분자빔에피택시법(MBE), 펄스레이저증착버(PLD) 등이 있지만, 스퍼터링방법이 물성조절과 박막제조가 용이하고, 비용이 저렴하여 가장 바람직하였다.In addition to sputtering, organic metal vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition burrs (PLD) are also used for the growth of thin films, but sputtering is easy to control properties and manufacture thin films. This was inexpensive and most preferred.

물론 지금까지 실리콘기판 위에 질화물 박막 성장 및 단결정 산화아연 박막성장을 위해서 스퍼터링방법을 적용한 예는 발표된 바 없다.Of course, until now, no sputtering method has been published for the growth of nitride thin film and single crystal zinc oxide thin film on silicon substrates.

단지 지금까지 보고된 기술들은 실리콘기판이 아닌 사파이어기판상에 산화아연를 단결정으로 성장하는 것만 성공한 경우이며, 가격이 저렴하고 핸들링(조작)이 용이한 실리콘에 산화아연를 단결정으로 성장한 경우는 아직까지 없는 것이다. Only the technologies reported so far have succeeded in growing zinc oxide as a single crystal on a sapphire substrate rather than a silicon substrate, and there has been no case in which zinc oxide has been grown as a single crystal on silicon, which is inexpensive and easy to handle. .

본 발명은 이를 가능하게 한 것으로, 이를 위해 실리콘기판 위에 질화물 박막층을 성장하므로써 가능하게 된 것이다.The present invention has made this possible, and for this, it is possible by growing a nitride thin film layer on a silicon substrate.

본 발명을 실시예에 의해 보다 상세히 설명하면 다음과 같다.The present invention will be described in more detail with reference to the following Examples.

실시예 1Example 1

실리콘 기판(10) 위에 스퍼터링방법을 이용해 GaN를 박막으로 성장하도록 하였다. 이때 스퍼터링방법은 온도범위를 200℃로 하였으며, 질화물 박막 성장시 아르곤(Ar)과 질소(N)의 비율은 총 유량을 40sccm으로 고정하고, 질소의 비율을 10%에서 100%까지 변화하였으며, 질화물 박막의 두께는 20nm로 하였다. GaN was grown to a thin film on the silicon substrate 10 using a sputtering method. At this time, the sputtering method set the temperature range to 200 ℃, and when the nitride thin film was grown, the ratio of argon (Ar) and nitrogen (N) was fixed at a total flow rate of 40 sccm, and the ratio of nitrogen was changed from 10% to 100%. The thickness of the thin film was 20 nm.

다음 상기 질화물 박막 위에 다시 스퍼터링방법을 이용해 산화아연 단결정 박막을 성장하였고, 이때 500℃ 의 온도 범위로 하였고, 10%의 다양한 산소분압에서 성장하도록 하였다. Next, the zinc oxide single crystal thin film was grown on the nitride thin film by using a sputtering method again, at this time, at a temperature range of 500 ° C., and grown at various oxygen partial pressures of 10%.

실시예 2Example 2

실리콘 기판(10) 위에 스퍼터링방법을 이용해 AlN를 박막으로 성장하도록 하였다. 이때 스퍼터링방법은 온도범위를 900℃로 하였으며, 질화물 박막 성장시 아르곤(Ar)과 질소(N)의 비율은 총 유량을 40sccm으로 고정하고, 질소의 비율을 10%에서 100%까지 변화하였으며, 질화물 박막의 두께는 2000nm로 하였다. AlN was grown to a thin film on the silicon substrate 10 using a sputtering method. At this time, the sputtering method set the temperature range to 900 ℃, and when the nitride thin film was grown, the ratio of argon (Ar) and nitrogen (N) was fixed at a total flow rate of 40 sccm, and the ratio of nitrogen was changed from 10% to 100%. The thickness of the thin film was 2000 nm.

다음 상기 질화물 박막 위에 다시 스퍼터링방법을 이용해 산화아연 단결정 박막을 성장하였고, 이때 900℃ 까지의 온도 범위로 하였고, 100%의 다양한 산소분압에서 성장하도록 하였다. Next, the zinc oxide single crystal thin film was grown on the nitride thin film again using a sputtering method, at this time, at a temperature range up to 900 ° C., and grown at various oxygen partial pressures of 100%.

이처럼 본발명은 실리콘 기판을 이용해 산화아연 단결정 박막제조를 가능하게 하는 기술을 제공할 수 있는 것으로, 실리콘기판 위에 질화물 박막 중간층을 형성하고 그 위에 산화아연 단결정 박막이 성장되도록 하므로써 결함과 불순물을 최소화시킬 수 있었고, 따라서 저렴하면서도, 발광효율이 좋고, 수명이 긴 발광소자로 응용될 수 있는 우수한 산화아연 단결정 박막을 얻을 수 있는 매우 유용한 발명인 것이다.As such, the present invention can provide a technology that enables the production of a zinc oxide single crystal thin film using a silicon substrate, and minimizes defects and impurities by forming an intermediate layer of nitride thin film on the silicon substrate and allowing the zinc oxide single crystal thin film to grow thereon. It is possible to obtain an excellent zinc oxide single crystal thin film which can be applied as a light emitting device having a low cost, good luminous efficiency, and long life.

도 1 - 본 발명의 구조를 보이기 위한 참고단면도.1-Reference cross section for showing the structure of the present invention.

*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10: 실리콘기판10: silicon substrate

20: 질화물 박막층20: nitride thin film layer

30: 산화아연 박막층30: zinc oxide thin film layer

Claims (3)

실리콘 기판(10) 위에 먼저 질화물 박막을 성장하고 상기 질화물 박막 위에 산화아연 단결정 박막을 성장하므로써 결함과 불순물을 최소화함을 특징으로 하는 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법.A method of manufacturing a single crystal zinc oxide thin film on a silicon substrate using a nitride thin film intermediate layer, characterized in that the nitride thin film is first grown on the silicon substrate (10) and the zinc oxide single crystal thin film is grown on the nitride thin film. 제 1항에 있어서, 상기 질화물 박막의 두께는 20nm~2000nm의 범위임을 특징으로 하는 특징으로 하는 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법.The method of claim 1, wherein the thickness of the nitride thin film is in the range of 20 nm to 2000 nm. 제 1항에 있어서, 상기 질화물 박막 및 산화아연 단결정 박막의 성장은 스퍼터링방법에 의해서 이루어지도록 함을 특징으로 하는 질화물 박막 중간층을 이용한 실리콘 기판상의 단결정 산화아연 박막 제조방법.The method of claim 1, wherein the growth of the nitride thin film and the zinc oxide single crystal thin film is performed by a sputtering method.
KR1020030067061A 2003-09-26 2003-09-26 Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer KR100576984B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030067061A KR100576984B1 (en) 2003-09-26 2003-09-26 Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030067061A KR100576984B1 (en) 2003-09-26 2003-09-26 Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer

Publications (2)

Publication Number Publication Date
KR20050030500A true KR20050030500A (en) 2005-03-30
KR100576984B1 KR100576984B1 (en) 2006-05-10

Family

ID=37386824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030067061A KR100576984B1 (en) 2003-09-26 2003-09-26 Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer

Country Status (1)

Country Link
KR (1) KR100576984B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105614A1 (en) * 2007-02-26 2008-09-04 Lg Chem, Ltd. Conductive laminated body and method for preparing the same
US8273592B2 (en) 2006-12-20 2012-09-25 Showa Denko K.K. Method of manufacturing group-III nitride semiconductor light emitting device, group III nitride semiconductor light emitting device and lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273592B2 (en) 2006-12-20 2012-09-25 Showa Denko K.K. Method of manufacturing group-III nitride semiconductor light emitting device, group III nitride semiconductor light emitting device and lamp
WO2008105614A1 (en) * 2007-02-26 2008-09-04 Lg Chem, Ltd. Conductive laminated body and method for preparing the same
US8303856B2 (en) 2007-02-26 2012-11-06 Lg Chem, Ltd. Conductive laminated body and method for preparing the same

Also Published As

Publication number Publication date
KR100576984B1 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
JP4613373B2 (en) Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
US20100092800A1 (en) Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
JP5122738B2 (en) Method for manufacturing ZnO crystal or ZnO-based semiconductor compound crystal, and method for manufacturing ZnO-based light emitting device
WO2009090821A1 (en) Process for producing laminate comprising al-based group iii nitride single crystal layer, laminate produced by the process, process for producing al-based group iii nitride single crystal substrate using the laminate, and aluminum nitride single crystal substrate
KR100884883B1 (en) Zinc Oxide Semiconductor and Method of manufacturing the same
WO2016011810A1 (en) Method for preparing nitride semiconductor
KR100343949B1 (en) METHOD FOR FABRICATING ZnO THIN FILM FOR ULTRAVIOLET DETECTION AND EMISSION SOURCE OPERATED AT ROOM TEMPERATURE, AND APPARATUS THEREFOR
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
US8163651B2 (en) Method of fabricating semiconductor substrate by use of heterogeneous substrate and recycling heterogeneous substrate during fabrication thereof
JP4953879B2 (en) Semiconductor device, manufacturing method thereof, and template substrate
JP2007515791A (en) Method for growing nitride semiconductor layer and nitride semiconductor light emitting device using the same
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
JP2004304166A (en) ZnO SEMICONDUCTOR DEVICE
JPH0936427A (en) Semiconductor device and fabrication thereof
KR100576984B1 (en) Method of single crystal ZnO thin film growth on Si substrate using nitride intermediate layer
JP2004099412A (en) Material having zinc oxide thin film and method for manufacturing the same
US7494546B1 (en) Method of growing insulating, semiconducting, and conducting group III-nitride thin films and coatings, and use as radiation hard coatings for electronics and optoelectronic devices
JP4780757B2 (en) Molecular beam epitaxy (MBE) growth apparatus for zinc oxide crystal and manufacturing method using the same
JP5373402B2 (en) Manufacturing method of ZnO-based semiconductor light emitting device
US6503578B1 (en) Method for preparing ZnSe thin films by ion-assisted continuous wave CO2 laser deposition
US20090068780A1 (en) Method of fabricating semiconductor optoelectronic device and recycling substrate during fabrication thereof
Wu et al. Growth and characterization of epitaxial ZnO nanowall networks using metal organic chemical vapor deposition
KR20080005002A (en) Preparation method of zinc oxide based oxide thin film using sputtering
KR100385634B1 (en) Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
KR100794755B1 (en) Method for synthesizing epitaxial p-type zinc oxide thin film growth by co-doping of ? group elements and nitrogen

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090320

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee