KR20050022491A - Ethanol-inducible expression vector - Google Patents

Ethanol-inducible expression vector Download PDF

Info

Publication number
KR20050022491A
KR20050022491A KR1020030060956A KR20030060956A KR20050022491A KR 20050022491 A KR20050022491 A KR 20050022491A KR 1020030060956 A KR1020030060956 A KR 1020030060956A KR 20030060956 A KR20030060956 A KR 20030060956A KR 20050022491 A KR20050022491 A KR 20050022491A
Authority
KR
South Korea
Prior art keywords
plant
adr1
expression vector
ethanol
seq
Prior art date
Application number
KR1020030060956A
Other languages
Korean (ko)
Inventor
이광웅
육희정
김성진
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020030060956A priority Critical patent/KR20050022491A/en
Publication of KR20050022491A publication Critical patent/KR20050022491A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: An ethanol-inducible expression vector is provided, thereby easily obtaining an interest gene from plants at a certain culturing period or stage by using ethanol as an inducing chemical which can be sprayed in a large scale due to its strong volatility. CONSTITUTION: The ethanol-inducible expression vector comprises the nucleotide sequence(SEQ ID NO:1) encoding the ADR1 site which is a transcription factor of Saccharomyces cerevisiae; the nucleotide sequence(SEQ ID NO:2) encoding a promoter of ADH2(alcohol dehydratase 2); and an interest gene operably linked to the promoter, wherein the ADR1 site essentially comprises the nucleotide sequence(SEQ ID NO:3) encoding the TADI site which is the zinc finger site; the ADH2 promoter essentially comprises the nucleotide sequence(SEQ ID NO:4) encoding the UAS site(200bp DNAs); the ADH2 promoter is ADH2-35S fusion promoter having the nucleotide sequence of SEQ ID NO:15; and the alcohol is ethanol.

Description

에탄올 유도 식물체 발현벡터 {ETHANOL-INDUCIBLE EXPRESSION VECTOR}Ethanol-derived plant expression vector {ETHANOL-INDUCIBLE EXPRESSION VECTOR}

기술분야Technical Field

본 발명은 외래 화학물질에 의해 유전자의 발현을 조절하는 벡터 시스템에 관한 것이다. 보다 구체적으로, 본 발명은 에탄올-유도 식물 유전자 발현 벡터에 관한 것이다.The present invention relates to a vector system for regulating the expression of genes by foreign chemicals. More specifically, the present invention relates to ethanol-derived plant gene expression vectors.

종래기술Prior art

화학물질에 의해서 유전자의 발현을 조절하는 벡터 시스템은 유전자의 기능연구뿐만 아니라 생명공학연구 산물의 응용 측면에서도 장점을 가지고 있으며, 이는 이미 효모에서 동물체에 이르기까지 많은 다세포 생물체에서 일반화되어 있다 (참고문헌: Hartley et al, 2002, Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Pro. Natl. Acad. Sci. USA 99: 1377-1382).Vector systems that regulate the expression of genes by chemicals have advantages not only in the function of genes but also in the application of biotechnology research products, which are already common in many multicellular organisms, from yeast to animals. Hartley et al, 2002, Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system.Pro. Natl. Acad. Sci. USA 99: 1377-1382).

식물체의 경우 식물 발달의 전 기간 동안과 모든 기관에서 지속적으로 높은 발현 양상을 보이는 콜리플라워 모자이크 바이러스 (Cauliflower Mosaic Virus)35S (CaMV 35S) 프로모터에 의한 목적 유전자의 발현 조절이 보고 되었다 (참고문헌: Odell et al., 1985, Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810-812). 식물체에서 이러한 프로모터에 의한 지속적인 외래 유전자의 발현은, 일차 산물을 저장 화합물로 전환 시키는 유전자의 경우 식물체의 정상적인 생장을 저하하고, 심한 경우 식물체에 치명적인 손상을 일으키기도 한다 (참고문헌: Stitt, M. et al., 1995, Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 46: 341-368). 예를 들어, 효모의 인버테이즈 (invertase) 유전자를 CaMV 35S 프로모터의 조절 하에서 감자 (참고문헌: Sonnewald U. et al., 1991, Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/sucrose interactions. Plant J. 1:95-106)와 담배 (참고문헌: Bussis, D. et al, 1997, Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole or cytosol. Planta 202: 126-136)에 형질 전환시킨 예가 그러하다.In plants, expression of the target genes has been reported by the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter, which is consistently highly expressed throughout the entire plant development and in all organs (Ref .: Odell et al., 1985, Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter.Nature 313: 810-812. Sustained expression of foreign genes by these promoters in plants results in a loss of normal growth of the plant and, in severe cases, fatal damage to the plant in genes that convert primary products into storage compounds (Ref. Stitt, M. et al., 1995, Regulation of metabolism in transgenic plants.Annu. Rev. Plant Physiol.Plant Molec. For example, yeast invertase genes may be modified under the control of the CaMV 35S promoter (Sonnewald U. et al., 1991, Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast). : a powerful tool for studying sucrose metabolism and sink / sucrose interactions.Plant J. 1: 95-106) and tobacco (Bussis, D. et al, 1997, Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast Such is the case with transformed invertase either in the apoplast, vacuole or cytosol.Planta 202: 126-136).

이와 같은 단점을 극복하기 위하여, 감자 괴경 특이적인 발현을 유도하는 파타틴 (patatin) 프로모터 (참고문헌: Grierson, C. et al, 1994. Separate cis sequences and transfactors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J. 5: 815-826)와 같이 기관 특이적인 발현 및 발달단계 특이적인 발현을 유도하는 다수의 프로모터들이 개발되었다 (참고문헌: Kuhlemeier, C., et al., 1987. Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 38: 221-257). 그러나 이 경우에도 그 발현 시기를 인위적으로 조절하는 것이 불가능하여 발달단계 특이적인 발현 유도는 수행할 수 없었다.To overcome this drawback, a patatin promoter that induces potato tuber specific expression (Grerson, C. et al, 1994. Separate cis sequences and transfactors direct metabolic and developmental regulation of a potato tuber storage A number of promoters have been developed that induce organ-specific and developmental-specific expression, such as the protein gene.Plant J. 5: 815-826 (Ref. Kuhlemeier, C., et al., 1987. gene expression in higher plants.Ann. Rev. Plant Physiol.Plant Molec.Biol. 38: 221-257). However, even in this case, it was impossible to artificially control the timing of expression, and thus developmental stage specific expression could not be performed.

또한, 화학물질에 의해 발현이 유도되는 벡터 시스템이 연구 및 개발되었다. 최근까지 개발된 주요 화학적 유도 물질에는 구리 (참고문헌: Mett, V. et al., 1993. Copper-controllable gene expression system for whole plants. Proc. Natl. Acad. Sci. USA. 90: 4567-4571)와 쥐의 글루코-코르티코이드 (gluco-corticoid) (참고문헌: Aoyama, T. et al., 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11: 605-612)등이 있다. 그러나, 이러한 유도 물질을 식물체에 대량 살포하는 것이 용이하지 않으며, 특히 구리는 그 독성이 강해서 사용이 제한적이다. 또한, 스테로이드 (참고문헌: Mark, S. et al., 1991. A steroid-inducible gene expression system for plant cells. Proc. Natl. Acad. Sci. USA. 88: 10421-10425)와 엑디손 (ecdyson) (참고문헌: Martinez, A. et al., 1999. Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J. 19: 97-106)이 발현유도물질로서 사용되었으나, 식물체 내부의 프로모터에 비해 유의성이 있는 발현을 보여주지 못하였다. 또한, 테트라사이클린 (tetracycline)을 유도 물질로서 이용하는 시스템이 보고 되었으나, 유도 시스템 유전자의 기능을 연구하기 위한 발현의 특이성과 세밀한 조절은 제공하지 못하였고, 특정 식물체 예를 들어, 애기장대 등에서는 발현을 유도하지 못하고 유도 물질이 비교적 고가라는 점에서 범용성이 떨어지며, 식물체 내부에서의 생리적 불활성 여부 등은 아직 검증된 바 없다 (참고문헌: Weimann, P. et al., 1994. A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 5: 559-569). 따라서, 식물체 내에서 분해가 가능하고, 값이 저렴하며, 대단위의 살포가 가능한 새로운 발현 유도 물질 및 이와 관련된 신규 벡터 시스템의 개발에 대한 요구는 계속되어 왔다 (참고문헌: Hairul, A.R. et al., 2001. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28: 225-235).In addition, vector systems in which expression is induced by chemicals have been studied and developed. Major chemical inducers developed until recently include copper (Mett, V. et al., 1993. Copper-controllable gene expression system for whole plants.Proc. Natl. Acad. Sci. USA. 90: 4567-4571) And rat gluco-corticoids (Aoyama, T. et al., 1997. A glucocorticoid-mediated transcriptional induction system in transgenic plants.Plant J. 11: 605-612). However, it is not easy to apply these derivatives to plants in large quantities, and copper is particularly toxic and its use is limited. In addition, steroids (Mark, S. et al., 1991. A steroid-inducible gene expression system for plant cells.Proc. Natl. Acad. Sci. USA. 88: 10421-10425) and ecdyson (Reference: Martinez, A. et al., 1999. Ecdysone agonist inducible transcription in transgenic tobacco plants.Plant J. 19: 97-106) was used as an expression inducer, but it was significantly more expressed than a promoter inside the plant. Did not show. In addition, a system using tetracycline as an inducer has been reported, but it has not provided specificity and fine control of expression for studying the function of the inducer system gene, and in certain plants, for example, Arabidopsis, etc. Its general purpose is poor because it cannot be induced, and the inducer is relatively expensive, and the physiological inactivation inside the plant has not been verified (Ref. Weimann, P. et al., 1994. A chimeric transactivator allows tetracycline-responsive) gene expression in whole plants.Plant J. 5: 559-569). Thus, there has been a continuing need for the development of new expression inducers and their associated vector systems that are degradable, inexpensive, and capable of large scale spreading in plants (Ref. Hairul, AR et al., 2001. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana.Plant J. 28: 225-235).

이와 같은 요구에 대한 연구 결과로서, 최근에 아스퍼질러스 니듈란스(Aspergillus nidulans)의 알코올 분해 유전자군인 Alc 레귤론 (regulon)을 이용하여 애기장대와 담배, 그리고 감자에서 활발한 연구가 이루어졌다 (참고문헌: Mark, X.C. et al., 1997, An ethanol inducible gene switch for plants used to manipulate carbon metabolism, Nature Biotechnology 16: 177-180). Alc 레귤론은 ALCR 전사 조절자를 암호화하는 alcA와 alcA로부터 유도된 프로모터 palcR로 구성되며 (도 1), A. nidulans에서 alcR은 각각 알코올 탈수소효소 I (ADHI)과 알데하이드 탈수소효소 (AldDH)를 암호화하는alcA 및 aldA와 같은 많은 수의 구조 유전자 활성을 조절하는 것으로 알려져 있다 (참고문헌: Gwynne, F.P. et al., 2001. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28: 225-235). 도 1에서 구성물은 tnos (nos terminator)의 상류에 위치한 alcR cDNA를 유도하는 완전한 CaMV35S 프로모터(p35S)를 포함한다. 사용된 3종류의 유전자 즉, GUS, GFP 및 LUC는 TATA 박스 위치에서 alcA의 상류 프로모터 유전자에 융합된 CaMV35S 최소 프로모터 (-31 에서 +5)로 구성된다. CaMV35S 터미네이터(t35S)는 리포터 유전자로부터 하류에 위치한다. 이러한 구성물은 형질전환 벡터 pGPTVhyg에 의해 식물체내로 도입된다.As a result of this research, recent studies have been carried out in Arabidopsis, tobacco and potatoes using Alc regulon, an alcohol-degrading gene family of Aspergillus nidulans . Mark, XC et al., 1997, An ethanol inducible gene switch for plants used to manipulate carbon metabolism, Nature Biotechnology 16: 177-180). Alc regulators consist of alcA, which encodes an ALCR transcriptional regulator, and promoter palcR derived from alcA (FIG. 1), where alcR in A. nidulans encodes alcohol dehydrogenase I (ADHI) and aldehyde dehydrogenase (AldDH), respectively. It is known to modulate a large number of structural gene activities, such as alcA and aldA (Gwynne, FP et al., 2001. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28: 225-235). In FIG. 1 the construct comprises a complete CaMV35S promoter (p35S) which induces alcR cDNA located upstream of tnos (nos terminator). The three genes used, GUS, GFP and LUC, consist of the CaMV35S minimum promoter (-31 to +5) fused to the upstream promoter gene of alcA at the TATA box position. The CaMV35S terminator (t35S) is located downstream from the reporter gene. This construct is introduced into the plant by the transformation vector pGPTVhyg.

본 발명에서는 효모 (S. cerevisiae) 유래의 알코올 분해 유전자를 이용한 알코올 유도 발현 벡터가 제공된다. 효모는 기본적으로 포도당을 탄소원으로사용하지만 포도당이 없는 상황에서는알코올을 그 대용으로 사용하기 위하여 (도 2), 전사 활성자인 Adr1을 발현시켜 알코올을 아세트 알데하이드로 전환하는 ADH2를 발현시킴으로써 최종적으로는 에탄올을 탄소원으로 사용한다 (참고문헌: Gleeson, M.A. and P.E. Sudbery. 1988. The Methylotrophic Yeasts. Yeast 4: 1-15). 도 2는 S. cerevisiae 에서의 해당경로 및 글루코네오제네시스 경로를 도시하는 것으로서, 효모 사카로마이세스 세레비제에 의한 탄소원으로서의 알코올의 이용은 ADH2 유전자에 의해 엔코딩되는 알코올 탈수소효소의 억제와 관련된다 (참고문헌: Ciriacy, M., 1975, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol Gen Genet 138: 157-64). 반면에 ADH2는 발효성 기질의 존재 하에 완전히 억제된다 (참고문헌: Lin et al., 2001, Enhanced intsfotion gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae).In the present invention, an alcohol-induced expression vector using an alcohol degradation gene derived from yeast ( S. cerevisiae ) is provided. Yeast basically uses glucose as a carbon source, but in the absence of glucose, in order to use alcohol as a substitute (FIG. 2), ethanol is finally expressed by expressing the transcriptional activator Adr1 to convert alcohol to acetaldehyde. Is used as the carbon source (Gleeson, MA and PE Sudbery. 1988. The Methylotrophic Yeasts. Yeast 4: 1-15). Figure 2 depicts glycolysis and gluconeogenesis pathways in S. cerevisiae , wherein the use of alcohol as a carbon source by yeast Saccharomyces cerevises is associated with the inhibition of alcohol dehydrogenase encoded by the ADH2 gene ( Ciriacy, M., 1975, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae.II.Two loci controlling synthesis of the glucose-repressible ADH II.Mol Gen Genet 138: 157-64). In contrast, ADH2 is completely inhibited in the presence of fermentable substrates (Lin et al., 2001, Enhanced intsfotion gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae).

본 발명에서, 에탄올에 의한 식물체 유전자 발현 시스템을 확립하기 위하여 널리 알려진 효모의 알코올 발효 유전자의 ADH2 (Alcohol Dehydrogenase 2)의 프로모터 (SEQ. ID No.: 2) (참고문헌: Scheer, N. and J.A. Camnos-Ortega. 1999. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80: 153-158)와 전사 활성자인 ADR1의 전사 활성부위 (SEQ. ID No.: 1)를 사용하였다 (참고문헌:Manuel, M.S. et al., 1995, A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids. Mol. Gen. Genet. 249: 289-296). 전사 활성자인 ADR1는 그 전체 서열 중에서 DNA 결합에 관여하는 zinc finger 부위 (참고문헌: Thukral, S.K., A. Eisen, E.T Young. 1991. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell Bio. 11: 1566-1577) 뿐 아니라 에탄올에 의해 유도되는 전사 활성부위인 TAD (Trans-activation Domain) I, II, III 부위 (참고문헌: Cook, W.J.et al., 1994a, Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1 region. Mol. Cell Biol. 14: 629-640)를 포함한다 (도 3a 및 3b). 도 3a 및 3b에서, 유전자의 최대 활성에 필요한 두개의 cis-작용 인자 (UAS1 및 UAS2) 모두가 ADH2 조절 영역에서 확인된다 (참고문헌: Shuster, J. et al., 1986, ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. Mol Cell Biol 6: 1894-902). UAS1은 Adr1의 결합부위임이 밝혀졌으며 (참고문헌; Thukral et al., 1991, Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol. Cell Bio. 11: 1566-1577). 이것은 ADH2의 양성 조절자임이 유전적으로 확인되었다 (참고문헌: Ciriacy et al., 1975. Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae II. Two loci controlling synthesis of the glucose-repressible ADH II, Mol Gen Genet 138: 157-64). Adr1은 두개의 zinc finger 모티브를 함유하며 이들은 단량체로서 회문식 UAS1 인자의 각각의 반쪽과 상호작용한다 (참고문헌: Blumberg, H. et al., 1987, Two zinc fingers of a yeast regulatory protein shown by genetic evide- nce to be essential for its function. Nature 328: 443-45). ADR1의 TAD 부위 중에서 TAD I (SEQ. ID No.: 3)만으로도 ADH2의 최고의 발현을 나타내기에충분하다 (참고문헌: Cook, W.J. et al., 1994b, Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation J. Biol. Chem. 269: 9374-9379). TAD II 및 III는 단독으로는 그 기능을 수행하지는 못하지만 TAD I의 부가적인 기능을 수행하므로 (참고문헌:Denis, C.L. et al., 1992, ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell Biol. 12: 1507-1514), 본 연구에서는 모든 TAD부위를 사용하였다. 또한 전사 활성자인 ADR1이 결합하는 ADH2 프로모터 내의 UAS (Upstream Activation Sequence)에 해당하는 200 bp의 DNAs (SEQ. ID No.: 4)는 다양한 효모 종들에서 매우 잘 보존된 서열로서 (참고문헌: Young, E.T. et al., 2000, Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Gene 245: 299-309), 효모뿐만 아니라 다양한 생물체에서 발현 유도 벡터의 구성원으로 작용한다 (참고문헌: Scheer, N, and J.A. Camnos-Ortega. 1999. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80: 153-158. Scheer and Camnos Ortega).In the present invention, the promoter of ADH2 (Alcohol Dehydrogenase 2) of the alcohol fermentation gene of yeast, which is well known for establishing a plant gene expression system by ethanol (SEQ. ID No .: 2) (Reference: Scheer, N. and JA Camnos-Ortega. 1999.Use of the Gal4-UAS technique for targeted gene expression in the zebrafish.Mech. Dev. 80: 153-158) and the transcriptional activation site of the transcriptional activator ADR1 (SEQ. ID No .: 1). (Manuel, MS et al., 1995, A C-terminal region of the Saccharomyces cerevisiae transcription factor ADR1 plays an important role in the regulation of peroxisome proliferation by fatty acids.Mol. Gen. Genet. 249: 289 -296). ADR1, a transcriptional activator, is a zinc finger region that is involved in DNA binding in its entire sequence (Thukral, SK, A. Eisen, ET Young. 1991. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression Cell Bio. 11: 1566-1577), as well as TAD (Trans-activation Domain) I, II, III sites, which are ethanol-induced transcriptional activation sites (Cook, WJ et al., 1994a, Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1 region.Mol. Cell Biol. 14: 629-640) (FIGS. 3A and 3B). In FIGS. 3A and 3B, both cis-acting factors (UAS1 and UAS2) required for maximal activity of the gene are identified in the ADH2 regulatory region (Shuster, J. et al., 1986, ADR1 -mediated regulation of ADH2 requires an inverted repeat sequence.Mol Cell Biol 6: 1894-902). UAS1 has been found to be a binding site of Adr1 (Ref .; Thukral et al., 1991, Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression.Mol . Cell Bio. 11: 1566-1577). It has been genetically identified as a positive regulator of ADH2 (Ref. Ciriacy et al., 1975. Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae II.Two loci controlling synthesis of the glucose-repressible ADH II, Mol Gen Genet 138: 157- 64). Adr1 contains two zinc finger motifs, which interact with each half of the palindromic UAS1 factor as monomers (Ref. Blumberg, H. et al., 1987, Two zinc fingers of a yeast regulatory protein shown by genetic evide- nce to be essential for its function Nature 328:. 443-45). Among TAD sites of ADR1, TAD I (SEQ. ID No .: 3) alone is sufficient to show the best expression of ADH2 (Ref .: Cook, WJ et al., 1994b, Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation J. Biol. Chem. 269: 9374-9379). TAD II and III alone do not perform their function but do additional functions of TAD I (Denis, CL et al., 1992, ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230.Mol.Cell Biol. 12: 1507-1514). In addition, 200 bp of DNAs (SEQ. ID No .: 4) corresponding to the UAS (Upstream Activation Sequence) in the ADH2 promoter to which the transcriptional activator ADR1 binds are very well conserved sequences in various yeast species (Ref. ET et al., 2000, Evolution of a glucose-regulated ADH gene in the genus Saccharomyces.Gen 245: 299-309), which acts as members of expression induction vectors in a variety of organisms as well as yeast (Ref. Scheer, N, and JA Camnos-Ortega. 1999.Use of the Gal4-UAS technique for targeted gene expression in the zebrafish.Mech. Dev. 80: 153-158. Scheer and Camnos Ortega).

본 연구에서는 전사 활성자와 그 결합부위에 해당하는 두 개의 유전자를 효모로부터 분리하여, 식물체 발현 벡터에 삽입한 후 목적하는 식물의 원형질체로 형질전환 시켜, 리포터 (reporter) 유전자인 GFP 유전자의 에탄올에 의한 발현 유도를 검정하여, 강한 휘발성에 의하여 대단위의 살포가 가능한 에탄올에 의해 유도되는 벡터 시스템을 식물체에서 개발하였다.In this study, two genes corresponding to transcriptional activators and their binding sites were isolated from yeast, inserted into plant expression vectors, transformed into the protoplasts of the plant of interest, and the ethanol of the reporter gene GFP gene. By inducing expression, the vector system induced by ethanol, which can be sprayed at large scale by strong volatility, was developed in plants.

본 발명의 발현 벡터는 기존의 알코올 발현벡터와 비교하여 전체적인 크기가 작아서 벡터로서 사용이 용이하고, 종래기술과 비교하여 최대 발현유도시간이 10배 이상 빠르며 지속시간이 길다.The expression vector of the present invention is easy to use as a vector because the overall size is smaller than the conventional alcohol expression vector, the maximum expression induction time is 10 times faster and longer duration compared to the prior art.

본 발명은 식물체 내에서 분해가 가능하고, 대단위의 살포가 가능한 발현 유도 물질로서 에탄올을 이용하는 에탄올 유도 발현 벡터 (시스템)을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an ethanol-induced expression vector (system) using ethanol as an expression inducing substance which can be degraded in plants and can be sprayed in large units.

또한, 본 발명은 목적 유전자의 발현이 에탄올에 의해 유도되는 형질전환된 식물체를 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a transformed plant in which the expression of the target gene is induced by ethanol.

상기 목적을 달성하기 위하여, 본 발명은 S. cerevisiae 로부터 알코올 분해 유전자 군을 분리하고 알코올 유도 발현 벡터를 제조하였다. 보다 구체적으로는 전사 활성자인 ADR1의 TAD I, II 및 III 부위를 포함하고, 전사 활성자인 ADR1이 결합하는 ADH2 프로모터 내의 UAS에 해당하는 200 bp의 DNA를 포함하는 발현 벡터를 제조하였다.In order to achieve the above object, the present invention isolated the alcohol degradation gene group from S. cerevisiae and prepared an alcohol induced expression vector. More specifically, an expression vector including TAD I, II and III sites of the transcriptional activator ADR1 and 200 bp of DNA corresponding to the UAS in the ADH2 promoter to which the transcriptional activator ADR1 binds was prepared.

실시예Example

I. 생물 재료 및 시약I. Biological Materials and Reagents

(1) 식물 재료(1) plant material

본 발명에서는 식물 재료로서 애기장대 원형질체를 사용하였다. 애기장대 원형질체는 애기장대 종자를 0.1% (w/v) 트리톤 (Triton) X-100 용액에서 1시간동안 담근 후 에탄올로 1회 헹구고 1% (w/v) 치아염소산나트륨(sodium hypochlorite)에서 10~15분간 담가 표면을 소독하고 멸균된 증류수로 7~10회 정도 세척하였다. 4℃에서 약 2~3일 정도 저온 처리한 후 MS (Murashige and Skoog, 1962) 배지 또는 멸균 토양에서 발아시켜서 배양하였다. 식물재료는 광온 배양기에서 24℃/22℃, 16/8 시간의 명암주기로 150 ㎛ol m-2s-1의 광도 하에서 2~3주 키운 애기장대 잎을 사용하였다.In the present invention, Arabidopsis protoplasts were used as the plant material. Arabidopsis protoplasts soak Arabidopsis seeds in 0.1% (w / v) Triton X-100 solution for 1 hour, rinse once with ethanol and 10% in 1% (w / v) sodium hypochlorite. Soak for 15 minutes to disinfect the surface and washed 7-10 times with sterile distilled water. After low temperature treatment at 4 ° C. for about 2 to 3 days, the cells were cultured by germinating in MS (Murashige and Skoog, 1962) medium or sterile soil. Plant material was used Arabidopsis leaf grown for 2 to 3 weeks under the light intensity of 150 μmol m-2s-1 at 24 ° C./22° C. and a light cycle of 16/8 hours in a light incubator.

(2) 시약(2) reagent

본 연구에서 사용된 제한효소 SacI, BamH I , HindⅢ, BglII 및 EcoRI등의 효소는 베링거 만하임 (Boeheringer Mannheim) (BM, Germany) 또는 다카라(TaKaRa)사 제품을 사용하였다. 염기 서열 결정에 사용한 ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit는 퍼클린-엘머 (Perkin-Elmer)사에서, 그리고 나머지 시약은 시그마 (Sigma) (USA)사 제품을 사용하였다. DNA 클로닝과 유전자 조작을 위한 플라스미드 (plasmid) 벡터는 pGEM-T easy (Promega, USA), pEZ-T (RNA, Korea), pBI121 (Clonetech, USA), 및 pCAMBIA1303 (MRC Laboratory of Molecular Biology, UK)을 사용하였다.Enzymes such as restriction enzymes SacI, BamH I, HindIII, BglII and EcoRI used in this study were produced by Boeheringer Mannheim (BM, Germany) or TaKaRa. ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit used for sequencing was used by Perkin-Elmer, and the remaining reagents were manufactured by Sigma (USA). Plasmid vectors for DNA cloning and genetic engineering include pGEM-T easy (Promega, USA), pEZ-T (RNA, Korea), pBI121 (Clonetech, USA), and pCAMBIA1303 (MRC Laboratory of Molecular Biology, UK) Was used.

(3) 균주 및 특성(3) Strains and Characteristics

본 발명에 사용된 균주 및 그 특성은 하기 표 1과 같다. 아그로박테리움 튜머파시안스 (Agrobacterium tumefaciens)의 균주는 C58C1 (Molecular Research Center, USA)을 사용하였다. E. coli는 암피실린 또는 카나마이신을 포함하는 LB배지 (10 g/L bacto-tryptone, 5 g/L yeast extract, 10 g/L NaCl, pH 7.0)에 접종하여 37℃에서 배양하여 사용하였다. C58C1은 겐타마이신 (25 mg/L)을 포함하는 YEP배지 (10 g/L bacto-peptone, 10 g/L yeast extract, 5 g/L NaCl, pH 7.5)에 접종하여 28℃에서 배양하여 사용하였다. 고체 배지는 각 액체 배지에 한천 (agar)(15 g/L)를 첨가하여 사용하였다. 효모 균주는 Y190 (clonetech, USA) 이며, 이들은 YEPD배지 (10 g/L yeast extract, 20 g/L Bacto -peptone, 20 g/L glucose)에서 30℃의 조건으로 이틀 동안 배양하여 사용하였다.The strain used in the present invention and its properties are shown in Table 1 below. Agrobacterium strain tyumeo of Pacific Alliance (Agrobacterium tumefaciens) was used C58C1 (Molecular Research Center, USA) . E. coli was inoculated in LB medium containing ampicillin or kanamycin (10 g / L bacto-tryptone, 5 g / L yeast extract, 10 g / L NaCl, pH 7.0) and incubated at 37 ° C. C58C1 was inoculated in YEP medium (10 g / L bacto-peptone, 10 g / L yeast extract, 5 g / L NaCl, pH 7.5) containing gentamicin (25 mg / L) and incubated at 28 ° C. . Solid medium was used by adding agar (15 g / L) to each liquid medium. Yeast strain is Y190 (clonetech, USA), these were used incubated for two days at 30 ℃ conditions in YEPD medium (10 g / L yeast extract, 20 g / L Bacto -peptone, 20 g / L glucose).

II. 핵산의 분리 및 증폭II. Isolation and Amplification of Nucleic Acids

(1) 효모로부터 게놈 DNA와 RNA의 분리(1) Isolation of Genomic DNA and RNA from Yeast

YEPD (1% yeast extract, 2% Bacto-peptone, 2% glucose)에서 30℃, OD595=1.0~1.5에서 자란 효모를 사용하였다. 효모 게놈 DNA는 WizardR 게놈 DNA 정제 키트 (Promega, USA)를 사용하여 분리하였으며, 효모 RNA는 리즈 등 (참고문헌: Leeds, P., S.W. Peltz, A. Jacobson and M.R. Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon, Genes Dev. 5: 2303-2314)의 방법을 변형하여 AE 완충액(50 mM sodium acetate, pH5.3, 10mM EDTA), 페놀과 클로로포름을 이용하여 분리하였다. 효모 RNA분리 후 정량 및 정성분석은 흡광도 (A260/280)를 측정하여 계산하였다.Yeast grown at 30 ° C and OD 595 = 1.0-1.5 in YEPD (1% yeast extract, 2% Bacto-peptone, 2% glucose) was used. Yeast genomic DNA was isolated using the WizardR genomic DNA purification kit (Promega, USA), and yeast RNA was identified by Leeds et al. (Reeds, P., SW Peltz, A. Jacobson and MR Culbertson. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon, Genes Dev. 5: 2303-2314 to modify AE buffer (50 mM sodium acetate, pH5.3, 10 mM EDTA), phenol and chloroform Was separated using. Quantitative and qualitative analysis after yeast RNA isolation was calculated by measuring absorbance (A260 / 280).

표 1. 본 발명에 사용된 E. coli 균주 및 S. cerevisiae 균주Table 1. E. coli strains and S. cerevisiae strains used in the present invention

표 2. 본 발명에 사용된 S. cerevisiae 균주Table 2. S. cerevisiae strains used in the present invention

(2) 플라스미드 DNA의 분리(2) Isolation of Plasmid DNA

소량의 플라스미드 DNA의 분리를 알칼리 분해 방법 (참고문헌: Brush, D. et al,, 1985, Replacement variant histone genes cotain intervening sequences. Mol. Cell. Biol. 5: 1307-1317)으로 수행하였다. 클로닝을 수행 하기 위해 Multicloning site에 있는 제한효소로 처리한 플라스미드 DNA를 아가로오스 겔에3~4 V/cm로 전기영등을 한 후 원하는 DNA 절편이 있는 겔 부위를 도려내어, Jet Sorb Extraction Kit (Genomed)를 사용하여 정제하였다. 분리한 DNA를 260 nm와 280 nm의 흡광도 또는 EtBr을 포함하는 아가로오스 겔에 전기영동하여 정량 및 정성 분석하였다.Isolation of small amounts of plasmid DNA was performed by alkaline digestion method (Brush, D. et al, 1985, Replacement variant histone genes cotain intervening sequences. Mol. Cell. Biol. 5: 1307-1317). In order to perform cloning, electrophoresis of plasmid DNA treated with restriction enzyme at the multicloning site at 3-4 V / cm on an agarose gel was carried out, and the gel region containing the desired DNA fragment was cut out, and the Jet Sorb Extraction Kit ( Genomed). The separated DNA was quantitatively and qualitatively analyzed by absorbance at 260 nm and 280 nm or by electrophoresis on an agarose gel containing EtBr.

(3) 대장균의 형질전환(3) E. coli transformation

플라스미드 DNA를 대장균에 형질전환하기 위하여 CaCl2 처리 방법 (참고문헌: Mandel, M. and A. Higa, 1970, Calcium-dependent bacteriophage DNA infection. Biotechnology 24: 198-201)으로 XL1-Blue를 콤피턴트 (competent) 대장균으로 만들어서 사용하였다. 37℃에서 1 mL당 1x108개가 넘지 않도록 대장균을 진탕 배양하여 수확한 후, 0.1 M CaCl2로 한 차례 세척을 하고, 0.1 M CaCl2를 2 mL넣어 현탁시켜 콤피턴트 대장균을 준비하였다. 이 대장균 용액 200 μ L 당 50 ng 정도의 DNA를 첨가하고, 얼음 위에서 15분 가량 둔 후, 42℃에서 열 충격을 1분 30초간 가했다. 다음, 열 충격을 가한 대장균을 바로 얼음 위로 옮기고 1 내지 2분 방치한 후, SOC (트립톤 20 g/L, yeast extract 5 g/L, NaCl 0.5 g/L, 2.5 mM KCl, 10 mM MgCl2, 20 mM glucose) 배지를 800 μL 넣은 뒤 37℃에서 1시간 동안 진탕 배양하였다. 진탕 배양 후, 항생제를 포함한 선별 배지에 도말하고, 37℃ 배양기에서 배양하여 형질전환체를 선별하였다.In order to transform plasmid DNA into Escherichia coli, XL1-Blue was replaced with a CaCl 2 treatment method (Mandel, M. and A. Higa, 1970, Calcium-dependent bacteriophage DNA infection. Biotechnology 24: 198-201). competent) was used as E. coli. On the 37 ℃ not more than 1x10 8 dogs per 1 mL shake culture and harvest of E. coli, 0.1 M CaCl 2 and a turn washed with and suspended into 2 mL of 0.1 M CaCl 2 was prepared kompi consultant coli. About 50 ng of DNA per 200 µL of this E. coli solution was added, and after 15 minutes on ice, heat shock was applied at 42 ° C. for 1 minute and 30 seconds. Next, the heat shocked E. coli was immediately transferred to ice and left for 1 to 2 minutes, followed by SOC (Tryptone 20 g / L, yeast extract 5 g / L, NaCl 0.5 g / L, 2.5 mM KCl, 10 mM MgCl 2 , 20 mM glucose) medium was added to 800 μL shaking culture for 1 hour at 37 ℃. After shaking culture, the cells were plated in a selection medium containing antibiotics and cultured in a 37 ° C. incubator to select transformants.

(3) 유전자 클로닝(3) gene cloning

통상의 유전자 클로닝 방법을 사용하여 본 발명의 에탄을 유도성 발현벡터를 제조하고, 이를 도 4a 내지 도 4d에 나타내었다. 도 4a 내지 도 4d에서 pBI121 벡터에 의해 수득된 35S-Adr1-tnos가 pCAMBIA1303의 HindIII 부위에 삽입된다. ADH2와 관련된 프로모터는 HindIII 및 Bg1II에 의해 pCAMBIA1303에 삽입된다. 도 4d의 플라스미드에 도 4a의 DNA 단편이 삽입된 것이 ADR1 I~III:pADH2 변형된 pCAMBIA1303 벡터 (3-7p)이고. 도 4d의 플라스미드에 도 4b의 DNA 단편이 삽입된 것이 ADR1 I:pADH2 변형된 pCAMBIA1303 벡터 (1-2p)이며, 도 4d의 플라스미드에 도 4c의 DNA 단편이 삽입된 것이 ADR1 I:pADH2-p35S 변형된pCAMBIA1303 벡터 (1-2f)이다. 유전자 클로닝에 사용된 프라이머들은 표 3과 같다.Ethane of the present invention was prepared by using a conventional gene cloning method, and an expression vector was prepared and shown in FIGS. 4A to 4D. In FIGS. 4A-4D 35S-Adr1-tnos obtained by the pBI121 vector is inserted into the Hind III site of pCAMBIA1303. Promoters associated with ADH2 are inserted into pCAMBIA1303 by Hind III and Bg1II. Inserted into the plasmid of Figure 4d DNA fragment of Figure 4a is the ADR1 I-III: pADH2 modified pCAMBIA1303 vector (3-7p). Inserting the DNA fragment of FIG. 4B into the plasmid of FIG. 4D is an ADR1 I: pADH2 modified pCAMBIA1303 vector (1-2p), and inserting the DNA fragment of FIG. 4C into the plasmid of FIG. 4D is an ADR1 I: pADH2-p35S modification. PCAMBIA1303 vector (1-2f). Primers used for gene cloning are shown in Table 3.

표 3. 본 발명에 사용된 올리고누클레오타이드Table 3. Oligonucleotides Used in the Invention

III. III. ADHADH 2 프로모터와 2 promoters ADHADH 2-35S 융합 프로모터의 식물체 발현벡터도입Plant expression vector introduction of 2-35S fusion promoter

(1) PCR을 통한 효모에서 ADH2 프로모터 획득(1) Acquisition of ADH2 promoter in yeast by PCR

ADR1이 결합하는 ADH2의 UAS부위에 해당하는 312 bp의 DNA 절편을 합성하기 위해 pADH2 프라이머 (표 3)를 사용하였다. 제작된 프라이머를 이용하여 계산된 Tm수치를 바탕으로 S. cerevisiae 게놈 DNA를 주형으로 하여, 먼저 96℃에서 5분간 변성화 시킨 후 94℃에서 1분, 51℃에서 1분, 72℃에서 2분의 주기를 30회 반복한 뒤 마지막으로 신장시키는 반응을 하도록 72℃에서 5분간 PCR을 수행하였다. PCR 증폭 절편을 pEZ-T벡터에 삽입한 후 E. coli로 형질전환 과정을 거쳐 각 증폭 절편에 해당하는 클론들을 수득하고 염기 서열 분석을 하였다.The pADH2 primer (Table 3) was used to synthesize a 312 bp DNA fragment corresponding to the UAS site of ADH2 to which ADR1 binds. Based on the Tm values calculated using the prepared primers, S. cerevisiae genomic DNA was used as a template, first denatured at 96 ° C for 5 minutes, then 1 minute at 94 ° C, 1 minute at 51 ° C, and 2 minutes at 72 ° C. After repeating the cycle of 30 times, the PCR was performed at 72 ° C. for 5 minutes to finally extend the reaction. PCR amplification fragments were inserted into the pEZ-T vector and transformed with E. coli to obtain clones corresponding to each amplification fragments, and subjected to sequencing.

(2) 분리한 ADH2 프로모터에 35S 프로모터 융합(2) Fusion of 35S promoter to isolated ADH2 promoter

분리한 ADH2 프로모터는 35S CaMV 프로모터와 TATA 부위가 동일하므로 TATA 박스를 포함한35S 프로모터 일부를 프라이머로 제작하여 융합 pADH2 프라이머 (표 3)를 사용하여 융합시켰다. 이러한 프로모터의 융합은 리포터 유전자의 강력한 발현을 위해서 필수적이다 (참고문헌: Hairul, A.R. et al, 2001, Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28: 225-235). 반응조건은 95℃에서 3분간 변성화 시킨 후 94℃에서 1분, 49℃에서 50초, 72℃에서 50초 신장시키는 반응을 40회 반복한 다음 마지막으로 신장시키는 반응을 하도록 72℃에서 5분간 PCR을 수행하였다. 용출한 DNA를 pGEM-T easy 벡터로 삽입한 후 E. coli로 형질전환시켜 콜로니를 수득하고 염기서열분석을 수행하였다 ADH2-35S 융합프로모터는 SEQ. ID No.: 15의 서열을 가졌다.Since the isolated ADH2 promoter has the same TATA site as the 35S CaMV promoter, a part of the 35S promoter including a TATA box was prepared as a primer and fused using a fused pADH2 primer (Table 3). Fusion of these promoters is essential for robust expression of reporter genes (Ref. Hairul, AR et al, 2001, Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 28: 225-235) . The reaction conditions were denatured at 95 ° C. for 3 minutes, followed by 40 minutes of stretching for 1 minute at 94 ° C., 50 seconds at 49 ° C., and 50 seconds at 72 ° C., followed by 5 minutes at 72 ° C. for the last extension. PCR was performed. The eluted DNA was inserted into the pGEM-T easy vector and transformed with E. coli to obtain colonies and sequencing. ADH2-35S fusion promoter was SEQ. It had a sequence of ID No .: 15.

(3) ADH2 프로모터와 ADH2-35S 융합 프로모터의 식물체 발현 벡터도입(3) Introduction of plant expression vector of ADH2 promoter and ADH2-35S fusion promoter

ADH2 프로모터와ADH2-35S 융합 프로모터의 5' 프라이머 말단에는 HindⅢ 제한효소 인식 부위, 그리고 3' 말단에는 BglⅡ 제한효소 인식 부위를 각각 삽입하여 식물체 발현 벡터 pCAMBIA1303의 Lac Z alpha와 CaMV 35S 프로모터 부위로 옮겼다.The HindIII restriction enzyme recognition site was inserted at the 5 'primer end of the ADH2 promoter and the ADH2-35S fusion promoter, and the BglII restriction enzyme recognition site was inserted at the 3' end, respectively, to the Lac Z alpha and CaMV 35S promoter sites of the plant expression vector pCAMBIA1303.

(4) RT-PCR을 통한 효모 mRNA에서 ADR1 획득(4) ADR1 acquisition from yeast mRNA via RT-PCR

효모에서 분리한 2 ㎍의 전체 RNA를 주형으로 하고, 프로메가사의 Access RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) 시스템을 사용하여, 올리고 dT 프라이머 (표 3)가 첨가된 반응액에서 42℃에서 1시간 동안 역전사를 수행하였다. 다음 각각의 ADRI 프라이머와 ADR1 Ⅲ 프라이머를 사용하여 95℃에서2분간 역전사 효소를 불활성화 시킨 후, 동일한 튜브에서 전체 반응물 40 μ L을 주형으로 전사 활성자인 ADR1의 516 bp와 1,713 bp에 달하는 cDNA 부분 절편체를 합성하였다. 반응조건은 94℃에서 50초간 변성시키고, 42℃에서 1분 30초간 어닐링한다음, 72℃에서 50초 동안 신장시키는 반응을 40회 반복하도록 PCR을 수행하였다. PCR 생성물을 1% 아가로오스 겔에서 전기영동 하여 용출한 DNA를 pGEM-T easy 벡터로 삽입한 후 E. coli로 형질 전환시켜 콜로니를 수득하고 염기서열분석을 수행 하였다.2 μg of total RNA isolated from yeast was used as a template, and a reaction solution containing an oligo dT primer (Table 3) was added at 42 ° C using a Promega Access RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) system. Reverse transcription was performed for 1 hour. After inactivating the reverse transcriptase at 95 ° C. for 2 minutes using each ADRI primer and ADR1 III primers, 40 μL of the total reactants in the same tube were used as templates for the cDNA portion of 516 bp and 1,713 bp of the transcription activator ADR1. Sections were synthesized. Reaction conditions were denatured at 94 ° C. for 50 seconds, annealed at 42 ° C. for 1 minute 30 seconds, and PCR was performed to repeat the reaction of elongating at 72 ° C. for 50 seconds for 40 times. The PCR product was electrophoresed on a 1% agarose gel, and the eluted DNA was inserted into the pGEM-T easy vector, transformed into E. coli to obtain colonies, and sequencing was performed.

(5) ADR1 부분 절편체의 식물체 발현 벡터로의 삽입(5) Insertion of ADR1 fragment into plant expression vector

전사 활성자인 ADR1의 516 bp와 1713 bp을 5' 프라이머 말단에는 BamHI 제한효소 인식 부위를 그리고 3'말단에는 SacI 제한효소 인식 부위를 도입하고, 각각 식물체 발현 벡터 pBI121의 GUS 부위에 삽입하여, CaMV 35S 프로모터의 조절 하에서 과발현 되도록 하였다.516 bp and 1713 bp of the transcription activator ADR1 were introduced into the Gam region of the plant expression vector pBI121 by introducing a BamHI restriction enzyme recognition site at the 5 'primer end and a SacI restriction enzyme recognition site at the 3' end, respectively. It was allowed to overexpress under the control of the promoter.

(6) ADR1 부분 절편체가 삽입된 pBI121에서35S-ADR1-tnos 증폭(6) Amplification of 35S-ADR1-tnos in pBI121 with ADR1 partial fragment inserted

ADR1 부분 절편체에 EcoRI 제한효소 인식부위가 있기 때문에, ADRI 부분 절편체 삽입된 pBI121에서 35S-ADR1-tnos을 EcoRI/HindⅢ로 자르지 않고 5' 말단과 3'말단에 HindⅢ 제한효소 인식부위를 넣어 pBI121 프라이머를 제작하고35S-ADR1-tnos를 증폭시켰다.Since there is an EcoRI restriction enzyme recognition site in the ADR1 fragment, pBI121 was inserted at the 5 'end and 3' end of 35'-ADR1-tnos without the EcoRI / HindIII from pBI121 inserted ADRI fragment. Primers were prepared and amplified 35S-ADR1-tnos.

(7) 에탄올 유도 벡터 제작(7) Ethanol Induction Vector Construction

제조된 두 개의 식물체 발현 벡터를 하나의 에탄올 유도 식물체 발현 벡터로 합치기 위하여 ADR1을 포함하는 35S-ADR1-tnos를 HindⅢ 제한 효소로 절단하여 pCAMBIA1303의 다중-클로닝 부위 (Multi-cloning site) (MCS)에 삽입하였다.In order to combine the two plant expression vectors thus prepared into one ethanol derived plant expression vector, 35S-ADR1-tnos containing ADR1 was digested with a HindIII restriction enzyme to the multi-cloning site (MCS) of pCAMBIA1303. Inserted.

IV. PEG 형질전환을 통한 애기장대 원형질체로의 에탄올 발현벡터의 도입IV. Introduction of Ethanol Expression Vectors into Arabidopsis Protoplasts by PEG Transformation

재조합된 에탄올 유도 식물체 발현 벡터 작용을 확인하기 위해 트랜지언트 검정 (transient assay)을 수행하였다. 트랜지언트 검정에 사용한 배지와 시약은 하기 표 4과 같다.A transient assay was performed to confirm the action of the recombinant ethanol derived plant expression vector. The media and reagents used for the transient assay are shown in Table 4 below.

표 4. 본 발명에 사용된 트랜지언트 검정 배지 조성Table 4. Transient Assay Medium Compositions Used in the Present Invention

(1) 애기장대 원형질체 분리(1) Separation of Arabidopsis Protoplasts

아라비돕시스 (Arabidopsis)의 꽃을 제외한 녹색을 띠는 부분을 멸균한 가위로 잘라 20~30 mL의 효소액에 담가둔 후, 약 12시간 정도 20~30 rpm으로 진탕하였다. 원형질체를 분리하기 위해 21% 수크로오스 (sucrose) 용액에 넣어 10분 동안 730 rpm으로 원심분리 시켰다. 수크로오스(Sucrose) 용액의 상징액을 취해 20~25 mL의 W5 세척 용액을 넣고 600 rpm에서 8분 동안 원심 분리시킨 후 상징액을 버리고 다시 W5 세척용액을 넣었다. 이와 같은 과정을 1회 반복 수행하여 원형질체를 수득하였다. The greenish area except the flowers of Arabidopsis was cut with sterile scissors and soaked in 20-30 mL of enzyme solution and shaken at 20-30 rpm for about 12 hours. To separate the protoplasts, the mixture was placed in 21% sucrose solution and centrifuged at 730 rpm for 10 minutes. Take the supernatant of sucrose solution, add 20-25 mL of W5 wash solution, centrifuge at 600 rpm for 8 minutes, discard the supernatant, and add W5 wash solution. This procedure was repeated once to obtain protoplasts.

(2) PEG 형질전환(2) PEG transformation

애기장대에서 분리한 원형질체를 550 rpm으로, 5분간 원심분리하여 원형질체를 수집하였다. 수집된 원형질체에 만니톨/Mg 용액을 0.3 mL 넣었다. 에탄올 유도 식물체 발현벡터 10~30 ㎍ DNA를 0.4 mL 원형질체 용액에 놓은 후, 원형질체와 DNA를 잘 섞었다. 다음, 0.4 mL PEG 용액을 조심스레 첨가해 잘 섞이도록 돌려주었다. PEG를 첨가한 용액에 3~5 mL의 W5 용액을 넣어 매우 천천히 섞어준 후 5분동안 550 rpm으로 원심분리하고 상징액을 제거한 다음, 2 mL의 W5용액을 넣고 22℃ 암상태에서 12시간 이상 놓았다.The protoplasts separated from the Arabidopsis were centrifuged at 550 rpm for 5 minutes to collect the protoplasts. 0.3 mL of mannitol / Mg solution was added to the collected protoplasts. The ethanol-derived plant expression vector 10-30 ㎍ DNA was placed in 0.4 mL protoplast solution, and the protoplasts and DNA were mixed well. Next, 0.4 mL PEG solution was carefully added and returned to mix well. 3 to 5 mL of W5 solution was added to the PEG solution, mixed very slowly, centrifuged at 550 rpm for 5 minutes, the supernatant was removed, and 2 mL of W5 solution was added and placed at 22 ° C. for at least 12 hours. .

V. 에탄올 처리 및 GFP 발현 관찰V. Ethanol Treatment and GFP Expression Observation

(1) 형질전환된 애기장대 원형질체에 에탄올 처리 및 GFP 발현 관찰(1) Ethanol Treatment and GFP Expression in Transgenic Arabidopsis Protoplasts

형질전환 시킨 애기장대 원형질체에 2%의 에탄올을 처리한 후 약 24시간 경과 후 공동기기원의 공초점 레이저 주사 현미경 (Confocal Laser Scanning Microscope)을 사용하여 형질전환 시킨 애기장대 원형질체의 GFP를 관찰하였다. GFP는 395 nm ~ 470 nm에서 빛을 흡수하고 509 nm에 녹색형광을 발한다.After 24 hours of treatment with 2% ethanol to the transformed Arabidopsis protoplasts, the GFP of the Arabidopsis protoplasts transformed using a Confocal Laser Scanning Microscope of a common instrument was observed. GFP absorbs light from 395 nm to 470 nm and emits green fluorescence at 509 nm.

(2) GFP발현 분석(2) GFP expression analysis

에탄올에 의해 유도되는 3종의 식물체 발현벡터들, 즉 ADR1 I~III:pADH2 가 삽입된 변형된 pCAMBIA1303 벡터(3-7p), ADR1 I:pADH2가 삽입된 변형된 pCAMBIA1303 벡터(1-2p) 및 ADR1 I:pADH2-p35S가 삽입된 변형된 pCAMBIA1303 벡터(1-2f)에 대해 에탄올 처리 후 GFP 발현 양상을 분석하였다. 분석에 사용한 프로그램은 이미지 제이 프로그램 (image j program)이었다. 이는 NIH에서 제공하는 이미지 분석 프로그램으로서 홈페이지 (http://rsbweb.nih.gov/ij/)에 접속하여 GFP 발현 양상을 정량하였다.Three plant expression vectors induced by ethanol: modified pCAMBIA1303 vector (3-7p) inserted with ADR1 I-III: pADH2, modified pCAMBIA1303 vector (1-2p) inserted with ADR1 I: pADH2, and The modified pCAMBIA1303 vector (1-2f) into which ADR1 I: pADH2-p35S was inserted was analyzed for GFP expression after ethanol treatment. The program used for analysis was an image j program. This is an image analysis program provided by NIH and quantified GFP expression patterns by accessing the homepage (http://rsbweb.nih.gov/ij/).

VI. 결과VI. result

(1) 에탄올 유도 식물체 발현벡터 제작(1) Production of ethanol derived plant expression vector

i) ADH2 프로모터와 pADH2-p35S 부분절편체 융합 프로모터의 제작 및 pCAMBIA1303 벡터로의 삽입i) Construction of the ADH2 promoter and pADH2-p35S subsection fusion promoter and insertion into the pCAMBIA1303 vector

전사 활성자인 ADR1이 결합하는 ADH2 프로모터 내의 UAS (Upstream Activation Sequence)에 해당하는 200 bp의 DNA는 다양한 효모 종들에서 매우 잘 보존된 서열이며 (참고문헌: Young, E.T. et al, 2000. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Gene 245: 299-309), 효모뿐만 아니라 다양한 생물체에서 발현 유도 벡터의 구성원으로 기능을 발휘하므로 (참고문헌: Scheer, N. et al.,1999. Use of the Ga14-UAS technique for targeted gene expression in the zebrafish. Mech. Dev. 80: 153-158). S. cerevisiae의 전체 염기서열에서 ADH2 프로모터를 PCR을 통해 제작하였다 (도 5a). 도 5b는 특정 프라이머를 이용한 PCR에 의해 수득한 제한효소 인식 부위 (HindIII/Bg1II)를 함유하지 않는 pADH2 단편에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 100 bp 래더 (ladder); 제 1 내지 4열은 pADH2 312 bp PCR 생성물을 나타낸다. 도 5c는 특정 프라이머를 이용한 PCR에 의해 수득한 제한효소인식 부위 (HindIII/Bg1II)를 함유하는 pADH2 단편에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 100 bp 래더 (ladder); 제 1 내지 3열은 pADH2 267 bp PCR 생성물을 나타낸다. 한편, ADH2 프로모터만으로는 소량의 에탄올로 식물체 발현벡터의 리포터 유전자를 발현시키기에 부족하므로 (참고문헌: Mark, X.C. et al., 1997, An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nature Biotechnology 16: 177-180) ADH2 프로모터와 p35S 프로모터에서 서로 일치되는 TATA 박스 부분을 이용하여 p35S의 TATA 박스를 포함하는 60량체 프라이머를 제작하였다. 이와 같이, PCR로 pADH2-p35S 부분 절편체 융합 프로모터를 제작하였다 (도 6a). 도 6b는 특정 프라이머를 이용한 PCR에 의해 수득한 제한효소 인식 부위 (HindIII/Bg1II)를 함유하는 pADH2:35S 융합 프로모터 절편체에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 /HindIII DNA 크기 마아커이고 제 1 내지 3열은 pADH2 279 bp PCR 생성물을 나타낸다. 이것의 최종적으로 제작한 두개의 프로모터 (ADH2 프로모터, ADH2-p35S 부분절편체 융합 프로모터)들을 각각 pCAMBIA1303 식물체 발현벡터에 삽입하였다.The 200 bp DNA corresponding to the UAS (Upstream Activation Sequence) in the ADH2 promoter to which the transcriptional activator ADR1 binds is a very well conserved sequence in various yeast species (Ref. Young, ET et al, 2000. Evolution of a glucose -regulated ADH gene in the genus Saccharomyces.Gen 245: 299-309), since it functions as a member of expression induction vectors in various organisms as well as yeast (Scheer, N. et al., 1999. Use of the Ga14-UAS technique for targeted gene expression in the zebrafish.Mech. Dev. 80: 153-158). ADH2 promoter was prepared by PCR in the entire sequence of S. cerevisiae (FIG. 5A). FIG. 5B shows the results of electrophoresis on pADH2 fragments that did not contain restriction enzyme recognition sites (HindIII / Bg1II) obtained by PCR with specific primers. The PCR results were separated on 0.8% agarose gel: M is 100 bp ladder; Rows 1-4 show the pADH2 312 bp PCR product. FIG. 5C shows the results of electrophoresis on pADH2 fragments containing restriction enzyme recognition sites (HindIII / Bg1II) obtained by PCR with specific primers. The PCR product was isolated on 0.8% agarose gel: M is 100 bp Ladder; Columns 1-3 show the pADH2 267 bp PCR product. On the other hand, the ADH2 promoter alone is insufficient to express the reporter gene of the plant expression vector with a small amount of ethanol (Ref: Mark, XC et al., 1997, An ethanol inducible gene switch for plants used to manipulate carbon metabolism. : 177-180) A 60-mer primer including a TATA box of p35S was prepared using a TATA box portion matched with each other in the ADH2 promoter and the p35S promoter. Thus, pADH2-p35S partial fragment fusion promoter was constructed by PCR (FIG. 6A). FIG. 6B shows the results of electrophoresis on pADH2: 35S fusion promoter fragments containing restriction enzyme recognition sites (HindIII / Bg1II) obtained by PCR with specific primers, where the PCR results were isolated on 0.8% agarose gel. : M is the / HindIII DNA size marker and rows 1-3 show the pADH2 279 bp PCR product. Two final promoters of this (ADH2 promoter, ADH2-p35S partial fragment fusion promoter) were inserted into the pCAMBIA1303 plant expression vector, respectively.

ii) ADR1의 부분 절편체 제작과 pBI121 벡터로의 삽입ii) Construction of partial fragments of ADR1 and insertion into pBI121 vector

S. cerevisiae의 전사 활성자인 ADR1의 TAD (Transactivation Domain) I, II, III 부위 중에서, TAD II 및 III는 단독적인 기능을 수행하지는 못하는 반면에 TAD I 은 ADH2의 발현을 유도하기에 충분하다 (참고문헌: Cook, W.J. et al., 1994b, Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J. Biol. Chem. 269: 9374-9379). 따라서, S. cerevisiae의 전사 활성자인 ADR1의 전체 서열 중에서 DNA 결합에 관여하는 zinc finger 부위인 TAD I만을 포함하는 ADR1-I부분의 516 bp를 제작하였고, 에탄올에 의한 전사 활성부위인 TAD I, II, III 부위에 해당하는 1,713 bp의 DNA 절편체를 각각 제작하였다. 도 7a는 특정 프라이머를 이용한 RT-PCR에 의해 수득한 TAD I을 함유하는 ADR1 단편에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 100 bp 래더 (ladder); 제 1 내지 2열은 ADR1-I 516 bp PCR 생성물을 나타낸다. 도 7b는 특정 프라이머를 이용한 RT-PCR에 의해 수득한 TAD III을 함유하는 ADR1 단편에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 1 kbp 래더(ladder); 제 1열은 ADR1-III 1,713 bp PCR 생성물을 나타낸다. S. cerevisiae인 Y190의 RNA에서 합성된 ADR1을 식물체 발현 벡터인 pBI121의 35S 프로모터 뒤에 위치한 GUS 유전자 부위에 도입하여 ADR1 유전자가 과발현 되도록 제작하였다. Of the TAD (Transactivation Domain) I, II, and III sites of ADR1, the transcriptional activator of S. cerevisiae , TAD II and III do not function alone, whereas TAD I is sufficient to induce the expression of ADH2. Cook, WJ et al., 1994b, Mutations in the zinc-finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation.J. Biol. Chem. 269: 9374-9379). Therefore, 516 bp of the ADR1-I portion including only TAD I, a zinc finger region involved in DNA binding, was prepared from the entire sequence of ADR1, a transcriptional activator of S. cerevisiae , and TAD I, II, a activating transcriptional region by ethanol. DNA fragments of 1,713 bp corresponding to the site III were prepared. FIG. 7A shows the results of electrophoresis on ADR1 fragments containing TAD I obtained by RT-PCR using specific primers, where PCR results were separated on 0.8% agarose gel: M is 100 bp ladder; Columns 1 to 2 show the ADR1-I 516 bp PCR product. FIG. 7B shows the results of electrophoresis on ADR1 fragments containing TAD III obtained by RT-PCR using specific primers, where PCR results were separated on a 0.8% agarose gel: M is a 1 kbp ladder; Column 1 shows the ADR1-III 1,713 bp PCR product. ADR1 synthesized from the RNA of Y190, a S. cerevisiae , was introduced into the GUS gene region located behind the 35S promoter of the plant expression vector pBI121 to produce an overexpression of the ADR1 gene.

iii) pBI121 벡터에35S-ADR1-tnos 부분 증폭하여 재조합된 pCAMBIA1303에 삽입iii) 35S-ADR1-tnos partial amplification into pBI121 vector and insertion into recombinant pCAMBIA1303

pBI121 벡터에 삽입된 ADR1을 포함하는 35S-ADR1-tnos 부분만을 PCR로 증폭하고 (도 8a 및 도 9a), pADH2 프로모터와 pADH2-35S 융합 프로모터가 있는 pCAMBIA1303에 각각 삽입하였다. ADR1의 과발현을 위해 pBI121 벡터에서 CAMV 35S 프로모터를 포함하였다. 증폭된 35S-ADR1(TADI)-tnos와 35S-ADR1(TADI~ TADIII)-tnos 부분의 크기는 각각 1,605 bp 및 2,815 bp이었다. 도 8b는 특정 프라이머를 이용한 PCR에 의해 수득한 35S-ADR1-tnos 단편 (1,605 bp, 2,815 bp)에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 /HindIII DNA 크기 마아커이고 제 1열은 음성대조군이며 제 2 내지 3열은 35S-ADR1(TAD I)-tnos PCR 생성물을 나타낸다. 도 8b는 특정 프라이머를 이용한 PCR에 의해 수득한 35S-ADR1(TADI-TADIII)-tnos 단편에 대한 전기영동 결과로서, 상기 PCR 결과물은 0.8% 아가로스 겔상에서 분리되었다: M은 1 kbp 래더이고 제 1열은 음성 대조군이며 제 2 내지 3열은 35S~ADR1(TADI~TADIII)-tnos PCR 생성물 (2,815 bp)을 나타낸다.Only the 35S-ADR1-tnos portion containing ADR1 inserted into the pBI121 vector was amplified by PCR (FIGS. 8A and 9A) and inserted into pCAMBIA1303 with pADH2 promoter and pADH2-35S fusion promoter, respectively. The CAMV 35S promoter was included in the pBI121 vector for overexpression of ADR1. The size of the amplified 35S-ADR1 (TADI) -tnos and 35S-ADR1 (TADI ~ TADIII) -tnos were 1,605 bp and 2,815 bp, respectively. FIG. 8B shows the results of electrophoresis on 35S-ADR1-tnos fragments (1,605 bp, 2,815 bp) obtained by PCR with specific primers, wherein the PCR results were separated on 0.8% agarose gel: M is / HindIII DNA Size markers and column 1 are negative controls and columns 2 to 3 represent the 35S-ADR1 (TAD I) -tnos PCR product. FIG. 8B shows the results of electrophoresis on 35S-ADR1 (TADI-TADIII) -tnos fragments obtained by PCR with specific primers, where PCR results were separated on 0.8% agarose gel: M is 1 kbp ladder Row 1 is a negative control and rows 2 to 3 represent 35S-ADR1 (TADI-TADIII) -tnos PCR products (2,815 bp).

(2) 에탄올에 의해 유도된 식물체 발현벡터의 분석(2) Analysis of plant expression vector induced by ethanol

i) 형질전환된 애기장대 원형질체에서의 GFP 발현 관찰i) Observing GFP Expression in Transgenic Arabidopsis Protoplasts

에탄올 유도 식물체 발현벡터를 형질전환 시킨 애기장대 원형질체에 2% 에탄올을 하루 동안 처리 한 후 공초점 레이저 주사 현미경(Confocal Laser Scanning Microscope)을 통해 GFP 발현을 관찰 하였다 (도 10a 내지 도 10d). 대조군인 GFP 유전자가 없는 pBI121 벡터로 형질전환 시킨 애기장대 원형질체와 에탄올에 의해 유도되는 세가지의 식물체 발현 벡터를 비교해 보면, 에탄올 처리 후에 GFP 발현 양상을 관찰할 수 있었다. 에탄올 유도 식물체 발현벡터를 형질전환 시키지 않은 (음성)대조군 원형질체에서는 에탄올 처리 전 후에 유의할 만한 변화는 없었다 (도 10a). 그러나 에탄올 유도 발현 벡터로 형질전환 시킨 애기장대 원형질체에서는 에탄올 처리 후에 GFP 발현 증가를 관찰할 수 있었다. 도 10b, 10c 및 10d는 2% 에탄올로 처리한 에탄올 유도 식물체 발현 벡터를 도입한 형질전환체들이다. 도 10b는 p35S-ADR1(TADI)-tnos-pADH2:p35S-pCAMBIA1303 [1-2f]을 도입한 형질전환체이고 도 10c는 p35S-ADR1(TADI)-tnos-pADH2-pCAMBIA1303 [1-2p]을 도입한 형질전환체이다. 또한, 도 10d는 p35S-ADR1(TADI~TADIII)-tnos-pADH2-pCAMBIA1303 [3-7p]을 도입한 형질전환체이다. 식물체 내에 자기형광 (autofluorescence)이 있으나, 대조군과 비교해 보면 에탄올 유도 식물체 발현벡터로 형질전환 시킨 애기장대 원형질체에서는 에탄올 처리 후 강한 녹색을 나타내는 것으로 보아 GFP가 발현됨을 알 수 있었다.After treating the Arabidopsis protoplasts transformed with the ethanol-derived plant expression vector for 2% ethanol for one day, GFP expression was observed through a confocal laser scanning microscope (FIG. 10a to 10d). Comparing Arabidopsis protoplasts transformed with pBI121 vector without GFP gene as a control and three plant expression vectors induced by ethanol, GFP expression was observed after ethanol treatment. In the (negative) control protoplasts that were not transformed with the ethanol derived plant expression vector, there was no significant change before and after ethanol treatment (FIG. 10A). However, Arabidopsis protoplasts transformed with ethanol-induced expression vectors showed increased GFP expression after ethanol treatment. 10B, 10C and 10D are transformants incorporating ethanol derived plant expression vectors treated with 2% ethanol. 10B is a transformant introducing p35S-ADR1 (TADI) -tnos-pADH2: p35S-pCAMBIA1303 [1-2f] and FIG. 10C shows p35S-ADR1 (TADI) -tnos-pADH2-pCAMBIA1303 [1-2p] It is a transformant introduced. 10D is a transformant into which p35S-ADR1 (TADI to TADIII) -tnos-pADH2-pCAMBIA1303 [3-7p] was introduced. Autofluorescence was present in the plant, but compared with the control group, Arabidopsis protoplasts transformed with ethanol-derived plant expression vectors showed strong green color after ethanol treatment, indicating that GFP was expressed.

GFP 발현양을 수치화한 자료 (도 11)는 에탄올 유도 식물체 발현 벡터의 작용을 나타낸다. 음성 대조군은 pBI121 벡터 (GFP 유전자 없이)를 사용하여 형질전환시켰다. 실험에 사용된 형질전환시킨 원형질체는 각각 2% 에탄올의 사용전 후에 24시간 동안 유지시켰다. 1-2p, 3-7p 2-1f로 형질전환 시킨 원형질체 모두 2% 에탄올 처리 후 GFP 발현양이 증가하였다. 그러나 세가지 에탄올에 의해 유도되는 식물체 발현 벡터 중 p35S 부분 절편체를 융합시킨 벡터, 1-2f로 형질전환 시킨 원형질체에서 에탄올 처리 후 GFP 발현 증가가 가장 많았다. 그리고 에탄올 처리 후, 1-2p 형질전환체 보다 3-7p 형질전환체의 GFP 발현양의 증가가 적은 이유는 자동 조절 기능을 가진 ADH2의 활성억제 하는 TADII 영역을 3-7p 벡터가 가지고 있기 때문이라 추정 할 수 있다.Data quantifying the amount of GFP expression (FIG. 11) shows the action of ethanol derived plant expression vectors. Negative controls were transformed using the pBI121 vector (without the GFP gene). The transformed protoplasts used in the experiment were maintained for 24 hours before and after each use of 2% ethanol. Protoplasts transformed with 1-2p, 3-7p and 2-1f increased GFP expression after 2% ethanol treatment. However, among the three ethanol-induced plant expression vectors, GFP expression was the most increased after ethanol treatment in the vector fused with p35S fragment and the protoplast transformed with 1-2f . After the ethanol treatment, the 3-7p vector had less GFP expression than the 1-2p transformer because the 3-7p vector had a TADII region that inhibits ADH2 activity. Can be estimated.

이와 같이, 기존에 개발된 알코올 발현 유도 벡터에 비하여 1-2p 벡터는 TADI과 TADII 사이에 위치한 자가 조절 부위를 제거하여, 단백질 활성을 억제할 가능할 가능성을 배제 하였다. 따라서 최대 발현 유도시간이 짧아져서 1시간으로 기존 벡터의 16시간에 비하여 10배 이상 빨라졌으며, 기존의 벡터가 50% 이상 발현을 유도하는 지속 시간이 24시간 정도인 반면에 1-2p 벡터의 경우는 48시간 이상 지속되어서 2배 이상의 발현 지속 시간을 나타냈다 (도 12). 또한 기존 벡터에 비하여 약 2 kb정도 크기가 작아져 사용이 용이하다.As such, the 1-2p vector eliminated the possibility of inhibiting protein activity by removing the self-regulatory site located between TADI and TADII, compared to the previously developed alcohol expression induction vector. Therefore, the maximum expression induction time is shortened by 1 hour, which is 10 times faster than 16 hours of the existing vector, and the duration of inducing expression of 50% or more of the existing vector is about 24 hours, whereas the 1-2p vector is used. Lasted 48 hours or more, indicating a two-fold or longer expression duration (FIG. 12). In addition, it is easy to use because it is about 2 kb smaller than the existing vector.

이와 같이, 본 발명에 따라 제공되는 식물체 발현 벡터는 강한 휘발성에 의해 대단위의 살포가 가능한 에탄올을 유도 화학물질로서 이용할 수 있으므로, 식물체로부터 목적하는 유전자를 식물 배양의 특정 시기 또는 단계에만 수득할 수 있다. 따라서, 본 발명은 유전자 기능 분석 및 유전자 발현 식물체의 제조에 유용하다.As such, the plant expression vector provided according to the present invention can use ethanol, which can be sprayed at a large scale due to its high volatility, as an induction chemical, and thus, a desired gene from the plant can be obtained only at a specific time or stage of plant culture. . Thus, the present invention is useful for gene function analysis and for the production of gene expressing plants.

도 1은 alc 유도 유전자 발현 시스템의 구조를 나타낸다.1 shows the structure of an alc induced gene expression system.

도 2는 S. cerevisiae 에서 해당 및 글루코제네시스 경로를 나타낸다.2 shows glycolytic and glucogenesis pathways in S. cerevisiae .

도 3a는 ADR1 단백질의 기능성 영역 (SEQ. ID No.: 1)을 나타낸다.3A shows the functional region of ADR1 protein (SEQ. ID No .: 1).

도 3b는 ADH2 프로모터 영역 (SEQ. ID No.: 2)의 구성을 나타낸다.3B shows the configuration of the ADH2 promoter region (SEQ. ID No. 2).

도 4a 내지 도 4d는 에탄올-유도 발현 벡터의 개략도를 나타낸다.4A-4D show schematic diagrams of ethanol-derived expression vectors.

도 5a는 pADH2의 구성을 나타낸다.5A shows the configuration of pADH2.

도 5b는 제한효소 인식부위 (HindIII/Bg1II)가 없는 pADH2 절편의 전기영동결과를 나타낸다.Figure 5b shows an electrophoresis result of pADH2 fragments do not have a restriction enzyme recognition site (Hind III / Bg1II).

도 5c는 제한효소 인식부위 (HindIII/Bg1II)가 삽입된 pADH2 절편의 전기영동 결과를 나타낸다.Figure 5c shows an electrophoresis result of the inserted fragment pADH2 restriction enzyme recognition sites (Hind III / Bg1II).

도 6a는 pADH2-p35S 융합 프로모터 절편의 구성을 나타낸다.6A shows the configuration of pADH2-p35S fusion promoter fragments.

도 6b는 pADH2-p35S 융합 프로모터 절편의 전기영동 결과를 나타낸다.6B shows the results of electrophoresis of pADH2-p35S fusion promoter fragments.

도 7a는 TAD I 도메인을 함유하는 ADR1 단편 (516 bp) (SEQ. ID No.: 3)의 전기영동 결과를 나타낸다.7A shows the results of electrophoresis of ADR1 fragment (516 bp) (SEQ. ID No .: 3) containing the TAD I domain.

도 7b는 TAD I ~ III 도메인을 함유하는 ADR1 단편 (1,713 bp) (SEQ. ID No.: 4)의 전기영동 결과를 나타낸다.7B shows the results of electrophoresis of ADR1 fragments (1,713 bp) (SEQ. ID No .: 4) containing the TAD I-III domains.

도 8a는 35S-ADR1 (TAD I)-tnos PCR 결과물의 구성을 나타낸다.8A shows the configuration of the 35S-ADR1 (TAD I) -tnos PCR result.

도 8b는 35S-ADR1 (TAD I)-tnos PCR 결과물의 전기영동 결과를 나타낸다.8B shows the results of electrophoresis of 35S-ADR1 (TAD I) -tnos PCR results.

도 9a는 35S-ADR1 (TAD I ~ TAD III)-tnos PCR 결과물의 구성을 나타낸다.Figure 9a shows the configuration of 35S-ADR1 (TAD I to TAD III) -tnos PCR results.

도 9b는 35S-ADR1 (TAD I ~ TAD III)-tnos PCR 결과물의 전기영동 결과를 나타낸다.Figure 9b shows the results of electrophoresis of 35S-ADR1 (TAD I to TAD III) -tnos PCR results.

도 10a는 음성대조군 (pBI121 원형질체)에 대한 2% 에탄올 처리 전후의 GFP 발현에 대한 공초점 현미경 사진이다.10A is a confocal micrograph of GFP expression before and after 2% ethanol treatment for the negative control (pBI121 protoplasts).

도 10b는 본 발명의 발현 벡터 (1-2f)에 대한 2% 에탄올 처리 전후의 GFP 발현에 대한 공초점 현미경 사진이다.10B is a confocal micrograph of GFP expression before and after 2% ethanol treatment for the expression vector (1-2f) of the invention.

도 10c는 본 발명의 발현 벡터 (1-2p)에 대한 2% 에탄올 처리 전후의 GFP 발현에 대한 공초점 현미경 사진이다.10C is a confocal micrograph of GFP expression before and after 2% ethanol treatment for expression vectors (1-2p) of the present invention.

도 10d는 본 발명의 발현 벡터 (3-7p)에 대한 2% 에탄올 처리 전후의 GFP 발현에 대한 공초점 현미경 사진이다.10D is a confocal micrograph of GFP expression before and after 2% ethanol treatment for the expression vector (3-7p) of the present invention.

도 11는 형질전환 아라비돕스 원형질체에서 에탄올 처리 후의 GFP의 상대적 형광강도를 나타낸다.FIG. 11 shows the relative fluorescence intensity of GFP after ethanol treatment in transgenic Arabidox protoplasts.

도 12는 종래기술에 따른 벡터와 본 발명의 1-2p 벡터의 에탄올에 의한 상대적인 발현 유도 강도를 비교한 것이다.12 is a comparison of the relative expression induction intensity by ethanol of the vector according to the prior art and the 1-2p vector of the present invention.

<110> Seoul National University Industry Foundation <120> ETHANOL-INDUCIBLE EXPRESSION VECTOR <130> IA23915 <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 7303 <212> DNA <213> Saccharomyces cerevisiae <300> <301> Hartshorne, T.A. Blumberg, H. Young, E.T. <302> Sequence homology of the yeast regulator protein ADR1 with Xenopus transcription factor TFIIIA <303> Nature <304> 320 <305> 6059 <306> 283-287 <307> 1986-01-01 <313> 1166-7303 <400> 1 atccgagtta ttgcccaagt tgagacaaat tttccaacaa tttggcaagg atttgctggc 60 cacccatggt aatgacattc aggtgcccga atctcaggtg aaatctaact acacaagagg 120 taaccaaaaa agtagcttta ccgaaatcaa ggactccgct tcaaagccaa aaaagaatgc 180 acttccctct tctacttcaa cttcagcacc agtctccagc accaacaaag tcccccaaaa 240 cggaagcggc aatagtacat ctatttattt agaaccaact tttaatgtgc cttcctccga 300 gctctacgaa acgttccttg ataagcaacg catattggcc tggaccagat cagcacaatt 360 tttcaacagc ggaccgaagc tggagaccaa agaaaaattc gagctctttg gcggcaacgt 420 gatcagcgag ttggtttcat gcgaaaagga caagaaactt gttttccact ggaaactcaa 480 ggattggtct gcccctttca actctactat cgaaatgact ttccatgagt cgcaagaatt 540 ccatgaaacc aaattacagg tgaagtggac tggcataccc gttggcgagg aagatcgcgt 600 gcgcgctaat tttgaagaat actacgtgcg ttctattaaa ttgacattcg gctttggtgc 660 cgtattataa gatatattgt tctcatgttt caataaaagt atgcgtaaat atttacatac 720 cactattggc atagatagaa tgcaatacat catgtagttc tgtacggcat ccgcgcggct 780 ccgatcgccc gtcctacttt tgcggcccgg cgccgacggc ctccccggaa tttaccaacg 840 aagaggaaaa taaactggag ttataacgcc attggcggga aactccgaaa ccatagcgcc 900 gtggtctttc cccggttttt tggcgccggg tgtgcttgcg ttgtgtgaac ggcgccctgg 960 cagctgaggg ggaagggaaa cgccggaggc gacggcaagg atgaccatgg cgtcaaggaa 1020 catgcggaac atgctagaat gattgccgaa aggcgggccc tagtcaatgg catcatgcgg 1080 gaacgtgcag taaagctcaa tgtaacttga tctatcggcg ttgttcgagc taaggacgat 1140 gtgatagact gaggaagggt gaacgtcgat agttagccgt tgtgaactaa ataaaagtga 1200 tattttttcg ttgttctttt cttggtttgg cggtgttttc atttgttttc atgttttact 1260 tcgccacagg ttttcaaaga acaacgcctt aaaaatagga aaacgttttc gctacaggtg 1320 ttgttattat tgttgttgtg ctgttgttta ttgtgctata cttgtggtat ttattctgga 1380 cttccgatcg gaaattttct tcccttgaag accttttgaa gacaacagtt atatatcatt 1440 gatctgaatt tctcaggcta ttttcaaaat tccatacctc cttattccaa catttgctcg 1500 actactatag aaaagcctta ttcttttatc tttgaaagaa agaaaaggtg tcatagcaaa 1560 agtttattgt tactctgttt tgatatactc cctcttattc gttggaagta taagattgat 1620 ttgcataaat taaccaatca ttttgctact ttcccggttc tccctttatt ataaacactt 1680 cagaaaaata ttctgctact attccttact ttactataag aattttgttt tccaaaaaaa 1740 aaaaatataa aaaaaataat catactctat tactatggct aacgtagaaa aaccaaacga 1800 ttgttcaggc tttcccgttg ttgacttgaa ttcgtgcttt tctaacggct tcaataatga 1860 gaaacaagaa atagaaatgg aaacggatga ttcaccgatt ttattaatgt catcatcagc 1920 ttccagagaa aactcaaaca ctttctctgt gatacagagg acgccagatg gaaagatcat 1980 taccacaaat aataatatga actccaagat taacaagcaa ctggacaagt tgcccgaaaa 2040 tttaaggctt aatggtagaa cccccagtgg gaaactaagg tcatttgttt gcgaggtttg 2100 tacgagagcg ttcgcaagac aagagcactt gaaaagacat tacagatcgc atacaaatga 2160 aaaaccttat ccctgtggcc tctgcaacag atgctttact aggagggact tactgatcag 2220 gcatgctcaa aaaatccata gtggtaattt aggggaaacg atttcccata ccaagaaagt 2280 gtcgagaact ataactaaag ctcggaaaaa ttctgcatcc tcagtcaagt ttcaaactcc 2340 aacctatggt actccagata atggtaattt tttgaatcgc actactgcca atacaagaag 2400 aaaagcaagc cctgaagcta atgttaaacg taagtacttg aaaaaactga cgcgcagggc 2460 ttcatttagc gcacaatcag catccagcta tgctttgccc gaccaatctt cgctagaaca 2520 acatccaaag gatcgtgtta aattttctac gcctgaatta gttccacttg acttgaagaa 2580 tcctgaactt gactcttcgt ttgacctgaa tatgaatcta gatttaaacc taaatctaga 2640 ttccaatttc aatatagcat taaaccgttc tgattcttct ggatcaacaa tgaatttgga 2700 ttataaattg cccgaatcag caaataacta cacatattct tccggctcac caacccgcgc 2760 atatgtcggc gctaacacga attctaagaa cgcttcattt aatgacgcag acttattgtc 2820 gtcgtcgtac tggataaaag cctataatga tcatttgttt tcagtatctg aaagtgatga 2880 aacttctcca atgaactctg aattaaacga cactaaatta atcgtcccag attttaaatc 2940 gactatacat catttgaagg attcaaggtc ctcctcttgg actgttgcta tagataataa 3000 tagcaataac aataaggtat cagacaacca acctgatttc gtcgattttc aagaactgct 3060 ggataatgat actttaggta atgatttgtt agagaccact gccgttttaa aagaatttga 3120 acttttacat gatgatagcg taagtgctac cgccacgtca aatgagattg acctttccca 3180 tttgaaccta tcaaactctc caatttctcc tcataagtta atttataaga ataaagaggg 3240 gaccaatgac gatatgttga tttctttcgg actcgatcat ccttccaatc gcgaagatga 3300 tctggataag ctatgtaata tgaccagaga tgttcaagcc atattcagtc aatatttgaa 3360 aggagaagag tctaaacgat ccctggaaga ctttttatca acgtcaaaca ggaaagaaaa 3420 gccagatagc ggcaactata ctttttatgg gttagattgt ttaacgttat cgaaaatatc 3480 aagagctctg ccggcctcca ctgtgaacaa caatcagcca tcgcattcca tagaatcaaa 3540 gctatttaat gaaccaatga gaaatatgtg cattaaagtg cttagatact atgaaaagtt 3600 cagtcatgat agtagtgaga gtgtcatgga ctctaatcca aacttgctgt ccaaagaatt 3660 gttaatgcca gctgtgagtg aattgaacga atatttagat cttttcaaga ataatttcct 3720 tccccatttc cctattattc acccaagctt gcttgatttg gatttggata gcttgcaacg 3780 atatactaat gaggatgggt atgatgacgc tgaaaacgcg cagttgtttg atcgattaag 3840 tcaagggaca gataaagaat atgattacga gcactatcaa atcttgtcca tttcgaaaat 3900 cgtttgttta cccttattta tggccacatt tggttctttg cataagttcg gttacaaatc 3960 tcaaacaata gaattgtatg agatgagtag aagaattcta cattcttttt tggagactaa 4020 aagaaggtgt cgcagtacaa cagtaaatga cagttatcag aacatttggt tgatgcaatc 4080 cctaatattg agcttcatgt tcgctctagt tgctgattat ttggagaaaa ttgactcctc 4140 tttgatgaaa aggcaattgt ccgcattatg ttcaacgatc agatcaaact gtttaccgac 4200 aatttctgca aattctgaga agagtatcaa taataacaat gaacctttaa catttggttc 4260 tcctcttcaa tacatcattt ttgagtcaaa aattagatgc accttaatgg cttatgattt 4320 ttgtcagttc ttgaaatgtt tcttccatat taaattcgat ttgtctataa aggaaaaaga 4380 tgttgaaacc atttatattc ccgacaatga gtcaaaatgg gccagtgaat cgataatatg 4440 taatgggcat gttgtgcaaa agcaaaattt ttatgatttt agaaactttt attacagttt 4500 cacgtatgga cacttacact caataccaga atttttaggg tcatctatga tttattatga 4560 atacgattta agaaaaggaa ccaaatcaca tgtgtttttg gatcgaatcg atacgaaaag 4620 gctagagagg agtcttgaca cttcttccta tggcaatgat aatatggcag caaccaataa 4680 aaatattgcg atcttaattg atgacaccat aattttgaaa aataatttaa tgtcaatgag 4740 attcatcaaa cagattgatc gctcgtttac tgagaaggtt agaaaaggac aaatagcaaa 4800 gatatatgat tcctttttga actctgtgag gttgaatttt ttgaagaatt attcagttga 4860 agtattgtgt gaatttttag tagcgttgaa cttttcaatc cgtaatattt cgtctttata 4920 cgtagaagaa gaaagtgatt gctcccaaag aatgaattct ccagagctgc caaggatcca 4980 cctgaataat caagcgcttt ctgtcttcaa tttacaaggc tattactatt gcttcatcct 5040 aattatcaaa tttttattgg attttgaagc aactccaaat tttaagttac tgagaatttt 5100 tattgagttg agaagccttg cgaattctat tttacttccc acactttcaa gattgtatcc 5160 gcaagagttt tctggatttc ctgatgttgt atttacgcaa caatttataa ataaagataa 5220 tggtatgctt gtccctggtt tatccgcaaa tgaacaccat aatggtgcaa gtgcagctgt 5280 taagactaag ttagccaaaa agatcaatgt tgaagggctt gcaatgttta ttaatgaaat 5340 cctagttaac tcttttaacg atacctcttt tttgaatatg gaggatccta ttcgaaatga 5400 attttccttt gataatgggc acagggcagt gacagacttg cctcgttcag cacatttcct 5460 atcggatacc ggcctagaag gtattaactt cagcggctta aatgattcgc atcaaactgt 5520 ttctactttg aatcttttac gttacgggga aaatcattca tcaaaacata aaaatggtgg 5580 aaaggggcaa ggatttgccg aaaagtacca attatctctg aaatatgtta ctattgccaa 5640 gttatttttc accaatgtta aagaaaacta cattcattgt cacatgttag ataagatggc 5700 aagtgatttc cacactttgg aaaatcatct aaagggaaac agttgacgat tatgtctcgt 5760 tgctgatatg tgtcgtccca gtactcaact ctttctgatg agattttgaa tatctcattt 5820 tatttctcat caaacagcca tgcatgcgac tgaagtggac tactgcggga gaacaccgat 5880 cttatctttg aaattgttgc acaaaaatat ttcactacct tggcgtttct catctcaccc 5940 attggggtga atctcgttat tgctccttat tttggtccat tttatattaa atcctgtatc 6000 atgttcaaca tttttcatct tatacctcat acaaaaaaga aaagctattt atgaaagtta 6060 gttcattaca agatgcaagc ctaaaatata tgcttgatct taaaattcat gtatagaaga 6120 aaaagacctt accaacgttg ttggttaccg tgtataacta ataccaatct tgaacattaa 6180 ccaatcctgg cgtgtgggag gatgttctta gacttaatta agaatctcta aatttttttt 6240 tatttaatcg tccctttcta tcaattatga gtttatatat ttttataatt tcatctaacc 6300 tcagaaatag tgttgtatat atcattgtcc gtaatatcat cgtgaaaacc agtgtcctcg 6360 ttaattattg tctgaattag ccattcttta gattcagtgt gaaatatgta attaaatttc 6420 ttaaatttca gtgatatttg acttctcaat ctttcgagaa gcttcatctg agatttacca 6480 ttattttcgt tagcatatat gagaaacttt aactttcgat tagataattc tgatcctatt 6540 ctgggtacta aagaatctaa ggcatttaac aatggctctg tatcatctac atcaatattg 6600 ggtaaatcaa ttgattgcat tctacctgcg ctcaaacatg caaaagcaaa tttgacaaaa 6660 ctgtccaact cagatctacc ccaaacaata acaatgtagt catttaacat tttcttcact 6720 ccacatatct gatctcttaa attagatccg cgtaagaatt gtgtataaaa tgaaaaaata 6780 ttgttggatt taatgattcc tccctttgat ggagaatcta acgataaccg aaaactttca 6840 cccgaaggta ataggtattg gtatattaaa tgtggtacta ttcttttctt ttcaatgcat 6900 gcacttatga atttccagtg tagtgtaggc caccccaacg ccaaagtttc taagtacttt 6960 aagcttctta aatgccgttt tgtgattagg caagcaaatc tgcagtctgc aaatagggaa 7020 tgaggttcca ggctagcttc aaggccaatt ctcgaatatt atctgtatta cctttattga 7080 ctaaagattt agctagcgga tgagtgaagt taaataaagt ggaaaatcct gactcaatta 7140 cagtgccgcc ttgcgattca atggtctgtc gaagttcctc tctattttcg aataggcttg 7200 tcaaaacaaa aatacattta tcaaatacat tccctgttct gatttcacca gaagaaaaaa 7260 gcaggcttgg cgctcctgca tgttcagcta atgcgtctct aga 7303 <210> 2 <211> 312 <212> DNA <213> Saccharomyces cerevisiae <220> <221> promoter <222> (1)..(165) <223> S. cerevisiae ADH2 gene promoter <300> <301> Leplatois, P. Loison, G. Pessegue, B. Shire, D. <302> Artificial promoter for protein expression in yeast <308> <310> EP <311> 1991-07-03 <313> 1-165 <400> 2 gtcttcatta acggctttcg ctcataaaaa tgttatgacg ttttgcccgc aggcgggaaa 60 ccatccactt cacgagactg atctcctctg ccggaacacc gggcatctcc aacttataag 120 ttggagaaat aagagaattt cagattgaga gaatgaaaaa aaaaaaaaaa aaaaaggcag 180 aggagagcat agaaatgggg ttcacttttt ggtaaagcta tagcatgcct atcacatata 240 aatagagtgc cagtagcgac ttttttcaca ctcgaaatac tcttactact gctctcttgt 300 tgtttttatc ac 312 <210> 3 <211> 516 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(516) <223> Saccharomyces cerevisiae Adr1 TADI <400> 3 atggctaacg tagaaaaacc aaacgattgt tcaggctttc ccgttgttga cttgaattcg 60 tgcttttcta acggcttcaa taatgagaaa caagaaatag aaatggaaac ggatgattca 120 ccgattttat taatgtcatc atcagcttcc agagaaaact caaacacttt ctctgtgata 180 cagaggacgc cagatggaaa gatcattacc acaaataata atatgaactc caagattaac 240 aagcaactgg acaagttgcc cgaaaattta aggcttaatg gtagaacccc cagtgggaaa 300 ctaaggtcat ttgtttgcga ggtttgtacg agagcgttcg caagacaaga gcacttgaaa 360 agacattaca gatcgcatac aaatgaaaaa ccttatccct gtggcctctg caacagatgc 420 tttactagga gggacttact gatcaggcat gctcaaaaaa tccatagtgg taatttaggg 480 gaaacgattt cccataccaa gaaagtgtcg agaact 516 <210> 4 <211> 1713 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(1713) <223> Saccharomyces cerevisiae Adr1 TADI-TADIII <400> 4 atggctaacg tagaaaaacc aaacgattgt tcaggctttc ccgttgttga cttgaattcg 60 tgcttttcta acggcttcaa taatgagaaa caagaaatag aaatggaaac ggatgattca 120 ccgattttat taatgtcatc atcagcttcc agagaaaact caaacacttt ctctgtgata 180 cagaggacgc cagatggaaa gatcattacc acaaataata atatgaactc caagattaac 240 aagcaactgg acaagttgcc cgaaaattta aggcttaatg gtagaacccc cagtgggaaa 300 ctaaggtcat ttgtttgcga ggtttgtacg agagcgttcg caagacaaga gcacttgaaa 360 agacattaca gatcgcatac aaatgaaaaa ccttatccct gtggcctctg caacagatgc 420 tttactagga gggacttact gatcaggcat gctcaaaaaa tccatagtgg taatttaggg 480 gaaacgattt cccataccaa gaaagtgtcg agaactataa ctaaagctcg gaaaaattct 540 gcatcctcag tcaagtttca aactccaacc tatggtactc cagataatgg taattttttg 600 aatcgcacta ctgccaatac aagaagaaaa gcaagccctg aagctaatgt taaacgtaag 660 tacttgaaaa aactgacgcg cagggcttca tttagcgcac aatcagcatc cagctatgct 720 ttgcccgacc aatcttcgct agaacaacat ccaaaggatc gtgttaaatt ttctacgcct 780 gaattagttc cacttgactt gaagaatcct gaacttgact cttcgtttga cctgaatatg 840 aatctagatt taaacctaaa tctagattcc aatttcaata tagcattaaa ccgttctgat 900 tcttctggat caacaatgaa tttggattat aaattgcccg aatcagcaaa taactacaca 960 tattcttccg gctcaccaac ccgcgcatat gtcggcgcta acacgaattc taagaacgct 1020 tcatttaatg acgcagactt attgtcgtcg tcgtactgga taaaagccta taatgatcat 1080 ttgttttcag tatctgaaag tgatgaaact tctccaatga actctgaatt aaacgacact 1140 aaattaatcg tcccagattt taaatcgact atacatcatt tgaaggattc aaggtcctcc 1200 tcttggactg ttgctataga taataatagc aataacaata aggtatcaga caaccaacct 1260 gatttcgtcg attttcaaga actgctggat aatgatactt taggtaatga tttgttagag 1320 accactgccg ttttaaaaga atttgaactt ttacatgatg atagcgtaag tgctaccgcc 1380 acgtcaaatg agattgacct ttcccatttg aacctatcaa actctccaat ttctcctcat 1440 aagttaattt ataagaataa agaggggacc aatgacgata tgttgatttc tttcggactc 1500 gatcatcctt ccaatcgcga agatgatctg gataagctat gtaatatgac cagagatgtt 1560 caagccatat tcagtcaata tttgaaagga gaagagtcta aacgatccct ggaagacttt 1620 ttatcaacgt caaacaggaa agaaaagcca gatagcggca actatacttt ttatgggtta 1680 gattgtttaa cgttatcgaa aatatcaaga gct 1713 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> pADH2 primer F-primer <400> 5 acgcttttca ttaacggc 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pADH2 primer - R primer <400> 6 agatctcgct actggcactc 20 <210> 7 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Fused pADH2 R primer <400> 7 agatctcgtg ttctctccaa atgaaatgaa cttccttata tgtgataggc atgctatagc 60 <210> 8 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Oligo dT primer <400> 8 tttttttttt ttttt 15 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ADR1 F primer <400> 9 ggatccatgg ctaacgta 18 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Adr1 R primer <400> 10 gagctcagct ttagttatag ttc 23 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Adr1III F primer <400> 11 ggatccatgg ctaacgta 18 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Adr1III R primer <400> 12 gagctcagct cttgatattt tc 22 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PBI121 F primer <400> 13 gattacgcca agcttgcatg cctg 24 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> PBI121 R primer <400> 14 atgcaagctt gtcacgacgt tgtaaaacg 29 <210> 15 <211> 306 <212> DNA <213> Artificial Sequence <220> <223> ADH2-35S fusion promoter <400> 15 gtcttcatta acggctttcg ctcataaaaa tgttatgacg ttttgcccgc aggcgggaaa 60 ccatccactt cacgagactg atctcctctg ccggaacacc gggcatctcc aacttataag 120 ttggagaaat aagagaattt cagattgaga gaatgaaaaa aaaaaaaaaa aaaaaggcag 180 aggagagcat agaaatgggg ttcacttttt ggtaaagcta tagcatgcct atcacatata 240 aatagaagat ctcgtgttct ctccaaatga aatgaacttc cttatatgtg ataggcatgc 300 tatagc 306<110> Seoul National University Industry Foundation <120> ETHANOL-INDUCIBLE EXPRESSION VECTOR <130> IA23915 <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 7303 <212> DNA <213> Saccharomyces cerevisiae <300> Hartshorne, T. A. Blumberg, H. Young, E. T. <302> Sequence homology of the yeast regulator protein ADR1 with Xenopus transcription factor TFIIIA <303> Nature <304> 320 <305> 6059 <306> 283-287 <307> 1986-01-01 <313> 1166-7303 <400> 1 atccgagtta ttgcccaagt tgagacaaat tttccaacaa tttggcaagg atttgctggc 60 cacccatggt aatgacattc aggtgcccga atctcaggtg aaatctaact acacaagagg 120 taaccaaaaa agtagcttta ccgaaatcaa ggactccgct tcaaagccaa aaaagaatgc 180 acttccctct tctacttcaa cttcagcacc agtctccagc accaacaaag tcccccaaaa 240 cggaagcggc aatagtacat ctatttattt agaaccaact tttaatgtgc cttcctccga 300 gctctacgaa acgttccttg ataagcaacg catattggcc tggaccagat cagcacaatt 360 tttcaacagc ggaccgaagc tggagaccaa agaaaaattc gagctctttg gcggcaacgt 420 gatcagcgag ttggtttcat gcgaaaagga caagaaactt gttttccact ggaaactcaa 480 ggattggtct gcccctttca actctactat cgaaatgact ttccatgagt cgcaagaatt 540 ccatgaaacc aaattacagg tgaagtggac tggcataccc gttggcgagg aagatcgcgt 600 gcgcgctaat tttgaagaat actacgtgcg ttctattaaa ttgacattcg gctttggtgc 660 cgtattataa gatatattgt tctcatgttt caataaaagt atgcgtaaat atttacatac 720 cactattggc atagatagaa tgcaatacat catgtagttc tgtacggcat ccgcgcggct 780 ccgatcgccc gtcctacttt tgcggcccgg cgccgacggc ctccccggaa tttaccaacg 840 aagaggaaaa taaactggag ttataacgcc attggcggga aactccgaaa ccatagcgcc 900 gtggtctttc cccggttttt tggcgccggg tgtgcttgcg ttgtgtgaac ggcgccctgg 960 cagctgaggg ggaagggaaa cgccggaggc gacggcaagg atgaccatgg cgtcaaggaa 1020 catgcggaac atgctagaat gattgccgaa aggcgggccc tagtcaatgg catcatgcgg 1080 gaacgtgcag taaagctcaa tgtaacttga tctatcggcg ttgttcgagc taaggacgat 1140 gtgatagact gaggaagggt gaacgtcgat agttagccgt tgtgaactaa ataaaagtga 1200 tattttttcg ttgttctttt cttggtttgg cggtgttttc atttgttttc atgttttact 1260 tcgccacagg ttttcaaaga acaacgcctt aaaaatagga aaacgttttc gctacaggtg 1320 ttgttattat tgttgttgtg ctgttgttta ttgtgctata cttgtggtat ttattctgga 1380 cttccgatcg gaaattttct tcccttgaag accttttgaa gacaacagtt atatatcatt 1440 gatctgaatt tctcaggcta ttttcaaaat tccatacctc cttattccaa catttgctcg 1500 actactatag aaaagcctta ttcttttatc tttgaaagaa agaaaaggtg tcatagcaaa 1560 agtttattgt tactctgttt tgatatactc cctcttattc gttggaagta taagattgat 1620 ttgcataaat taaccaatca ttttgctact ttcccggttc tccctttatt ataaacactt 1680 cagaaaaata ttctgctact attccttact ttactataag aattttgttt tccaaaaaaa 1740 aaaaatataa aaaaaataat catactctat tactatggct aacgtagaaa aaccaaacga 1800 ttgttcaggc tttcccgttg ttgacttgaa ttcgtgcttt tctaacggct tcaataatga 1860 gaaacaagaa atagaaatgg aaacggatga ttcaccgatt ttattaatgt catcatcagc 1920 ttccagagaa aactcaaaca ctttctctgt gatacagagg acgccagatg gaaagatcat 1980 taccacaaat aataatatga actccaagat taacaagcaa ctggacaagt tgcccgaaaa 2040 tttaaggctt aatggtagaa cccccagtgg gaaactaagg tcatttgttt gcgaggtttg 2100 tacgagagcg ttcgcaagac aagagcactt gaaaagacat tacagatcgc atacaaatga 2160 aaaaccttat ccctgtggcc tctgcaacag atgctttact aggagggact tactgatcag 2220 gcatgctcaa aaaatccata gtggtaattt aggggaaacg atttcccata ccaagaaagt 2280 gtcgagaact ataactaaag ctcggaaaaa ttctgcatcc tcagtcaagt ttcaaactcc 2340 aacctatggt actccagata atggtaattt tttgaatcgc actactgcca atacaagaag 2400 aaaagcaagc cctgaagcta atgttaaacg taagtacttg aaaaaactga cgcgcagggc 2460 ttcatttagc gcacaatcag catccagcta tgctttgccc gaccaatctt cgctagaaca 2520 acatccaaag gatcgtgtta aattttctac gcctgaatta gttccacttg acttgaagaa 2580 tcctgaactt gactcttcgt ttgacctgaa tatgaatcta gatttaaacc taaatctaga 2640 ttccaatttc aatatagcat taaaccgttc tgattcttct ggatcaacaa tgaatttgga 2700 ttataaattg cccgaatcag caaataacta cacatattct tccggctcac caacccgcgc 2760 atatgtcggc gctaacacga attctaagaa cgcttcattt aatgacgcag acttattgtc 2820 gtcgtcgtac tggataaaag cctataatga tcatttgttt tcagtatctg aaagtgatga 2880 aacttctcca atgaactctg aattaaacga cactaaatta atcgtcccag attttaaatc 2940 gactatacat catttgaagg attcaaggtc ctcctcttgg actgttgcta tagataataa 3000 tagcaataac aataaggtat cagacaacca acctgatttc gtcgattttc aagaactgct 3060 ggataatgat actttaggta atgatttgtt agagaccact gccgttttaa aagaatttga 3120 acttttacat gatgatagcg taagtgctac cgccacgtca aatgagattg acctttccca 3180 tttgaaccta tcaaactctc caatttctcc tcataagtta atttataaga ataaagaggg 3240 gaccaatgac gatatgttga tttctttcgg actcgatcat ccttccaatc gcgaagatga 3300 tctggataag ctatgtaata tgaccagaga tgttcaagcc atattcagtc aatatttgaa 3360 aggagaagag tctaaacgat ccctggaaga ctttttatca acgtcaaaca ggaaagaaaa 3420 gccagatagc ggcaactata ctttttatgg gttagattgt ttaacgttat cgaaaatatc 3480 aagagctctg ccggcctcca ctgtgaacaa caatcagcca tcgcattcca tagaatcaaa 3540 gctatttaat gaaccaatga gaaatatgtg cattaaagtg cttagatact atgaaaagtt 3600 cagtcatgat agtagtgaga gtgtcatgga ctctaatcca aacttgctgt ccaaagaatt 3660 gttaatgcca gctgtgagtg aattgaacga atatttagat cttttcaaga ataatttcct 3720 tccccatttc cctattattc acccaagctt gcttgatttg gatttggata gcttgcaacg 3780 atatactaat gaggatgggt atgatgacgc tgaaaacgcg cagttgtttg atcgattaag 3840 tcaagggaca gataaagaat atgattacga gcactatcaa atcttgtcca tttcgaaaat 3900 cgtttgttta cccttattta tggccacatt tggttctttg cataagttcg gttacaaatc 3960 tcaaacaata gaattgtatg agatgagtag aagaattcta cattcttttt tggagactaa 4020 aagaaggtgt cgcagtacaa cagtaaatga cagttatcag aacatttggt tgatgcaatc 4080 cctaatattg agcttcatgt tcgctctagt tgctgattat ttggagaaaa ttgactcctc 4140 tttgatgaaa aggcaattgt ccgcattatg ttcaacgatc agatcaaact gtttaccgac 4200 aatttctgca aattctgaga agagtatcaa taataacaat gaacctttaa catttggttc 4260 tcctcttcaa tacatcattt ttgagtcaaa aattagatgc accttaatgg cttatgattt 4320 ttgtcagttc ttgaaatgtt tcttccatat taaattcgat ttgtctataa aggaaaaaga 4380 tgttgaaacc atttatattc ccgacaatga gtcaaaatgg gccagtgaat cgataatatg 4440 taatgggcat gttgtgcaaa agcaaaattt ttatgatttt agaaactttt attacagttt 4500 cacgtatgga cacttacact caataccaga atttttaggg tcatctatga tttattatga 4560 atacgattta agaaaaggaa ccaaatcaca tgtgtttttg gatcgaatcg atacgaaaag 4620 gctagagagg agtcttgaca cttcttccta tggcaatgat aatatggcag caaccaataa 4680 aaatattgcg atcttaattg atgacaccat aattttgaaa aataatttaa tgtcaatgag 4740 attcatcaaa cagattgatc gctcgtttac tgagaaggtt agaaaaggac aaatagcaaa 4800 gatatatgat tcctttttga actctgtgag gttgaatttt ttgaagaatt attcagttga 4860 agtattgtgt gaatttttag tagcgttgaa cttttcaatc cgtaatattt cgtctttata 4920 cgtagaagaa gaaagtgatt gctcccaaag aatgaattct ccagagctgc caaggatcca 4980 cctgaataat caagcgcttt ctgtcttcaa tttacaaggc tattactatt gcttcatcct 5040 aattatcaaa tttttattgg attttgaagc aactccaaat tttaagttac tgagaatttt 5100 tattgagttg agaagccttg cgaattctat tttacttccc acactttcaa gattgtatcc 5160 gcaagagttt tctggatttc ctgatgttgt atttacgcaa caatttataa ataaagataa 5220 tggtatgctt gtccctggtt tatccgcaaa tgaacaccat aatggtgcaa gtgcagctgt 5280 taagactaag ttagccaaaa agatcaatgt tgaagggctt gcaatgttta ttaatgaaat 5340 cctagttaac tcttttaacg atacctcttt tttgaatatg gaggatccta ttcgaaatga 5400 attttccttt gataatgggc acagggcagt gacagacttg cctcgttcag cacatttcct 5460 atcggatacc ggcctagaag gtattaactt cagcggctta aatgattcgc atcaaactgt 5520 ttctactttg aatcttttac gttacgggga aaatcattca tcaaaacata aaaatggtgg 5580 aaaggggcaa ggatttgccg aaaagtacca attatctctg aaatatgtta ctattgccaa 5640 gttatttttc accaatgtta aagaaaacta cattcattgt cacatgttag ataagatggc 5700 aagtgatttc cacactttgg aaaatcatct aaagggaaac agttgacgat tatgtctcgt 5760 tgctgatatg tgtcgtccca gtactcaact ctttctgatg agattttgaa tatctcattt 5820 tatttctcat caaacagcca tgcatgcgac tgaagtggac tactgcggga gaacaccgat 5880 cttatctttg aaattgttgc acaaaaatat ttcactacct tggcgtttct catctcaccc 5940 attggggtga atctcgttat tgctccttat tttggtccat tttatattaa atcctgtatc 6000 atgttcaaca tttttcatct tatacctcat acaaaaaaga aaagctattt atgaaagtta 6060 gttcattaca agatgcaagc ctaaaatata tgcttgatct taaaattcat gtatagaaga 6120 aaaagacctt accaacgttg ttggttaccg tgtataacta ataccaatct tgaacattaa 6180 ccaatcctgg cgtgtgggag gatgttctta gacttaatta agaatctcta aatttttttt 6240 tatttaatcg tccctttcta tcaattatga gtttatatat ttttataatt tcatctaacc 6300 tcagaaatag tgttgtatat atcattgtcc gtaatatcat cgtgaaaacc agtgtcctcg 6360 ttaattattg tctgaattag ccattcttta gattcagtgt gaaatatgta attaaatttc 6420 ttaaatttca gtgatatttg acttctcaat ctttcgagaa gcttcatctg agatttacca 6480 ttattttcgt tagcatatat gagaaacttt aactttcgat tagataattc tgatcctatt 6540 ctgggtacta aagaatctaa ggcatttaac aatggctctg tatcatctac atcaatattg 6600 ggtaaatcaa ttgattgcat tctacctgcg ctcaaacatg caaaagcaaa tttgacaaaa 6660 ctgtccaact cagatctacc ccaaacaata acaatgtagt catttaacat tttcttcact 6720 ccacatatct gatctcttaa attagatccg cgtaagaatt gtgtataaaa tgaaaaaata 6780 ttgttggatt taatgattcc tccctttgat ggagaatcta acgataaccg aaaactttca 6840 cccgaaggta ataggtattg gtatattaaa tgtggtacta ttcttttctt ttcaatgcat 6900 gcacttatga atttccagtg tagtgtaggc caccccaacg ccaaagtttc taagtacttt 6960 aagcttctta aatgccgttt tgtgattagg caagcaaatc tgcagtctgc aaatagggaa 7020 tgaggttcca ggctagcttc aaggccaatt ctcgaatatt atctgtatta cctttattga 7080 ctaaagattt agctagcgga tgagtgaagt taaataaagt ggaaaatcct gactcaatta 7140 cagtgccgcc ttgcgattca atggtctgtc gaagttcctc tctattttcg aataggcttg 7200 tcaaaacaaa aatacattta tcaaatacat tccctgttct gatttcacca gaagaaaaaa 7260 gcaggcttgg cgctcctgca tgttcagcta atgcgtctct aga 7303 <210> 2 <211> 312 <212> DNA <213> Saccharomyces cerevisiae <220> <221> promoter (222) (1) .. (165) <223> S. cerevisiae ADH2 gene promoter <300> <301> Leplatois, P. Loison, G. Pessegue, B. Shire, D. <302> Artificial promoter for protein expression in yeast <308> <310> EP <311> 1991-07-03 <313> 1-165 <400> 2 gtcttcatta acggctttcg ctcataaaaa tgttatgacg ttttgcccgc aggcgggaaa 60 ccatccactt cacgagactg atctcctctg ccggaacacc gggcatctcc aacttataag 120 ttggagaaat aagagaattt cagattgaga gaatgaaaaa aaaaaaaaaa aaaaaggcag 180 aggagagcat agaaatgggg ttcacttttt ggtaaagcta tagcatgcct atcacatata 240 aatagagtgc cagtagcgac ttttttcaca ctcgaaatac tcttactact gctctcttgt 300 tgtttttatc ac 312 <210> 3 <211> 516 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene (222) (1) .. (516) <223> Saccharomyces cerevisiae Adr1 TADI <400> 3 atggctaacg tagaaaaacc aaacgattgt tcaggctttc ccgttgttga cttgaattcg 60 tgcttttcta acggcttcaa taatgagaaa caagaaatag aaatggaaac ggatgattca 120 ccgattttat taatgtcatc atcagcttcc agagaaaact caaacacttt ctctgtgata 180 cagaggacgc cagatggaaa gatcattacc acaaataata atatgaactc caagattaac 240 aagcaactgg acaagttgcc cgaaaattta aggcttaatg gtagaacccc cagtgggaaa 300 ctaaggtcat ttgtttgcga ggtttgtacg agagcgttcg caagacaaga gcacttgaaa 360 agacattaca gatcgcatac aaatgaaaaa ccttatccct gtggcctctg caacagatgc 420 tttactagga gggacttact gatcaggcat gctcaaaaaa tccatagtgg taatttaggg 480 gaaacgattt cccataccaa gaaagtgtcg agaact 516 <210> 4 <211> 1713 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene (222) (1) .. (1713) <223> Saccharomyces cerevisiae Adr1 TADI-TADIII <400> 4 atggctaacg tagaaaaacc aaacgattgt tcaggctttc ccgttgttga cttgaattcg 60 tgcttttcta acggcttcaa taatgagaaa caagaaatag aaatggaaac ggatgattca 120 ccgattttat taatgtcatc atcagcttcc agagaaaact caaacacttt ctctgtgata 180 cagaggacgc cagatggaaa gatcattacc acaaataata atatgaactc caagattaac 240 aagcaactgg acaagttgcc cgaaaattta aggcttaatg gtagaacccc cagtgggaaa 300 ctaaggtcat ttgtttgcga ggtttgtacg agagcgttcg caagacaaga gcacttgaaa 360 agacattaca gatcgcatac aaatgaaaaa ccttatccct gtggcctctg caacagatgc 420 tttactagga gggacttact gatcaggcat gctcaaaaaa tccatagtgg taatttaggg 480 gaaacgattt cccataccaa gaaagtgtcg agaactataa ctaaagctcg gaaaaattct 540 gcatcctcag tcaagtttca aactccaacc tatggtactc cagataatgg taattttttg 600 aatcgcacta ctgccaatac aagaagaaaa gcaagccctg aagctaatgt taaacgtaag 660 tacttgaaaa aactgacgcg cagggcttca tttagcgcac aatcagcatc cagctatgct 720 ttgcccgacc aatcttcgct agaacaacat ccaaaggatc gtgttaaatt ttctacgcct 780 gaattagttc cacttgactt gaagaatcct gaacttgact cttcgtttga cctgaatatg 840 aatctagatt taaacctaaa tctagattcc aatttcaata tagcattaaa ccgttctgat 900 tcttctggat caacaatgaa tttggattat aaattgcccg aatcagcaaa taactacaca 960 tattcttccg gctcaccaac ccgcgcatat gtcggcgcta acacgaattc taagaacgct 1020 tcatttaatg acgcagactt attgtcgtcg tcgtactgga taaaagccta taatgatcat 1080 ttgttttcag tatctgaaag tgatgaaact tctccaatga actctgaatt aaacgacact 1140 aaattaatcg tcccagattt taaatcgact atacatcatt tgaaggattc aaggtcctcc 1200 tcttggactg ttgctataga taataatagc aataacaata aggtatcaga caaccaacct 1260 gatttcgtcg attttcaaga actgctggat aatgatactt taggtaatga tttgttagag 1320 accactgccg ttttaaaaga atttgaactt ttacatgatg atagcgtaag tgctaccgcc 1380 acgtcaaatg agattgacct ttcccatttg aacctatcaa actctccaat ttctcctcat 1440 aagttaattt ataagaataa agaggggacc aatgacgata tgttgatttc tttcggactc 1500 gatcatcctt ccaatcgcga agatgatctg gataagctat gtaatatgac cagagatgtt 1560 caagccatat tcagtcaata tttgaaagga gaagagtcta aacgatccct ggaagacttt 1620 ttatcaacgt caaacaggaa agaaaagcca gatagcggca actatacttt ttatgggtta 1680 gattgtttaa cgttatcgaa aatatcaaga gct 1713 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> pADH2 primer F-primer <400> 5 acgcttttca ttaacggc 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pADH2 primer-R primer <400> 6 agatctcgct actggcactc 20 <210> 7 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Fused pADH2 R primer <400> 7 agatctcgtg ttctctccaa atgaaatgaa cttccttata tgtgataggc atgctatagc 60 <210> 8 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Oligo dT primer <400> 8 tttttttttt ttttt 15 <210> 9 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ADR1 F primer <400> 9 ggatccatgg ctaacgta 18 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Adr1 R primer <400> 10 gagctcagct ttagttatag ttc 23 <210> 11 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Adr1III F primer <400> 11 ggatccatgg ctaacgta 18 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Adr1III R primer <400> 12 gagctcagct cttgatattt tc 22 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PBI121 F primer <400> 13 gattacgcca agcttgcatg cctg 24 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> PBI121 R primer <400> 14 atgcaagctt gtcacgacgt tgtaaaacg 29 <210> 15 <211> 306 <212> DNA <213> Artificial Sequence <220> <223> ADH2-35S fusion promoter <400> 15 gtcttcatta acggctttcg ctcataaaaa tgttatgacg ttttgcccgc aggcgggaaa 60 ccatccactt cacgagactg atctcctctg ccggaacacc gggcatctcc aacttataag 120 ttggagaaat aagagaattt cagattgaga gaatgaaaaa aaaaaaaaaa aaaaaggcag 180 aggagagcat agaaatgggg ttcacttttt ggtaaagcta tagcatgcct atcacatata 240 aatagaagat ctcgtgttct ctccaaatga aatgaacttc cttatatgtg ataggcatgc 300 tatagc 306

Claims (9)

화학 물질 유도성 식물체 발현 벡터에 있어서, 사카로마이세스 세레비제(Saccharomyces cerevisiae)의 전사활성자인 ADR1 부위를 코딩하는 DNA 염기서열(SEQ. ID No.: 1) 및 알코올 탈수소효소인 ADH2 프로모터를 코딩하는 DNA 염기서열(SEQ. ID No.: 2) 및 목적 유전자가 작동적으로 결합된 알코올 유도 식물체 발현벡터.Chemical inducible plant according to an expression vector, saccharose as MY unrestricted access celebrity DNA sequence encoding the part design ADR1 transcription activity of (Saccharomyces cerevisiae) (SEQ. ID No .: 1) and coding for the alcohol dehydrogenase ADH2 promoter An alcohol-derived plant expression vector in which a DNA sequence (SEQ. ID No .: 2) and a target gene are operably linked. 제 1항에 있어서, ADR1이 zinc finger 부위인 TADI 부위를 코딩하는 DNA 염기서열 (SEQ. ID No.: 3)을 필수적으로 포함함을 특징으로 하는 발현 벡터.The expression vector according to claim 1, wherein ADR1 essentially comprises a DNA sequence (SEQ. ID No .: 3) encoding a TADI region which is a zinc finger region. 제 1항 또는 제 2항에 있어서, ADH2 프로모터가 UAS 부위 (200 bp DNAs)를 코딩하는 DNA 염기서열 (SEQ. ID No.: 4)을 필수적으로 포함함을 특징으로 하는 발현 벡터.The expression vector of claim 1 or 2, wherein the ADH2 promoter essentially comprises a DNA sequence (SEQ. ID No .: 4) encoding a UAS site (200 bp DNAs). 제 1항 또는 제 2항에 있어서, ADH2 프로모터가 ADH2-35S 융합 프로모터(SEQ. ID No.: 15) 임을 특징으로 하는 발현 벡터.The expression vector of claim 1 or 2, wherein the ADH2 promoter is an ADH2-35S fusion promoter (SEQ. ID No. 15). 제 1항 또는 제 2항에 있어서, 알코올이 에탄올임을 특징으로 하는 발현 백터.The expression vector according to claim 1 or 2, wherein the alcohol is ethanol. 제 1항 또는 제 2항의 벡터에 의해 형질전환된 식물.A plant transformed with the vector of claim 1. i) 식물세포의 원형질체를 제공하는 단계,i) providing protoplasts of plant cells, ii) 사카로마이세스 세레비제 (Saccharomyces cerevisiae)의 전사활성자인 ADR1 부위를 코딩하는 DNA 염기서열 (SEQ. ID No.: 1) 및 알코올 탈수소효소인 ADH2 프로모터를 코딩하는 DNA 염기서열 (SEQ. ID No.: 2) 및 목적 유전자가 작동적으로 결합된 알코올 유도 식물체 발현 벡터를 제공하는 단계, ii) a DNA sequence encoding the ADR1 site, a transcriptional activator of Saccharomyces c erevisiae (SEQ. ID No .: 1) and a DNA sequence encoding the ADH2 promoter, an alcohol dehydrogenase (SEQ. ID No .: 2) and providing an alcohol-derived plant expression vector to which the target gene is operably linked, iii) ii)에서 제조된 식물체 발현 벡터를 i)의 원형질체에 도입하는 단계,iii) introducing the plant expression vector prepared in ii) into the protoplast of i), iv) iii)의 발현 벡터가 도입된 식물체를 배양하는 단계 및iv) culturing the plant into which the expression vector of iii) has been introduced, and v) 알코올을 식물체에 접촉시키는 단계를 포함하여, 식물체로부터 목적 유전자를 알코올 유도에 의해 발현시키는 방법.v) a method of expressing a gene of interest from the plant by alcohol induction, comprising contacting the alcohol with the plant. 제 7항에 있어서, 알코올이 에탄올임을 특징으로 하는 발현 벡터.8. The expression vector of claim 7, wherein the alcohol is ethanol. 제 7항 또는 제 8항의 방법에 의해 형질전환된 식물.A plant transformed by the method of claim 7 or 8.
KR1020030060956A 2003-08-28 2003-08-28 Ethanol-inducible expression vector KR20050022491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030060956A KR20050022491A (en) 2003-08-28 2003-08-28 Ethanol-inducible expression vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030060956A KR20050022491A (en) 2003-08-28 2003-08-28 Ethanol-inducible expression vector

Publications (1)

Publication Number Publication Date
KR20050022491A true KR20050022491A (en) 2005-03-08

Family

ID=37230341

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030060956A KR20050022491A (en) 2003-08-28 2003-08-28 Ethanol-inducible expression vector

Country Status (1)

Country Link
KR (1) KR20050022491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434953B2 (en) 2011-01-18 2016-09-06 Syngenta Participations Ag Methods and compositions for modified ethanol inducible promoter systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434953B2 (en) 2011-01-18 2016-09-06 Syngenta Participations Ag Methods and compositions for modified ethanol inducible promoter systems

Similar Documents

Publication Publication Date Title
Feldbrügge et al. PcMYB1, a novel plant protein containing a DNA‐binding domain with one MYB repeat, interacts in vivo with a light‐regulatory promoter unit
Ito et al. G2/M-phase–specific transcription during the plant cell cycle is mediated by c-Myb–like transcription factors
Yu et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.
Cernac et al. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis
AU2010260019B2 (en) A method for the transient expression of nucleic acids in plants
Pattanaik et al. The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength
CN110041416B (en) Application of GmABCA9 gene in improving soybean protein content and grain weight
KR100578461B1 (en) Stress-induced promoter derived from rice
CN105063085B (en) The application of cabbage type rape gene BnMPK3 and its anti-sclerotinia sclerotiorum
CN113186219A (en) Interference of HD-ZIP transcription factor inhibition of gene expression to produce plants with enhanced traits
JPH09327293A (en) Aft protein of cruciferous plant and use thereof
CN106674338B (en) Application of stress resistance-related protein in regulation and control of plant stress resistance
CN113845578A (en) MYB transcription factor for regulating and controlling plant procyanidine synthesis, and coding gene and application thereof
KR100703115B1 (en) Stress-induced promoter and method of using the same
CN113121661B (en) PtPRP1 gene of populus tomentosa and application thereof
CN112029794B (en) Application of G protein alpha subunit in improving cucumber endogenous hormone salicylic acid content
CN110612022B (en) Carbohydrate-producing plant material
KR20050022491A (en) Ethanol-inducible expression vector
CN109234290B (en) Brassica napus BnKAT2 gene and promoter and application thereof
CN107176983B (en) Application of protein PpLEA3-3 in regulation and control of plant stress resistance
KR102527047B1 (en) A novel promoter based on the characteristics of drought stress specific cis-regulatory element and its manufacturing method
CN110256543B (en) PwNAC1 gene and application of encoding protein thereof in plant stress resistance
US8410337B2 (en) Plant tubby-like proteins
TW201009076A (en) Promotor having high expression strength and high amount expression in plant tissues and application thereof
US6440674B1 (en) Plant promoter derived from luminal binding protein gene and methods for its use

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination