KR20050014474A - Porous inorganic thin film for electrochromic device and preparation thereof - Google Patents
Porous inorganic thin film for electrochromic device and preparation thereofInfo
- Publication number
- KR20050014474A KR20050014474A KR1020030053120A KR20030053120A KR20050014474A KR 20050014474 A KR20050014474 A KR 20050014474A KR 1020030053120 A KR1020030053120 A KR 1020030053120A KR 20030053120 A KR20030053120 A KR 20030053120A KR 20050014474 A KR20050014474 A KR 20050014474A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- inorganic thin
- polymer particles
- monomer
- electrochromic device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1516—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
- G02F1/15165—Polymers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
본 발명은 나노 크기의 고분자 입자를 이용하여 다공성을 가지는 무기박막을 제조하고, 이를 이용하여 전기변색소자용 다공성 무기박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an inorganic thin film having a porosity using a nano-sized polymer particles, and a porous inorganic thin film for an electrochromic device using the same.
일반적으로 전기변색소자용 무기박막은 텅스텐 옥사이드, 니켈 옥사이드, 바나듐 옥사이드 등의 금속 산화물 무기박막으로 이루어진다. 이러한 무기박막의 제조에는 졸-겔법, 스퍼터링법, 화학증착법, 전기화학 증착법 등이 널리 이용된다. 좋은 전기변색효과를 나타내기 위한 무기박막의 조건은 선행 연구에 의해 알려진 바와 같이, 결정화도가 낮은 비정질(또는 약간의 폴리크리스탈)이고 비교적 많은기공을 가지는 것이 유리하다.In general, the inorganic thin film for the electrochromic device is composed of a metal oxide inorganic thin film such as tungsten oxide, nickel oxide, vanadium oxide. The sol-gel method, sputtering method, chemical vapor deposition method, electrochemical vapor deposition method and the like are widely used for the production of such inorganic thin films. The conditions of the inorganic thin film for exhibiting good electrochromic effect are advantageously amorphous (or some polycrystal) with a low degree of crystallinity and relatively many pores, as known by previous studies.
그러나 상기의 방법을 이용하면 비교적 균일한 무기박막을 제조하는데는 유리하다는 장점은 가지고 있으나, 사용 용도에 따른 최적의 형태를 이루는데 어렵다는 단점을 가지고 있다.However, using the above method has the advantage of producing a relatively uniform inorganic thin film, but has the disadvantage that it is difficult to achieve the optimum form according to the intended use.
상기의 방법을 통하여 제조된 경우는 무기박막의 밀도가 높게 되어 표면적이 상당히 작아지게 되고, 이로 인하여 구동시의 이온과의 접촉면적의 저하를 초래한다. 그 결과 응답속도 및 전기변색 능력의 저하라는 단점을 수반하게 된다. 또한, 열처리 조건과 같은 제조 조건에 따라 미세 구조 및 결정화도에 차이가 많이 일어나므로, 대형화 및 양산화 조건의 확립에 큰 제약이 되어 왔다.In the case of manufacturing by the above method, the density of the inorganic thin film becomes high and the surface area becomes considerably small, which causes a decrease in the contact area with the ions during driving. As a result, it is accompanied by a disadvantage of lowering the response speed and the electrochromic ability. In addition, since there are many differences in the microstructure and the degree of crystallinity depending on the production conditions such as heat treatment conditions, it has been a big constraint in establishing the size and mass production conditions.
본 발명은 상기에서 언급한 종래 방법의 단점을 개량하기 위한 것으로, 나노 크기의 고분자 입자를 이용하여 결정화도가 낮고 다공성을 가지는 전기변색소자용 무기박막의 제조를 그 목적으로 한다.The present invention is to improve the disadvantages of the above-mentioned conventional method, the purpose of the production of an inorganic thin film for an electrochromic device having a low crystallinity and porosity using nano-sized polymer particles.
본 발명의 다른 목적은 비교적 단순한 공정으로 안정한 무기박막을 제조하여 향상된 성능을 지닌 전기변색소자의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing an electrochromic device having improved performance by producing a stable inorganic thin film in a relatively simple process.
도 1은 본 발명에 따른 나노 크기의 기공을 가지는 다공성 무기박막의 제조과정을 나타내는 모식도이다.1 is a schematic diagram showing the manufacturing process of a porous inorganic thin film having nano-sized pores according to the present invention.
도 2는 본 발명에 따라 제조한 다공성의 실리카 무기박막의 형태를 나타내는 전자현미경 사진이다.Figure 2 is an electron micrograph showing the form of the porous silica inorganic thin film prepared according to the present invention.
상기한 목적을 달성하기 위하여, 본 발명은 a) 마이크로에멀젼 중합법에 의해 나노 크기의 고분자 입자를 제조하는 단계; b) 제조된 고분자 입자를 기판에 도포하는 단계; c) 고분자 입자가 도포된 기판 상에 무기박막을 형성시키는 단계; 및 d) 무기박막에 포함된 고분자 입자를 제거하는 단계를 포함하는 전기변색소자용 다공성 무기박막의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: a) preparing a nano-sized polymer particles by a microemulsion polymerization method; b) applying the prepared polymer particles to the substrate; c) forming an inorganic thin film on the substrate coated with the polymer particles; And d) provides a method for producing a porous inorganic thin film for an electrochromic device comprising the step of removing the polymer particles contained in the inorganic thin film.
본 발명에서 전기변색 소자용 무기박막의 제조시에 사용되는 고분자 입자의 중합방법은 마이크로에멀젼 중합법을 사용한다. 구체적으로 상기 a) 단계에서는 유화제인 계면활성제, 보조유화제 및 개시제를 포함하는 수용액에 단량체를 첨가하여 마이크로에멀젼을 제조하고 유화중합하여 10 내지 100 nm의 고분자 입자를 제조함을 특징으로 한다.In the present invention, the polymerization method of the polymer particles used in the preparation of the inorganic thin film for the electrochromic device uses a microemulsion polymerization method. Specifically, in the step a), a monomer is added to an aqueous solution including a surfactant, a co-emulsifier, and an initiator as an emulsifier to prepare a microemulsion, and emulsion polymerization is carried out to prepare polymer particles of 10 to 100 nm.
마이크로에멀젼은 둘 이상의 비혼화성 액체 및 계면활성제의 열역학적으로 안정한 투명한 분산액을 의미한다. 특히, 마이크로에멀젼은 일반적으로 단일상 조성물을 자발적으로 자기-응집(self-assembling)시키는 것으로 알려져 있으며, 일반적으로 10 내지 100 nm의 크기를 가지는 것으로, 가시광선 파장보다 더 짧은 물 또는 오일 영역(domain)을 함유하기 때문에 투명하다. 마이크로에멀젼은 오일에 비해 일반적으로 높은 농도의 계면활성제를 함유하고, 당해 시스템을 원심분리에 의해 분리할 수 없으며, 오일 및 물 영역 사이의 초-저 계면장력을 특징으로 한다.Microemulsion means a thermodynamically stable transparent dispersion of two or more immiscible liquids and surfactants. In particular, microemulsions are generally known to spontaneously self-assembling single phase compositions, and generally have a size of 10 to 100 nm, with a water or oil domain shorter than the visible wavelength. It is transparent because it contains). Microemulsions generally contain higher concentrations of surfactants than oils, and the system cannot be separated by centrifugation and is characterized by ultra-low interfacial tension between oil and water regions.
본 발명에서 사용되는 고분자 입자는 선형으로 폴리옥시에틸렌 사슬을 가지는 모든 고분자 종을 포함하며, 이때 상기 고분자의 제조에 이용되는 단량체는 라디칼 개시에 의하여 중합 가능한 아크릴 혹은 비닐 단량체로서, 최소 하나 이상의 단량체에는 폴리옥시에틸렌 사슬을 포함하여야 한다.The polymer particles used in the present invention include all polymer species linearly having a polyoxyethylene chain, wherein the monomers used in the preparation of the polymers are acrylic or vinyl monomers polymerizable by radical initiation. It should include polyoxyethylene chains.
구체적으로 바람직한 고분자 입자는 아크릴 또는 비닐기를 가지는 단량체와 폴리옥시에틸렌 사슬을 가지는 단량체의 공중합체이다. 상기 단량체의 바람직한 조성은 반응물 전체 중량에 대하여 아크릴 또는 비닐기를 가지는 단량체 5 내지 20중량% 및 폴리옥시에틸렌 사슬을 가지는 단량체 0.1 내지 1 중량%이다.Specifically preferred polymer particles are copolymers of monomers having an acrylic or vinyl group and monomers having a polyoxyethylene chain. Preferred compositions of the monomers are 5 to 20% by weight of monomers having acrylic or vinyl groups and 0.1 to 1% by weight of monomers having polyoxyethylene chains relative to the total weight of the reactants.
상기 폴리옥시에틸렌계 단량체의 조성이 너무 적으면 고분자 입자의 크기가 커지고 기재에 처리할 때 기재에 대한 부착 특성이 낮아지게 되며, 너무 많으면 혼합 단량체의 물에 대한 용해도가 증가하기 때문에 중합 과정에서 수상에 녹는 올리고머가 증가하여 계의 점도가 증가하게 되므로 상기 조성비가 바람직하다.If the composition of the polyoxyethylene-based monomer is too small, the size of the polymer particles increases and the adhesion property to the substrate is lowered when the substrate is treated, and if too large, the water solubility of the mixed monomer increases in water so as to increase the solubility in the polymerization process. The composition ratio is preferable because the oligomers are soluble to increase the viscosity of the system.
본 발명에 사용되는 아크릴 또는 비닐기를 가지는 단량체는 마이크로에멀젼 중합 및 라디칼 중합이 가능한 소수성의 단량체로서, 바람직하게는 메타크릴레이트, 메틸메타크릴레이트, 스티렌 및 부틸메타크릴레이트 중에서 선택된다.The monomer having an acryl or vinyl group used in the present invention is a hydrophobic monomer capable of microemulsion polymerization and radical polymerization, and is preferably selected from methacrylate, methyl methacrylate, styrene and butyl methacrylate.
본 발명에서 사용되는 폴리옥시에틸렌 사슬을 가지는 단량체는 아크릴기 또는 비닐기를 가지는 단량체와 공중합이 가능하고 폴리옥시에틸렌 사슬과 아크릴기를 동시에 포함하는 단량체로서, 폴리에틸렌글리콜 메타크릴레이트 또는 폴리에틸렌글리콜 메타크릴레이트 메틸에테르이며, 바람직하게는 평균 분자량이 300 내지 1,000의 폴리에틸렌글리콜 메타크릴레이트를 사용한다.The monomer having a polyoxyethylene chain used in the present invention is a monomer capable of copolymerizing with a monomer having an acryl group or a vinyl group and simultaneously containing a polyoxyethylene chain and an acryl group, and polyethylene glycol methacrylate or polyethylene glycol methacrylate methyl. Ether, preferably an polyethylene glycol methacrylate having an average molecular weight of 300 to 1,000 is used.
본 발명에서 사용되는 유화제는 계면활성능력이 뛰어난 음이온성 계면활성제, 양이온성 계면활성제, 또는 비이온성의 친수기를 가진 비이온성 계면활성제 모두 가능하며, 바람직하게는 음이온성 계면활성제로서 이온성을 지니는 소듐라우릴설페이트를 사용한다. 그리고 마이크로에멀젼의 안정성을 향상시키기 위하여, 보조유화제로서 탄소사슬이 5개 이상의 알코올류를 이용하는 것이 가능하고, 바람직하게는 1-펜탄올, 세틸알콜, 옥타데칸올 등을 사용한다.The emulsifier used in the present invention can be either anionic surfactant, cationic surfactant, or nonionic surfactant having a nonionic hydrophilic group, which has excellent surfactant ability, and preferably sodium having an ionic property as anionic surfactant. Use lauryl sulfate. In order to improve the stability of the microemulsion, it is possible to use five or more alcohols having a carbon chain as the co-emulsifier, and preferably 1-pentanol, cetyl alcohol, octadecanol or the like is used.
상기 b) 단계에서 고분자 입자의 도포는 다양한 코팅법을 이용하여 가능하고, 바람직하게는 딥코팅법, 스핀코팅법 등을 이용한다.Application of the polymer particles in step b) is possible using a variety of coating methods, preferably using a dip coating method, spin coating method and the like.
상기 c) 단계에서 무기박막을 형성시키는 방법으로는 일반적으로 무기박막을 제조하는데 사용되는 방법을 모두 이용할 수 있다. 예를 들면 졸-겔법, 스퍼터법, 전기화학법 또는 화학적증착법으로서, 바람직하게는 졸-겔법이나 스퍼터링법을 이용한다.As a method of forming the inorganic thin film in step c), generally, all methods used to prepare the inorganic thin film may be used. For example, as the sol-gel method, sputtering method, electrochemical method or chemical vapor deposition method, the sol-gel method or sputtering method is preferably used.
상기 d) 단계에서 용매추출법 또는 연소제거법을 통하여 고분자 입자를 완전히 제거하여 무기박막을 기공화시키는 것을 특징으로 한다. 고분자 입자를 제거하는 방법으로서 용매추출법은 경우에 따라 무기박막에 손상을 줄 수 있는 가능성을 가지고 있으므로, 연소제거법의 경우가 더 바람직하다.In step d), the inorganic thin film is poreized by completely removing the polymer particles through a solvent extraction method or a combustion removal method. As a method of removing the polymer particles, the solvent extraction method has a possibility of damaging the inorganic thin film in some cases, and therefore the combustion removal method is more preferable.
본 발명의 무기박막은 상기 방법에 따라 제조되어 10 내지 100 nm, 바람직하게는 10 내지 20 nm의 기공을 가지며 낮은 결정화도를 가지는 200 내지 400 nm 두께의 금속 산화물계 무기박막이며, 바람직하게는 전기변색소자용으로 이용가능한 무기박막이다.The inorganic thin film of the present invention is a metal oxide based inorganic thin film having a thickness of 10 to 100 nm, preferably 10 to 20 nm, having a low degree of crystallinity and prepared by the above method, and is preferably electrochromic. Inorganic thin film usable for the device.
이하 첨부도면을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따라 전기변색 소자용 다공성 무기박막의 제조공정을 도시한 것으로, 본 발명에 따른 전기변색소자용 다공성 무기박막은 먼저 마이크로에멀젼 중합법을 이용하여 10 내지 100 nm의 고분자 입자를 제조하고, 이 입자를 함유하는 무기박막을 형성시킨 다음, 다양한 방법을 통해 고분자입자를 완전히 제거함으로써 제조된다.1 is a view illustrating a process of manufacturing a porous inorganic thin film for an electrochromic device according to the present invention. The porous inorganic thin film for an electrochromic device according to the present invention is first prepared by using a microemulsion polymerization method and polymer particles of 10 to 100 nm. And an inorganic thin film containing the particles, and then completely remove the polymer particles through various methods.
구체적으로 아크릴 또는 비닐기를 가지는 단량체 및 폴리옥시에틸렌 사슬을가지는 아크릴계 단량체를 마이크로에멀젼 중합법에 의해 중합하여 고분자 라텍스를 제조하는 단계; 제조된 고분자 입자를 투명유리전극(이하 'ITO 유리'로 명명)에 도포하는 단계; 고분자 입자가 도포된 기판 상에 무기박막을 형성시키는 단계; 및 고분자 입자 제거단계의 4단계를 거쳐서 제조된다.Specifically, a polymer latex is prepared by polymerizing a monomer having an acrylic or vinyl group and an acrylic monomer having a polyoxyethylene chain by a microemulsion polymerization method; Applying the prepared polymer particles to a transparent glass electrode (hereinafter referred to as 'ITO glass'); Forming an inorganic thin film on the substrate coated with the polymer particles; And it is prepared through four steps of the polymer particle removal step.
본 발명의 바람직한 실시예에 따라 전기변색소자용 무기박막을 제조하는 방법은 구체적으로 전체 대비비로 1 내지 5 중량%의 계면활성제와 0.1 내지 0.3 중량%의 보조유화제가 녹아 있는 수용액에 아크릴 또는 비닐기를 함유한 단량체 및 폴리옥시에틸렌 사슬을 함유한 아크릴계 단량체를 마이크로에멀젼 중합을 통해 공중합하는 1단계; 제조된 고분자 입자를 딥코딩이나 스핀코팅으로 ITO 유리에 도포하는 2단계; 처리된 기판 위에 졸-겔법이나 스퍼터링법을 이용하여 무기박막을 형성시키는 3단계; 및 연소제거법을 이용하여 무기박막에 함유된 고분자 입자를 제거하는 4단계로 이루어져 있다.According to a preferred embodiment of the present invention, a method of manufacturing an inorganic thin film for an electrochromic device is specifically an acrylic or vinyl group in an aqueous solution in which 1 to 5 wt% of a surfactant and 0.1 to 0.3 wt% of an auxiliary emulsifier are dissolved in an overall contrast ratio. Copolymerizing the monomer and the acrylic monomer containing the polyoxyethylene chain by microemulsion polymerization; Applying the prepared polymer particles to ITO glass by deep coding or spin coating; Forming an inorganic thin film on the treated substrate using a sol-gel method or a sputtering method; And four steps of removing the polymer particles contained in the inorganic thin film by using the combustion removal method.
상기의 고분자 입자의 제조방법을 더욱 구체적으로 설명하면, 먼저 음이온성 계면활성제인 소듐라우릴설페이트가 반응물 전체 중량비로 1 내지 5 중량% 및 보조유화제인 1-펜탄올 0.1 내지 0.3 중량%가 녹아있는 수용액을 상온에서 300 rpm으로 교반하면서 5 내지 20 중량%의 메틸메타크릴레이트와 0.1 내지 1 중량%의 에틸렌글리콜메타크릴레이트 혼합 단량체를 첨가하여 마이크로에멀젼을 제조한다. 마이크로에멀젼이 안정화되면 70℃로 승온시킨 다음, 물의 양에 대하여 중량비로 1%의 수용성 개시제인 포타슘퍼설페이트 첨가하여 5시간 동안 마이크로에멀젼 중합을 수행한다.In more detail, the method for preparing the polymer particles described above is that anionic surfactant sodium lauryl sulfate is dissolved in an amount of 1 to 5% by weight in the total weight ratio of the reactants and 0.1 to 0.3% by weight of 1-pentanol as an auxiliary emulsifier. The microemulsion is prepared by adding 5-20 wt% of methyl methacrylate and 0.1-1 wt% of ethylene glycol methacrylate mixed monomer while stirring the aqueous solution at 300 rpm at room temperature. When the microemulsion is stabilized, the temperature is raised to 70 ° C., and then, by adding 1% of water-soluble initiator potassium persulfate in a weight ratio with respect to the amount of water, microemulsion polymerization is performed for 5 hours.
도 1은 본 발명에 따른 다공성 무기박막의 제조과정을 나타내는 모식도로서, 무기박막에 고분자 입자의 크기와 동일한 기공이 형성되고 있음을 알 수 있다.Figure 1 is a schematic diagram showing the manufacturing process of the porous inorganic thin film according to the present invention, it can be seen that the same pores are formed in the inorganic thin film with the size of the polymer particles.
도 2는 본 발명에 따라 제조한 다공성의 무기박막의 형태를 나타내는 전자현미경 사진으로, 다공성의 무기박막이 형성되어 있음을 확인할 수 있다.Figure 2 is an electron micrograph showing the form of the porous inorganic thin film prepared according to the present invention, it can be seen that the porous inorganic thin film is formed.
이하 실시예 및 실험예를 통하여 본 발명을 구체적으로 살펴보기로 한다. 그러나 하기 실시예 및 실험예에 의하여 본 발명의 권리범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. However, the scope of the present invention is not limited by the following examples and experimental examples.
실시예 1 : 나노 크기의 고분자 입자의 제조Example 1 Preparation of Nano-Sized Polymer Particles
기계식 교반기, 온도조절장치, 질소공급장치 및 냉각기를 장착한 반응기에 78.4 g의 물을 첨가하고, 음이온성 계면활성제인 소듐라우릴 설페이트(SLS) 1.4 g과 보조유화제인 1-펜탄올 0.2 g을 첨가하고, 300 rpm으로 교반하면서 용해시켰다. 이 수용액에 1.0 g의 메틸메타크릴레이트(MMA)와 0.1 g의 폴리에틸렌글리콜메타크릴레이트(PEGMA)의 혼합 단량체를 첨가하여 마이크로에멀젼을 제조하였다. 안정한 마이크로에멀젼이 형성된 후 온도를 70℃로 가열하였다. 온도가 안정된 후, 물 10 g에 0.1 g의 포타슘퍼설페이트(KPS)가 녹아 있는 수용액을 첨가하였다. 이때 질소를 충분히 공급하여 반응기 내의 산소를 완전히 제거하였다. 1시간 후 9.0 g의 MMA를 1시간에 거쳐 천천히 적하하였다. 5시간 동안 70℃에서 마이크로에멀젼중합을 수행하였다. 또한 상기와 같은 방법에 따라 다음의 표 1과 같은 조성으로 몇 종의 고분자 입자를 제조하였으며, 각각의 입자크기 측정 결과는 표 1과 같다. 여기서 입자크기는 광산란법을 이용하여 측정된 값이다.78.4 g of water was added to a reactor equipped with a mechanical stirrer, a thermostat, a nitrogen feeder and a cooler, 1.4 g of anionic surfactant sodium lauryl sulfate (SLS) and 0.2 g of co-emulsifier 1-pentanol. It was added and dissolved with stirring at 300 rpm. A microemulsion was prepared by adding a mixed monomer of 1.0 g of methyl methacrylate (MMA) and 0.1 g of polyethylene glycol methacrylate (PEGMA) to this aqueous solution. The temperature was heated to 70 ° C. after stable microemulsion was formed. After the temperature was stabilized, an aqueous solution in which 0.1 g of potassium persulfate (KPS) was dissolved was added to 10 g of water. At this time, nitrogen was sufficiently supplied to completely remove oxygen in the reactor. After 1 hour, 9.0 g of MMA was slowly added dropwise over 1 hour. Microemulsion polymerization was performed at 70 ° C. for 5 hours. In addition, according to the method as described above was prepared several kinds of polymer particles in the composition shown in Table 1, each particle size measurement results are shown in Table 1. The particle size is a value measured using a light scattering method.
표 1에 따르면, MMA의 첨가량이 적을수록 그리고 PEGMA의 첨가량은 많을수록 제조된 입자의 크기가 작아짐을 알 수 있다. 입자크기가 10 내지 20 nm 정도까지는 일반적인 스퍼터법에 의해 제조된 박막보다는 우수한 성능을 보였으며, 이는 입자의 크기가 작을수록 표면적이 극대화되어 전기를 가했을 때 금속이온의 삽입/탈착이 용이해져서 응답속도 및 색밀도 등의 전기변색특성이 향상됨으로 설명할 수 있다.According to Table 1, it can be seen that the smaller the amount of MMA and the larger the amount of PEGMA, the smaller the size of the prepared particles. Particle sizes up to 10 to 20 nm showed better performance than thin films produced by conventional sputtering methods. The smaller the particle size, the greater the surface area and the easier the insertion / desorption of metal ions when electricity is applied. And electrochromic properties such as color density are improved.
제조된 고분자 라텍스를 딥코팅을 이용하여 ITO 유리에 코팅한 후, 70℃에서 1시간 동안 열풍 건조시켜서 나노 크기의 고분자 입자가 처리된 ITO 유리 기재를 제조하였다.The prepared polymer latex was coated on ITO glass by using dip coating, followed by hot air drying at 70 ° C. for 1 hour to prepare an ITO glass substrate treated with nano-sized polymer particles.
실시예 2 : 다공성 실리카 무기박막의 제조Example 2 Preparation of Porous Silica Inorganic Thin Film
6.26 g 테트라에톡시실란을 45 g 에탄올과 혼합 교반한 후, 10 g의 에탄올, 0.5 g의 초순수와 0.5 g의 염산으로 이루어진 혼합액을 첨가하여 실리카 졸-겔 전구액을 제조하였다. 이 전구액을 고분자 입자 처리된 기재 위에 2회 딥코팅한 후, 70℃에서 서서히 건조시킨 다음, 450℃에서 실리카 박막을 열처리하면서 고분자 입자를 연소시켜 제거하였다. 열중량 감소측정에 의하면, 제조된 고분자 입자는 410℃에서 99.8% 연소되어 제거되었다. 이때 제조된 무기박막의 두께는 약 200 nm이었다.After mixing and stirring 6.26 g tetraethoxysilane with 45 g ethanol, a silica sol-gel precursor was prepared by adding a mixed solution of 10 g ethanol, 0.5 g ultrapure water and 0.5 g hydrochloric acid. The precursor solution was dip-coated twice on the substrate treated with polymer particles, and then dried slowly at 70 ° C., and then burned to remove the polymer particles while heating the silica thin film at 450 ° C. According to the thermogravimetry, the prepared polymer particles were removed by burning 99.8% at 410 ° C. At this time, the thickness of the prepared inorganic thin film was about 200 nm.
실험예 1Experimental Example 1
상기 실시예 1과 2를 통해 제조된 다공성의 실리카 무기박막의 형태를 살펴보기 위해서 주사전자현미경을 이용하여 표면 모폴로지를 관찰하였다. 그 결과 도 2에서 보는 바와 같이, 무기박막에 다수의 나노 크기의 기공들이 형성되어 있음을 확인할 수 있었다.Surface morphology was observed using a scanning electron microscope to examine the shape of the porous silica inorganic thin film prepared in Examples 1 and 2. As a result, as shown in Figure 2, it was confirmed that a plurality of nano-sized pores are formed in the inorganic thin film.
실시예 3 : 다공성 텅스텐 옥사이드 무기박막의 제조Example 3 Preparation of Porous Tungsten Oxide Inorganic Thin Film
다공성의 텅스텐 옥사이드 무기박막을 제조하는 방법으로 스퍼터법을 이용하였다. 실시예 1의 방법으로 제조된 나노 크기의 고분자 입자로 처리된 ITO 유리 위에 라디오 주파수(RF) 마그네트론 스퍼터를 이용하여 텅스텐 옥사이드 박막을 성장시켰다. 이때 조건은 공정압력 10 mTorr, RF 파워 100 W로 알곤 분위기하에서 50분간 성장시켰다. 이렇게 제조된 무기박막의 두께는 약 250 nm이었다. 그 후 실시예 2와 동일한 방법을 통하여 다공성의 텅스텐 옥사이드 무기박막을 제조하였다.The sputtering method was used as a method for producing a porous tungsten oxide inorganic thin film. Tungsten oxide thin films were grown using radio frequency (RF) magnetron sputters on ITO glass treated with nano-sized polymer particles prepared by the method of Example 1. At this time, the conditions were grown for 50 minutes under argon atmosphere with a process pressure of 10 mTorr and RF power of 100 W. The thickness of the inorganic thin film thus prepared was about 250 nm. Thereafter, a porous tungsten oxide inorganic thin film was manufactured in the same manner as in Example 2.
실험예 2Experimental Example 2
상기 실시예 1과 3를 통해 제조된 다공성의 텅스텐 옥사이드 무기박막의 전기변색소자로서의 특성을 살펴보기 위해 전기광학 효과를 포텐쇼스태트/갈바노스태트(Potentiostat/Galvanostat)와 레이져 투과측정장치를 이용하여 측정하였으며, 그 결과는 표 2와 같다. 여기서 착색효율은 소색상태에서 완전히 변색될 때까지 면적당 투입된 전하량의 역수로, 이 값이 크다는 것은 적은 전하로 색이 변한다는 것을 의미한다. 응답속도는 완전변색과 소색시 걸리는 시간이다.In order to examine the characteristics of the porous tungsten oxide inorganic thin film prepared as described in Examples 1 and 3 as an electrochromic device, the electro-optic effect was measured by using a potentiostat / Galvanostat and a laser permeation measuring device. It measured, and the result is shown in Table 2. Here, the coloring efficiency is the inverse of the amount of charge charged per area until completely discolored in the discolored state, and the larger this value means that the color changes with less charge. The response speed is the time taken for complete discoloration and discoloration.
표 2에 의하면, 본 발명 방법에 따라 제조된 다공성 무기박막은 기존의 Sputter법을 이용한 경우보다 착색/소색간의 색의 변화가 크고, 빠르며, 효율적으로 이루어지고 있음을 확인할 수 있다.According to Table 2, it can be seen that the porous inorganic thin film prepared according to the method of the present invention has a larger, faster, and more efficient color change between coloring / discoloring than the conventional Sputter method.
이상에서 상술한 바와 같이, 본 발명에서 제공하는 나노 크기의 고분자 입자를 이용한 전기변색소자용 다공성 무기박막의 제조법은 표면적의 확대를 통한 응답속도의 개선 및 우수한 색밀도 효과 등으로 전기변색소자인 스마트윈도우나 저급 디스플레이에의 응용에 효과적일 것으로 기대된다.As described above, the method of manufacturing a porous inorganic thin film for an electrochromic device using the nano-sized polymer particles provided in the present invention is an electrochromic device, such as an improvement in response speed and an excellent color density effect. It is expected to be effective for applications in windows and lower displays.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030053120A KR100549928B1 (en) | 2003-07-31 | 2003-07-31 | Porous inorganic thin film for electrochromic device and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030053120A KR100549928B1 (en) | 2003-07-31 | 2003-07-31 | Porous inorganic thin film for electrochromic device and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050014474A true KR20050014474A (en) | 2005-02-07 |
KR100549928B1 KR100549928B1 (en) | 2006-02-06 |
Family
ID=37225606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030053120A KR100549928B1 (en) | 2003-07-31 | 2003-07-31 | Porous inorganic thin film for electrochromic device and preparation thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100549928B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101045669B1 (en) * | 2009-12-04 | 2011-07-01 | 광주과학기술원 | Method for producing porous organic thin film and porous organic thin film produced thereby |
WO2012023724A2 (en) * | 2010-08-20 | 2012-02-23 | 서강대학교산학협력단 | Porous thin film having holes and a production method therefor |
KR101328148B1 (en) * | 2011-11-17 | 2013-11-13 | 재단법인대구경북과학기술원 | Porous silicon structure and secondary battery including the same |
KR101367694B1 (en) * | 2011-11-08 | 2014-03-03 | 국립대학법인 울산과학기술대학교 산학협력단 | Method Of Forming Gallium Nitride Nano Structure Using Nano Sphere |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110090567B (en) * | 2019-05-15 | 2021-08-17 | 浙江工商大学 | Carbon nanomaterial @ metal nanoparticle/copolymer mixed matrix pervaporation membrane and preparation method thereof |
-
2003
- 2003-07-31 KR KR1020030053120A patent/KR100549928B1/en not_active IP Right Cessation
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101045669B1 (en) * | 2009-12-04 | 2011-07-01 | 광주과학기술원 | Method for producing porous organic thin film and porous organic thin film produced thereby |
WO2012023724A2 (en) * | 2010-08-20 | 2012-02-23 | 서강대학교산학협력단 | Porous thin film having holes and a production method therefor |
WO2012023724A3 (en) * | 2010-08-20 | 2012-05-24 | 서강대학교산학협력단 | Porous thin film having holes and a production method therefor |
CN103079989A (en) * | 2010-08-20 | 2013-05-01 | 西江大学校产学协力团 | Porous thin film having holes and a production method therefor |
US8753526B2 (en) | 2010-08-20 | 2014-06-17 | Industry-University Cooperation Foundation Sogang University | Porous thin film having holes and a production method therefor |
KR101367694B1 (en) * | 2011-11-08 | 2014-03-03 | 국립대학법인 울산과학기술대학교 산학협력단 | Method Of Forming Gallium Nitride Nano Structure Using Nano Sphere |
KR101328148B1 (en) * | 2011-11-17 | 2013-11-13 | 재단법인대구경북과학기술원 | Porous silicon structure and secondary battery including the same |
Also Published As
Publication number | Publication date |
---|---|
KR100549928B1 (en) | 2006-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barton | Free-radical polymerization in inverse microemulsions | |
Zhang et al. | From water‐soluble cdte nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable surfactants | |
Yan et al. | Capturing nanoscopic length scales and structures by polymerization in microemulsions | |
Schöttner et al. | Poly (2-hydroxyethyl methacrylate)-based amphiphilic block copolymers for high water flux membranes and ceramic templates | |
KR101768296B1 (en) | Method for preparing surfaces | |
CA2506388A1 (en) | Surface modification of nanocrystals using multidentate polymer ligands | |
Poulain et al. | Nanoparticles from vesicle polymerization: Characterization and kinetic study | |
KR20030046554A (en) | Preparation of fluorinated core-shell particles for water and oil repellent | |
Bennett et al. | Synthesis of porous hydrogel structures by polymerizing the continuous phase of a microemulsion | |
KR100549928B1 (en) | Porous inorganic thin film for electrochromic device and preparation thereof | |
SG194462A1 (en) | Method for the preparing surfaces | |
Hunter et al. | Shape-shifting thermoresponsive block copolymer nano-objects | |
Chernikova et al. | Emulsifier-free polymerization of n-butyl acrylate involving trithiocarbonates based on oligomer acrylic acid | |
Tsitsilianis et al. | Stimuli responsive associative polyampholytes based on ABCBA pentablock terpolymer architecture | |
Wu et al. | Synthesis of soap-free emulsion with high solid content by differential dripping RAFT polymerization-induced self-assembly | |
US6218468B1 (en) | Preparation of an aqueous polymer dispersion by the free radical aqueous emulsion polymerization method | |
Gan et al. | Styrene polymerization in oil‐in‐water microemulsions: kinetics of polymerization | |
Lee et al. | A simple method for creating nanoporous block-copolymer thin films | |
Chieng et al. | Formation of microporous polymeric materials by microemulsion polymerization of methyl methacrylate and 2‐hydroxyethyl methacrylate | |
Candau | Microemulsion polymerization | |
Xu et al. | Polymerization-pH tailored RAFT-mediated polymerization-induced self-assembly for ice recrystallization inhibiting the investigation | |
Özer et al. | Nanoparticles carrying hydroxyl groups produced by microemulsion | |
Tauer et al. | Unusual kinetics in aqueous heterophase polymerizations | |
Koçum et al. | Observation of nanoparticles and film formation by scanning tunneling microscopy: methyl methacrylate/butyl methacrylate nanoparticles prepared by microemulsion polymerization | |
Okubo et al. | Effect of nonionic emulsifier on the production of multihollow polymer particles by the stepwise acid/alkali method: Part CXCV of the series “Studies on suspension and emulsion” |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20101229 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |