KR20050012519A - Isotope electric cell using pin diode - Google Patents

Isotope electric cell using pin diode

Info

Publication number
KR20050012519A
KR20050012519A KR1020030051506A KR20030051506A KR20050012519A KR 20050012519 A KR20050012519 A KR 20050012519A KR 1020030051506 A KR1020030051506 A KR 1020030051506A KR 20030051506 A KR20030051506 A KR 20030051506A KR 20050012519 A KR20050012519 A KR 20050012519A
Authority
KR
South Korea
Prior art keywords
semiconductor region
radioisotope
semiconductor
present
pin
Prior art date
Application number
KR1020030051506A
Other languages
Korean (ko)
Other versions
KR100592478B1 (en
Inventor
장종화
Original Assignee
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구소 filed Critical 한국원자력연구소
Priority to KR1020030051506A priority Critical patent/KR100592478B1/en
Publication of KR20050012519A publication Critical patent/KR20050012519A/en
Application granted granted Critical
Publication of KR100592478B1 publication Critical patent/KR100592478B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: An isotope electric cell using a pin diode is provided to utilize semi-permanently as the energy source of an unattended electronic apparatus and MEMS(Micro-electromechanical Systems). CONSTITUTION: A pin semiconductor devices(220,230,240) are formed on a semiconductor substrate(210). An anode(260) is formed on the top of a P-semiconductor region(230), a cathode(270) is formed on the top of a N-semiconductor region(220). A radioactive isotope layer(250) radiating a radioactive ray is formed between the anode and the cathode. An electric nonconductor(280) preventing the leakage of radioactivity covers the top of electrodes(260,270) and the radioactive isotope layer.

Description

핀 다이오드를 이용한 초소형 동위원소 전지{Isotope electric cell using pin diode}Miniature isotope cell using pin diode {Isotope electric cell using pin diode}

본 발명은 초소형 전지에 관한 것으로, 특히 PIN 반도체소자를 이용한 초소형 전지에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to micro batteries, and more particularly, to micro batteries using PIN semiconductor elements.

초소형 전지는 통상적으로 반도체 제조 기술, 특히 광전지 반도체 소자를 이용하여 제조된다. 여기서 광전지는 빛에너지를 전기에너지로 변환하는 장치를 의미하며, 금속과 반도체의 접촉면, 또는 반도체의 pn접합에 빛을 조사하면 광전효과에의해 광기전력이 일어나는 원리를 이용한 것이다.Microminiature batteries are typically manufactured using semiconductor manufacturing techniques, in particular photovoltaic semiconductor devices. The photovoltaic cell refers to a device for converting light energy into electrical energy, and uses photoelectric power generated by photoelectric effect when light is irradiated to a contact surface of a metal and a semiconductor or a pn junction of a semiconductor.

이러한 초소형 전지는 무인 전자장치, 무인 초소형 기계장치(MEMS : Micromachine)등의 분야에서 그 요구가 증대되고 있는 실정이다. 상술한 무인 전자장치 또는 무인 초소형 기계 장치를 위한 초소형 전지는 그 수명이 반 영구적이어야 하며, 높은 광전변환 효율(또는 기전효율)이 요구된다. 그러나, 종래기술에 따른 초소형 전지는 그 수명이나, 기전효율이 무인 전자 장치 또는 무인 초소형 기계 장치에 사용하기에는 적합하지 못하다.Such micro batteries have a growing demand in fields such as unmanned electronic devices and unmanned micromachines (MEMS). The micro battery for the above-mentioned unmanned electronic device or unmanned micro mechanical device must have a semi-permanent life, and high photoelectric conversion efficiency (or electromechanical efficiency) is required. However, the ultra-compact battery according to the prior art is not suitable for use in an unmanned electronic device or an unmanned micromechanical device having a long lifespan or an electromechanical efficiency.

따라서 본 발명의 목적은 수명이 반 영구적인 초소형 전지를 제공함에 있다.It is therefore an object of the present invention to provide a subminiature battery having a semi-permanent lifetime.

본 발명의 또 다른 목적은 기전효율이 높으며 대량 생산이 가능한 초소형 전지를 제공함에 있다.Another object of the present invention is to provide an ultra-compact battery having high electrostatic efficiency and capable of mass production.

도 1은 본 발명의 원리를 보여주는 도면,1 shows the principle of the present invention,

도 2는 본 발명의 실시예에 따른 초소형 동위원소 전지의 구조를 보여주는 도면,2 is a view showing the structure of a microisotope battery according to an embodiment of the present invention,

도 3은 도 2에 도시된 B-B 의 단면도,3 is a cross-sectional view of B-B shown in FIG.

도 4는 도 2에 도시된 A-A의 단면도이다.4 is a cross-sectional view of A-A shown in FIG.

상기와 같은 본 발명의 목적들을 달성하기 위한 본 발명은The present invention for achieving the objects of the present invention as described above

실리콘 기판위에 형성된 핀 반도체 소자와, 상기 핀 반도체 소자의 P-반도체영역 상부에 형성되는 양전극 및 N-반도체영역 상부에 형성되는 음전극과, 상기 양전극과 상기 음전극사이에 위치하고 방사선을 방출하는 방사능동위원소층과, 상기 전극 및 방사능 동위원소층 상부에 피복되며 방사능 누설을 방지하는 전기부도체를 포함한다.A fin semiconductor element formed on the silicon substrate, a positive electrode formed on the P-semiconductor region and a negative electrode formed on the N-semiconductor region, and a radioactive isotope positioned between the positive electrode and the negative electrode and emitting radiation And an electrical insulator covering the electrode and the radioisotope layer and preventing radiation leakage.

또한 상기 방사능동위원소층은 Sr-90 또는 기체상의 H-3를 포함하는 재료로 구성하는 것이 바람직하다.In addition, the radioisotope layer is preferably composed of a material containing Sr-90 or gaseous H-3.

또한 상기 핀 반도체소자층의 두께는 방사선의 정지비정 보다 얕게 설정되는 것이 바람직하다.In addition, it is preferable that the thickness of the fin semiconductor element layer is set to be shallower than the stop ratio of the radiation.

이하 본 발명의 바람직한 실시예의 상세한 설명이 첨부된 도면들을 참조하여 설명될 것이다. 도면들 중 참조번호들 및 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호들 및 부호들로 나타내고 있음에 유의해야 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.DETAILED DESCRIPTION A detailed description of preferred embodiments of the present invention will now be described with reference to the accompanying drawings. It should be noted that reference numerals and like elements among the drawings are denoted by the same reference numerals and symbols as much as possible even though they are shown in different drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

하기에서는 먼저 본 발명의 원리가 설명될 것이다. 다음에 본 발명의 실시예에 따른 초소형 동위원소 전지가 설명될 것이다.In the following, the principles of the present invention will first be described. Next, an ultra-small isotope cell according to an embodiment of the present invention will be described.

본 발명의 원리는 PIN 반도체 소자와 동위원소를 이용하여 초소형 전지를 구성하는 것이다. 첨부한 도 1은 본 발명의 원리를 보여주는 도면이다.The principle of the present invention is to construct a micro battery using a PIN semiconductor element and an isotope. 1 is a view showing the principle of the present invention.

일반적으로 핀(PIN) 반도체 소자는 P-반도체 영역과 N-반도체 영역 사이에 순수한 진성반도체(intrinsic semiconductor,이하 I-반도체 영역이라 함)를 삽입한 구조의 다이오드를 지칭한다.In general, a pin semiconductor device refers to a diode having a structure in which a pure intrinsic semiconductor (hereinafter referred to as an I-semiconductor region) is inserted between a P-semiconductor region and an N-semiconductor region.

상기 도 1을 참조하여 본 발명의 원리를 설명하면 다음과 같다.Referring to FIG. 1, the principle of the present invention will be described.

방사능동위원소층(1)을 핀 구조의 I-반도체 영역(2)에 접하도록 형성한다. 상기 방사능동위원소층(1)은 알파, 베타, 감마선을 방출한다. 이러한 알파, 베타, 감마선은 상기 I-반도체 영역(2)을 투과하면서 여러 개의 전자-정공 쌍을 생성한다. 여기에서 발생한 전자-정공 쌍은 N-반도체영역(5)과 P-반도체영역(4) 사이를 흐르는 전류로 변환된다.The radioisotope layer 1 is formed in contact with the I-semiconductor region 2 of the fin structure. The radioisotope layer 1 emits alpha, beta, gamma rays. These alpha, beta and gamma rays generate several electron-hole pairs while penetrating the I-semiconductor region 2. The electron-hole pair generated here is converted into a current flowing between the N-semiconductor region 5 and the P-semiconductor region 4.

상기 방사능동위원소층(1)에 사용하는 방사능동위원소는 장기간의 반감기를 가지고 비교적 낮은 에너지의 알파선, 베타선, 감마선을 방출하는 원소로 베타방출핵종으로 Sr-90, 알파방출핵종으로 Pu-238등이 바람직하다.The radioisotope used in the radioisotope layer (1) has a long-term half-life and emits alpha, beta, and gamma rays of relatively low energy. This is preferred.

상기 I-반도체영역(2)은 충분한 량의 전자-정공 쌍이 발생하도록 깊이를 알파선 또는 베타선의 정지비정 정도로 하기위해, 실험에 의한 미리 설정된 값을 갖도록 설계한다. 전지의 전체 기전력은 상기 I-반도체영역(2)의 유효두께에 따라 결정되며 본 발명의 원리에 따른 초소형 동위원소 전지는 수백 나노 W/mm3의 기전력을 발생시킨다.The I-semiconductor region 2 is designed to have a predetermined value by experiment, in order to make the depth to the stop ratio of the alpha line or the beta line to generate a sufficient amount of electron-hole pairs. The total electromotive force of the battery is determined by the effective thickness of the I-semiconductor region 2 and the microisotope cell according to the principles of the present invention generates electromotive force of several hundred nano W / mm 3 .

상술한 본 발명의 원리에 따라 초소형 전지를 설계하면, 방사능 동위원소의 수명이 수년 ~ 수백년으로 매우 길어서 무인 전자장치, 무인 초소형기계장치(MEMS : Micromachine)의 에너지원으로 적합한 전지를 설계 할 수 있다. 또한 실리콘 기판위에 식각으로 대량생산하고, 고집적화 함으로써, 기전효율의 증대를 가져 올 수 있다.According to the above-described principles of the present invention, when designing a micro battery, the lifetime of the radioisotope is very long, ranging from several years to several hundred years, so that a battery suitable for an energy source of an unmanned electronic device or an unmanned micromachine (MEMS) can be designed. . In addition, by mass-producing and highly integrated on the silicon substrate, the efficiency of the cell can be increased.

도 2는 본 발명의 실시예에 따른 초소형 동위원소 전지의 구조를 보여주는 도면이고, 도 3은 상기 도 2에 도시된 B-B 의 단면도이고, 도 4는 상기 도 2에 도시된 A-A의 단면도이다.2 is a view showing the structure of a microisotope battery according to an embodiment of the present invention, Figure 3 is a cross-sectional view of B-B shown in FIG. 2, Figure 4 is a cross-sectional view of A-A shown in FIG.

이하 상기 도 2 내지 도 4를 참조하여 설명한다.Hereinafter, a description will be given with reference to FIGS. 2 to 4.

상기 도 2를 참조하면, 먼저 실리콘 기판(210)위에 N-반도체영역(220)을 도핑하고, P-반도체영역(230)을 도핑 형성하고, 상기 N-반도체영역(220)과 상기 P-반도체영역(230) 사이에 I-반도체영역(240)을 형성한다. 여기서 PIN 소자층(220,230,240)의 두께는 방사능동위원소에서 방출된 알파선 또는 베타선에 의한 재료손상 및 경화가 적게 일어나도록 정지비정 보다는 얕게 설계하여야 한다. 그리고 PIN 소자와 소자 사이는 부도체로 남겨둔다.Referring to FIG. 2, first, an N-semiconductor region 220 is doped on a silicon substrate 210, and a P-semiconductor region 230 is doped to form the N-semiconductor region 220 and the P-semiconductor. An I-semiconductor region 240 is formed between the regions 230. In this case, the thickness of the PIN device layers 220, 230, and 240 should be designed to be shallower than the stationary tablet so that material damage and hardening due to alpha or beta rays emitted from the radioisotope occur less. The PIN element and the element are left as non-conductors.

상기와 같이 형성된 PIN 소자의 상부에 도체로 양전극(260)과 음전극(270)을 설치하며 상기 양전극(260)과 음전극(270) 사이에는 방사선동위원소층(250)을 형성한다. 상기 방사능동위원소층(250)에는 낮은 에너지의 베타선과 감마선을 방출하는 Sr-90 또는 기체상의 H-3 등을 포함하는 재료로 구성한다. 상기 전극(260,270)과 방사능동위원소층(250)의 두께는 대부분의 알파선 또는 베타선이 충분히 빠져 나올 수 있도록 실험에 의해 미리 설정된 값으로 형성한다.A positive electrode 260 and a negative electrode 270 are provided as a conductor on the PIN device formed as described above, and a radioisotope layer 250 is formed between the positive electrode 260 and the negative electrode 270. The radioisotope layer 250 is made of a material containing low energy beta rays and gamma rays Sr-90 or gaseous H-3. The thicknesses of the electrodes 260 and 270 and the radioisotope layer 250 are formed to a predetermined value by experiment so that most alpha rays or beta rays can sufficiently escape.

상기 전극(260,270)과 방사능동위원소층(250)의 상부에는 방사능의 누설을 막기 위한 전기부도체(280)를 피복한다. 상기 전기부도체(280)는 상기 방사능동위원소층(250)에서 발생하는 열은 충분히 빠져 나올 수 있도록 열전도도가 좋은 재료를 사용한다. 또한 방사능동위원소층(250)에서 발생하는 방사선이 외부로 빠져 나오지 못하도록 미리 설정된 두께로 형성한다.An upper portion of the electrodes 260 and 270 and the radioisotope layer 250 is coated with an electrical conductor 280 to prevent leakage of radioactivity. The electrical insulator 280 uses a material having good thermal conductivity so that the heat generated from the radioisotope layer 250 can be sufficiently released. In addition, the radiation generated from the radioisotope layer 250 is formed to a predetermined thickness so as not to escape to the outside.

한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, in the detailed description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the scope of the following claims, but also by the equivalents of the claims.

상술한 바와 같이 본 발명에 따른 초소형 전지는, 방사능 동위원소의 수명이 수년 ~ 수백년으로 매우 길어서 무인 전자장치, 무인 초소형기계장치의 에너지원으로 적합한 전지를 설계 할 수 있다. 또한 실리콘 기판위에 식각으로 대량생산하고, 많은 소자를 고집적화 함으로써, 기전효율의 증대를 가져 올 수 있다. 그리고 대량생산으로 생산가격을 크게 낮출 수 있는 이점이 있다.As described above, the ultra-compact battery according to the present invention has a very long life of radioactive isotopes of several years to several hundred years, so that a battery suitable for an energy source of an unmanned electronic device and an unmanned ultra-small mechanical device can be designed. In addition, by mass-producing on a silicon substrate and high-density integration of many devices, it is possible to increase the efficiency of the cell. And there is an advantage that can significantly lower the production price by mass production.

Claims (4)

실리콘 기판위에 형성된 핀 반도체 소자와,A pin semiconductor element formed on the silicon substrate, 상기 핀 반도체 소자의 P-반도체영역 상부에 형성되는 양전극 및 N-반도체영역 상부에 형성되는 음전극과,A positive electrode formed on the P-semiconductor region and a negative electrode formed on the N-semiconductor region of the fin semiconductor device; 상기 양전극과 상기 음전극사이에 위치하고, 방사선을 방출하는 방사능동위원소층과,A radioisotope layer disposed between the positive electrode and the negative electrode and emitting radiation; 상기 전극 및 방사능 동위원소층 상부에 피복되며 방사능 누설을 방지하는 전기부도체를 포함함을 특징으로 하는 초소형 동위원소 전지.An ultra-small isotope cell, characterized in that the electrode and the radioisotope is coated on the radioisotope layer to prevent radioactive leakage. 제1항에 있어서, 상기 방사능동위원소층은 Sr-90 또는 기체상의 H-3를 포함함을 특징으로 하는 초소형 동위원소 전지.The microisotope cell of claim 1, wherein said radioisotope layer comprises Sr-90 or gaseous H-3. 제1항에 있어서, 상기 핀 반도체소자층의 두께는 방사선의 정지비정 보다 얕게 설정됨을 특징으로 하는 초소형 동위원소 전지.The microisotope battery according to claim 1, wherein a thickness of the pin semiconductor element layer is set to be shallower than a stationary ratio of radiation. 실리콘 기판위에 형성된 복수의 핀 반도체 소자와,A plurality of fin semiconductor elements formed on the silicon substrate, 상기 핀 반도체 소자 각각의 P-반도체영역 상부에 형성되는 양전극 및 상기 N-반도체 영역 상부에 형성되는 음전극과,A positive electrode formed over the P-semiconductor region of each of the fin semiconductor devices and a negative electrode formed over the N-semiconductor region; 상기 양전극과 상기 음전극사이 각각에 위치하고, 방사선을 방출하는 방사능동위원소층과,A radioisotope layer disposed between each of the positive electrode and the negative electrode and emitting radiation; 상기 전극 및 방사능 동위원소층 상부에 피복되며 방사능 누설을 방지하는 전기부도체를 포함함을 특징으로 하는 초소형 동위원소 전지.An ultra-small isotope cell, characterized in that the electrode and the radioisotope is coated on the radioisotope layer to prevent radioactive leakage.
KR1020030051506A 2003-07-25 2003-07-25 Isotope electric cell using pin diode KR100592478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030051506A KR100592478B1 (en) 2003-07-25 2003-07-25 Isotope electric cell using pin diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030051506A KR100592478B1 (en) 2003-07-25 2003-07-25 Isotope electric cell using pin diode

Publications (2)

Publication Number Publication Date
KR20050012519A true KR20050012519A (en) 2005-02-02
KR100592478B1 KR100592478B1 (en) 2006-06-23

Family

ID=37224472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030051506A KR100592478B1 (en) 2003-07-25 2003-07-25 Isotope electric cell using pin diode

Country Status (1)

Country Link
KR (1) KR100592478B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858490B1 (en) * 2007-01-15 2008-09-12 이진민 Apparatus for sensing energy using radioisotope battery
KR100861385B1 (en) * 2007-03-26 2008-10-01 이진민 Radioisotope battery and manufacturing method for thereof
WO2010105163A3 (en) * 2009-03-12 2011-01-13 The Curators Of The University Of Missouri High energy-density radioisotope micro power sources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861317B1 (en) 2007-01-15 2008-10-01 이진민 radioisotope battery and manufacturing method for thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858490B1 (en) * 2007-01-15 2008-09-12 이진민 Apparatus for sensing energy using radioisotope battery
KR100861385B1 (en) * 2007-03-26 2008-10-01 이진민 Radioisotope battery and manufacturing method for thereof
WO2010105163A3 (en) * 2009-03-12 2011-01-13 The Curators Of The University Of Missouri High energy-density radioisotope micro power sources
KR101257588B1 (en) * 2009-03-12 2013-04-26 더 큐레이터스 오브 더 유니버시티 오브 미주리 High energy-density radioisotope micro power sources device

Also Published As

Publication number Publication date
KR100592478B1 (en) 2006-06-23

Similar Documents

Publication Publication Date Title
US6949865B2 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
US6774531B1 (en) Apparatus and method for generating electrical current from the nuclear decay process of a radioactive material
TW556360B (en) Light-receiving or light-emitting element and the manufacturing method thereof
US6713668B2 (en) Solar energy converter and solar energy conversion system
US20130154438A1 (en) Power-Scalable Betavoltaic Battery
JP5646586B2 (en) Solar cell
CN107210078B (en) Generator system
US3939366A (en) Method of converting radioactive energy to electric energy and device for performing the same
KR100926598B1 (en) Atomic cell
KR100592478B1 (en) Isotope electric cell using pin diode
CN113223743B (en) Alpha radioactive source nuclear battery based on micropore array collimator
KR101240964B1 (en) Junction box for solar battery module
KR100935351B1 (en) A Method for Power Increase in a Nuclear-Cell and A High Efficiency Beta-Cell Using It
KR20190109495A (en) Ionizing radiation converter of crosslinked structure and method for manufacturing same
KR100592477B1 (en) Isotope electric cell using scintillation element
JP2019529944A (en) Beta Volta battery
US11769603B2 (en) H-3 silicon carbide PN-type radioisotopic battery and manufacturing method of the same
RU2641100C1 (en) COMPACT BETAVOLTAIC POWER SUPPLY OF LONG USE WITH BETA EMITTER ON BASIS OF RADIOISOTOPE 63 Ni AND METHOD OF OBTAINING IT
RU2605783C1 (en) Planar high-voltage photo- and beta-voltaic converter and method of making thereof
RU2605758C1 (en) Electric power supply source
KR20140098897A (en) The atomic cell using radiation shielding material
GB2484028A (en) Power-Scalable Betavoltaic Battery
CN110491542B (en) Friction luminescence isotope battery
KR102513298B1 (en) Radioisotope battery
CN113871050A (en) Isotope battery based on microchannel plate and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee