KR20050011213A - The lithium secondary battery with the high temperature conservation-property improved - Google Patents

The lithium secondary battery with the high temperature conservation-property improved Download PDF

Info

Publication number
KR20050011213A
KR20050011213A KR1020030050216A KR20030050216A KR20050011213A KR 20050011213 A KR20050011213 A KR 20050011213A KR 1020030050216 A KR1020030050216 A KR 1020030050216A KR 20030050216 A KR20030050216 A KR 20030050216A KR 20050011213 A KR20050011213 A KR 20050011213A
Authority
KR
South Korea
Prior art keywords
group
formula
lithium secondary
secondary battery
additive
Prior art date
Application number
KR1020030050216A
Other languages
Korean (ko)
Other versions
KR100561654B1 (en
Inventor
최승돈
김형진
김동명
이호춘
이상훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020030050216A priority Critical patent/KR100561654B1/en
Publication of KR20050011213A publication Critical patent/KR20050011213A/en
Application granted granted Critical
Publication of KR100561654B1 publication Critical patent/KR100561654B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A lithium secondary battery is provided to minimize the capacity reduction and to prevent the impedance increase of battery upon high temperature storage. CONSTITUTION: The lithium secondary battery comprises a positive electrode, a negative electrode and an electrolytic solution, wherein any one or both of the positive electrode and the negative electrode contain a metal hydroxide, and the electrolytic solution contains a first additive represented by the formula 1 and a second additive having a structure represented by the formula 2, the formula 3 or the formula 4, in which R is a C1-C5 alkenyl group or a C1-C5 alkyl group, and each of R1 and R2 is independently selected from the group consisting of hydrogen, a C1-C5 alkenyl group, a C1-C5 alkyl group, a halogen, and a phenyl group or phenoxy group which are non-substituted or substituted by a C1-C5 alkyl group or halogen.

Description

고온 보존 특성이 향상된 리튬 2차 전지{THE LITHIUM SECONDARY BATTERY WITH THE HIGH TEMPERATURE CONSERVATION-PROPERTY IMPROVED}Lithium secondary battery with improved high temperature storage characteristics {THE LITHIUM SECONDARY BATTERY WITH THE HIGH TEMPERATURE CONSERVATION-PROPERTY IMPROVED}

본 발명은 고온 보존 특성이 향상된 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery with improved high temperature storage characteristics.

리튬 이온 전지는 높은 작동 전압 범위 (0 ∼ 5V) 에서 사용되므로, 리튬 이온 전지의 만충전 후 고온 (40 ℃ 이상)에 장시간 노출될 경우 높은 양극과 음극의 전압 차이에 의한 자가 방전과 양극의 반응성에 의한 비수계 전해액과의 분해 반응으로 인해 충전 용량의 감소와 전지의 급격한 임피던스(impedance) 증가가 일어난다. 이는 리튬 2차 전지의 큰 문제점이 되고 있다.Lithium ion batteries are used in a high operating voltage range (0 to 5V), so self-discharge and positive electrode reactivity due to the difference in voltage between high and negative electrodes when exposed to high temperature (over 40 ° C) for a long time after full charge The decomposition reaction with the non-aqueous electrolyte solution causes a decrease in the charge capacity and a sudden increase in the impedance of the battery. This is a major problem of lithium secondary batteries.

상기 문제점을 해결하기 위하여 음극, 전해액 또는 양극에 소량의 첨가제를 사용하거나, 양극 또는 음극 분말 표면에 무기물 또는 유기물을 코팅하여 전해액과의 반응성을 줄이려는 시도들이 있었고, 특히 일본 특허출원 공개 번호 제98-255839호는 충전후 고온 보존 특성을 향상시키기 위해 양극 활물질에 알칼리 토 금속 수산화물을 일부 혼입하고 있다.In order to solve the above problems, there have been attempts to reduce the reactivity with the electrolyte by using a small amount of additives in the negative electrode, the electrolyte or the positive electrode, or coating inorganic or organic materials on the surface of the positive electrode or the negative electrode powder, in particular Japanese Patent Application Publication No. 98 -255839 incorporates some alkaline earth metal hydroxides into the positive electrode active material to improve its high temperature preservation characteristics after charging.

본 발명자는 양극과 음극 각각 또는 모두의 활물질 슬러리 제조 시 소량의 금속 수산화물을 혼입하고 이와 함께 전해액에 특정한 2종 첨가제를 사용한 경우 고온 보존 시 용량 감소 최소화에 있어서 최대 효과를 달성할 수 있음을 발견하였다.The inventors have found that incorporating a small amount of metal hydroxide in the preparation of the active material slurry for each or both of the positive and negative electrodes, together with the use of two specific additives in the electrolyte, can achieve the maximum effect in minimizing capacity reduction during high temperature storage. .

본 발명은 상기 발견에 기초한 것으로, 본 발명의 목적은 고온 보존 후 용량 감소를 완화시키고 전지의 임피던스 증가를 막고자 한다.The present invention is based on the above findings, and an object of the present invention is to mitigate a decrease in capacity after high temperature storage and to prevent an increase in impedance of a battery.

도 1은 삽입용 전극 롤(roll)과 각형 전지 캔(can)을 나타낸 모식도이다.1 is a schematic diagram showing an insertion electrode roll and a square battery can.

도 2는 고온 보존 후 비교예 4와 실시예1의 최초 방전/충전 곡선을 비교한 그래프이다.Figure 2 is a graph comparing the initial discharge / charge curve of Comparative Example 4 and Example 1 after high temperature storage.

본 발명은 양극, 음극, 분리막, 전해액을 포함하는 리튬 이차 전지에 있어서, 상기 양극, 음극, 또는 둘다는 금속 수산화물을 함유하고, 전해액은 하기 화학식 1의 제1 첨가제 및 화학식 2, 화학식 3 또는 화학식 4의 구조를 갖는 제2 첨가제를 함유하는 것이 특징인 리튬 이차 전지를 제공한다.The present invention is a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, an electrolyte, the positive electrode, the negative electrode, or both contain a metal hydroxide, the electrolyte is a first additive of formula 1 and formula 2, formula 3 or formula Provided is a lithium secondary battery characterized by containing a second additive having a structure of 4.

화학식 1에서, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5의 알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로 구성된 군에서 선택된 것임;In formula (1), R 1 and R 2 are independently of each other hydrogen, a C 1 -C 5 alkenyl group, a C 1 -C 5 alkyl group, a halogen, or a C 1 -C 5 alkyl group or a phenyl group unsubstituted or substituted with halogen or Selected from the group consisting of phenoxy groups;

화학식 2 내지 4에서, R은 C1∼C5알케닐(alkenyl)기 또는 C1∼C5알킬기 이고, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로구성된 군에서 선택된 것임.In Formulas 2 to 4, R is C 1 ~C 5 alkenyl (alkenyl) group, or a C 1 ~C 5 alkyl group, R 1 and R 2 are independently from each other hydrogen, C 1 ~C 5 alkenyl group, C 1 ~ Selected from the group consisting of a C 5 alkyl group, a halogen, or a C 1 -C 5 alkyl group or a phenyl group or a phenoxy group unsubstituted or substituted with a halogen.

또한, 본 발명은 양극, 음극, 또는 둘다가 Al(OH)3, Mg(OH)2, Ca(OH)2, LiOH, NaOH로 구성된 군에서 1종 이상 선택된 금속 수산화물을 함유하는 것이 바람직하다.In the present invention, it is preferable that the anode, the cathode, or both contain at least one metal hydroxide selected from the group consisting of Al (OH) 3 , Mg (OH) 2 , Ca (OH) 2 , LiOH, NaOH.

아래에서는 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 양극 활물질 슬러리 또는 음극 활물질 슬러리는 금속 수산화물을 포함한다. 이때 첨가되는 금속 수산화물은 정질의 Al(OH)3, Mg(OH)2, Ca(OH)2, LiOH, NaOH로 구성된 군에서 1종 이상 선택하여 사용하는 것이 바람직하다.The positive electrode active material slurry or the negative electrode active material slurry according to the present invention includes a metal hydroxide. At this time, the metal hydroxide to be added is preferably used by selecting one or more from the group consisting of crystalline Al (OH) 3 , Mg (OH) 2 , Ca (OH) 2 , LiOH, NaOH.

양극과 음극 각각 또는 모두의 활물질 슬러리 제조 시 소량의 금속 수산화물을 혼입하면 전지 임피던스의 증가를 막아 평균 방전 전위 감소를 최소화하여 에너지 밀도 감소를 막을 수 있다.Incorporating a small amount of metal hydroxide in the preparation of the active material slurry of each of the positive and negative electrodes prevents an increase in battery impedance, thereby minimizing a decrease in the average discharge potential, thereby preventing a decrease in energy density.

각 양극과 음극 또는 양쪽 모두에 첨가되는 금속 수산화물의 양은 0중량 % 초과 10중량 % 이하인 것이 바람직하다. 금속 수산화물들은 대부분 부도체로서 일정량까지는 큰 저항으로 작용하지는 않으나, 10% 중량 초과와 같이 사용량이 많은 경우에는 초기 저항이 커져 고온 보존 특성 향상이 나타나지 않는다.The amount of metal hydroxide added to each positive electrode and the negative electrode or both is preferably more than 0% by weight and 10% by weight or less. Most metal hydroxides are insulators and do not act as large resistors up to a certain amount. However, when the amount of the metal hydroxides is high, such as 10% by weight, the initial resistance increases, and thus the improvement of high temperature storage characteristics does not appear.

본 발명에 따른 양극 혼합물 슬러리 또는 음극 혼합물 슬러리는 금속 수산화물 외에 각각 양극 활물질 또는 음극 활물질을 포함한다.The positive electrode mixture slurry or negative electrode mixture slurry according to the present invention includes a positive electrode active material or a negative electrode active material in addition to the metal hydroxide, respectively.

본 발명은 양극 활물질로 리튬을 함유한 전이 금속 산화물을 사용하며, 비제한적인 예로, LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiNi1-XCoXMYO2(여기서, M = Al, Ti,Mg, Zr, 0 < X ≤1, 0 ≤Y ≤0.2), LiNiXCoYMn1-X-YO2(여기에서, 0 < X ≤ 0.5, 0 < Y ≤ 0.5) 및 LiMxM'YMn(2-x-y)O4(M, M'= V, Cr, Fe, Co, Ni, Cu, 0 < X ≤ 1, 0 < Y ≤ 1) 로 이루어진 군으로부터 1종 이상 선택된 전이 금속 산화물 등이 있다.The present invention uses a transition metal oxide containing lithium as the positive electrode active material, non-limiting examples, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiNi 1-X Co X M Y O 2 (where M = Al, Ti, Mg, Zr, 0 <X ≤ 1, 0 ≤ Y ≤ 0.2), LiNi X Co Y Mn 1-XY O 2 (where 0 <X ≤ 0.5, 0 <Y ≤ 0.5) and LiM x M ' Y Mn (2-xy) O 4 (M, M' = V, Cr, Fe, Co, Ni, Cu, 0 <X ≤ 1, 0 <Y ≤ 1) at least one selected from the group consisting of Transition metal oxides and the like.

본 발명은 음극 활물질로 리튬이온을 흡장 방출할 수 있는 탄소, 리튬 금속 또는 합금이 사용가능하며, 기타 리튬을 흡장 방출할 수 있고 리튬에 대한 전위가 2V 미만인 TiO2, SnO2와 Li4Ti5O12같은 금속 산화물도 사용가능하다.According to the present invention, carbon, lithium metal, or an alloy capable of occluding and releasing lithium ions may be used as the negative electrode active material, and TiO 2 , SnO 2, and Li 4 Ti 5 may occlude and release other lithium and have a potential for lithium of less than 2V. Metal oxides such as O 12 may also be used.

전극 슬러리는 활물질 이외에 필요에 따라서 바인더, 도전제와 점도 조절제, 보조결착제 등을 첨가할 수 있다.As the electrode slurry, a binder, a conductive agent, a viscosity modifier, an auxiliary binder, and the like may be added, if necessary.

본 발명에 따른 전해액은 리튬 염과 하기 전해액에 제1 첨가제 화합물 군 (1)에서 선택된 1종의 첨가제와 제2첨가제 화합물 군 (2)에서 선택된 1종의 첨가제를 각각 0 중량% 초과 10 중량% 이하로 함유한다. 제1첨가제 화합물을 과량 사용하는 경우 과다한 가스발생이 문제될 수 있고, 제2첨가제 화합물을 과량 사용하는 경우 전해액의 점도 증가로 인한 저항증가의 원인이 될 수 있다.The electrolyte according to the present invention comprises a lithium salt and one additive selected from the first additive compound group (1) and one additive selected from the second additive compound group (2), respectively, greater than 0 wt% and 10 wt% in the following electrolyte solution. It contains below. Excessive use of the first additive compound may cause excessive gas generation, and excessive use of the second additive compound may cause an increase in resistance due to an increase in viscosity of the electrolyte.

리튬염은 LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, 및 LiN(CF3SO2)2로 이루어진 군으로부터 1종 이상 선택된다.The lithium salt is at least one selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiBF 4 , LiAsF 6 , and LiN (CF 3 SO 2 ) 2 .

전해액의 비제한적인 예로는, 에틸렌 코(카)보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 비닐렌 카보네이트, 설포란, γ-부틸로 락톤, 디메틸 카보네이트, 디에틸 카보네이트, 1,2-디메톡시 에탄, 테트라하이드로푸란, 및 이들의 혼합물이 있다.Non-limiting examples of the electrolyte include ethylene co (carbonate), propylene carbonate, butylene carbonate, vinylene carbonate, sulfolane, γ-butylo lactone, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxy ethane , Tetrahydrofuran, and mixtures thereof.

전해액의 제1 첨가제 화합물 군(1)은 하기 화학식 1의 구조를 가진 화합물로, 여기서 화학식 1에서, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5의 알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로 구성된 군에서 선택된다.The first additive compound group (1) of the electrolyte is a compound having the structure of Formula 1, wherein in Formula 1, R 1 and R 2 are each independently hydrogen, a C 1 -C 5 alkenyl group, C 1 -C 5 It is selected from the group consisting of an alkyl group, a halogen, or a C 1 to C 5 alkyl group or a phenyl group or phenoxy group which is optionally substituted with halogen.

제1 첨가제의 비제한적인 예로는 VC(vinylene carbonate), 메틸 에스테르 등이 있다.Non-limiting examples of the first additive include VC (vinylene carbonate), methyl ester, and the like.

전해액의 제2 첨가제 화합물 군(2)은 하기 화학식 2, 화학식 3 또는 화학식 4의 구조를 가진 화합물로, 여기서, R은 C1∼C5알케닐(alkenyl)기 또는 C1∼C5알킬기 이고, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로 구성된 군에서 선택된다.The second additive compound group (2) of the electrolyte solution is a compound having the structure of Formula 2, Formula 3 or Formula 4, wherein R is a C 1 to C 5 alkenyl group or a C 1 to C 5 alkyl group R 1 and R 2 are each independently composed of hydrogen, a C 1 -C 5 alkenyl group, a C 1 -C 5 alkyl group, a halogen, or a C 1 -C 5 alkyl group or a phenyl group or phenoxy group which is unsubstituted or substituted with halogen. Selected from the group.

제2 첨가제의 비제한적인 예로 프로판 술톤(propane sultone, PS)와 프로펜 술톤(Propene sultone), 디메틸 술폰(Dimethyl sulfone), 디페닐 술폰(Diphenyl sulfone), 디비닐 술폰(Divinyl sulfone), 메탄 술폰산 등이 있다.Non-limiting examples of the second additive include propane sultone (PS) and propene sultone, dimethyl sulfone, diphenyl sulfone, divinyl sulfone, methane sulfonic acid Etc.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

[화학식 3][Formula 3]

[화학식 4][Formula 4]

제 1 첨가제는 분해하여 음극 표면에 SEI layer를 형성하고, 제 2 첨가제는 양극과 음극 표면에 작용하여 고온 특성 향상에 기여한다. 이때, 제1첨가제는 이중결합이 작용하여 음극 표면에 SEI layer 형성에 도움을 주고, 제2첨가제는 S와 O의 결합이 양극과 음극에 작용하여 그 역할을 수행한다.The first additive decomposes to form an SEI layer on the surface of the cathode, and the second additive acts on the surface of the anode and the cathode, contributing to the improvement of high temperature properties. At this time, the first additive is a double bond to help the formation of the SEI layer on the surface of the cathode, the second additive is a S and O bond acts on the positive electrode and the negative electrode to perform its role.

분리막은 폴리프로필렌, 폴리에틸렌 등의 폴리올레핀을 사용할 수 있으며, 다공성인 것이 바람직하다.The separator may be polyolefin such as polypropylene or polyethylene, and is preferably porous.

전지의 외형은 캔을 사용한 원통형, 각형이거나 파우치(pouch)형, 또는 코인(coin)형 등이 있다. 도 1은 일례로 각형 전지에 삽입되는 롤(roll)과 캔(can)을 도시하고 있다. (a)는 Al 호일 위에 양극활물질이 코팅된 것이고 (b)는 다공성 분리막, 그리고 (c)는 Cu 호일 위에 음극활물질이 코팅된 것이다. 이 세 부분을 그림과 같이 말아 롤을 만들고 캔에 삽입하여 각형 전지를 제작할 수 있다.The external shape of the battery may be cylindrical, square or pouch type using a can, or coin type. 1 shows rolls and cans inserted into a square battery as an example. (a) is a cathode active material coated on the Al foil (b) is a porous separator, and (c) is a cathode active material coated on the Cu foil. The three parts can be rolled up as shown to make a roll and inserted into a can to produce a square battery.

이하 실시예 및 비교예를 들어 본 발명을 보다 자세히 설명할 것이나 본 발명이 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[실시예]EXAMPLE

실시예 1Example 1

도 1과 같이 양극, 다공성 분리막 그리고 음극을 감아서 롤(roll)을 만든 후, 각형 캔(can)에 삽입한 전지를 사용하였다. 양극 활물질로 LiCoO2를 사용하였고, 혼합비율은 LiCoO292.5중량%, Al(OH)32.5중량%, Super-P(도전제) 2.5중량%, 및 PVDF(결합제) 2.5중량%의 조성으로 용제인 NMP (N-methyl-2-pyrrolidone)에 첨가하여 양극 혼합물 슬러리를 제조한 후 Al집전체위에 코팅하여 양극을 제조하였다. 또한, 음극 활물질로는 인조흑연을 사용하였고, 혼합비율은 인조흑연 92.8중량%, Al(OH)32.5중량%, Super-P(도전제) 0.7중량%, 및 PVDF(결합제) 4중량%의 조성으로 용제인 NMP에 첨가하여 음극 혼합물 슬러리를 제조한 후 Cu집전체 위에 코팅하여 음극을 제조하였다. 전해액으로는 1M LiPF6에 EC/EMC계 용액을 사용하였고, 전해액에 VC(vinylene carbonate) 2중량%와 PS(propane sultone) 3중량% 를 첨가하였다.As shown in FIG. 1, a roll was formed by winding a cathode, a porous separator, and a cathode, and a battery inserted into a rectangular can was used. LiCoO 2 was used as the positive electrode active material, and the mixing ratio was 92.5 wt% of LiCoO 2 , 2.5 wt% of Al (OH) 3, 2.5 wt% of Super-P (conductor), and 2.5 wt% of PVDF (binder). Phosphorus mixture was added to phosphorus NMP (N-methyl-2-pyrrolidone) to prepare a cathode mixture slurry, and then coated on Al current collector to prepare a cathode. In addition, artificial graphite was used as the negative electrode active material, and the mixing ratio was 92.8 wt% of artificial graphite, 2.5 wt% of Al (OH) 3 , 0.7 wt% of Super-P (conductive agent), and 4 wt% of PVDF (binder). The negative electrode mixture was prepared by adding NMP, a solvent, to the composition to prepare a negative electrode mixture slurry, and then coating it on a Cu current collector. As an electrolyte, an EC / EMC solution was used in 1M LiPF 6 , and 2% by weight of VC (vinylene carbonate) and 3% by weight of propane sultone (PS) were added to the electrolyte.

비교예 1Comparative Example 1

실시예 1 과 동일한 방법으로 실시하되, 전해액에 첨가제 (VC, PS)를 사용하지 않았다.The same procedure as in Example 1 was carried out except that no additives (VC, PS) were used in the electrolyte.

비교예 2Comparative Example 2

실시예 1과 동일한 방법으로 실시하되, 전해액에 VC(vinylene carbonate) 2중량%만을 첨가하여 전지를 제조하였다.A battery was prepared by the same method as Example 1 except that only 2 wt% of VC (vinylene carbonate) was added to the electrolyte.

비교예 3Comparative Example 3

실시예 1과 동일한 방법으로 실시하되, 전해액에 PS(propane sultone) 3중량%만을 첨가하여 전지를 제조하였다.The battery cell was prepared in the same manner as in Example 1 except that only 3 wt% of propane sultone (PS) was added to the electrolyte.

비교예 4Comparative Example 4

실시예1 과 동일한 방법으로 실시하되, 양극과 음극에 Al(OH)3를 넣지않고, 그 만큼을 각각 LiCoO2와 인조흑연으로 채웠다. 이때, 전해액은 VC(vinylene carbonate) 2중량%와 PS(propane sultone) 3중량%가 첨가되어 있다.The same procedure as in Example 1 was carried out, except that Al (OH) 3 was not added to the positive electrode and the negative electrode, and the amounts thereof were filled with LiCoO 2 and artificial graphite, respectively. In this case, 2 wt% VC (vinylene carbonate) and 3 wt% PS (propane sultone) are added to the electrolyte.

[고온 보존 실험][High Temperature Preservation Experiment]

(1) 1C의 충전 전류로 4.2V까지 충전을 실시하고, 1C 방전을 3V까지 실시하여 초기 방전 용량(A)을 확인하였고, 이 셀을 다시 위와 동일한 방법으로 4.2V까지 충전 후 AC 임피던스를 측정하였다. AC 임피던스는 전지의 성능을 가늠해 볼 수 있는 척도로서, 고온 보존 후의 변화량과 비교를 위하여 측정하였다. AC 임피던스 측정값은 고온 보존 전이므로, 실시예 1, 비교예 1 내지 4 경우 거의 비슷하였고 약 60 mohm 정도를 나타내었다.(1) After charging up to 4.2V with 1C charging current and 1C discharge up to 3V, the initial discharge capacity (A) was confirmed. After the cell was charged up to 4.2V in the same way as above, AC impedance was measured. It was. AC impedance is a measure of battery performance and measured for comparison with the amount of change after high temperature storage. Since the AC impedance measurement was before high temperature storage, the values of Example 1 and Comparative Examples 1 to 4 were almost similar, and were about 60 mohm.

이어서, 80 ℃에 10일간 보존한 후 전지의 AC 임피던스를 측정하고 1C 방전하여 잔존 용량(B)을 측정하였다. 잔존용량 측정 후 충방전을 3회 실시하여 회복 용량(C)를 확인하였다.Subsequently, after storing at 80 ° C for 10 days, the AC impedance of the battery was measured, discharged at 1 C, and the remaining capacity (B) was measured. After the remaining capacity was measured, charging and discharging were performed three times to confirm the recovery capacity (C).

초기용량(A) 대비 잔존용량(B)과 회복용량 (C) 의 %를 측정하여 잔존 용량률(= B/A)과 회복 용량률(= C/A)을 계산하여 하기 표 1에 나타내었다. 또한, 고온 보존 후 AC 임피던스를 비교하였다.By measuring the percentage of the remaining capacity (B) and the recovery capacity (C) compared to the initial capacity (A) to calculate the remaining capacity ratio (= B / A) and recovery capacity ratio (= C / A) is shown in Table 1 below . In addition, AC impedance was compared after high temperature storage.

잔존용량률(%)Remaining capacity (%) 회복용량률(%)Recovery capacity rate (%) 고온보존후 AC임피던스AC impedance after high temperature storage 실시예 1Example 1 7474 7979 120120 비교예 1Comparative Example 1 6363 6868 110110 비교예 2Comparative Example 2 6767 6868 105105 비교예 3Comparative Example 3 6464 7070 100100 비교예 4Comparative Example 4 6969 7373 390390

표 1에서 알 수 있는 바와 같이, Al(OH)3가 양극과 음극에 함유되어 있을 경우(실시예 1, 비교예 1 내지 3) 고온 보존 후 AC impedance의 증가를 막을 수 있음을 알 수 있다. 한편, Al(OH)3를 사용하지 않고 2종류의 첨가제만을 전해액에 사용한 비교예 4의 경우는 잔존용량과 회복용량 면에서 전해액에 첨가제를 사용하지 않은 경우(비교예1) 또는 한 종류의 첨가제만을 사용한 경우(비교예 2, 3) 보다 우수함을 알 수 있다. 또한, Al(OH)3및 두 종류의 첨가제를 사용한 실시예1의 경우는 Al(OH)3없이 두 종류의 첨가제만 사용한 경우(비교예 4) 보다 우수함을 알 수 있다. 따라서, 두 가지 첨가제와 Al(OH)3가 함께 사용되어야만 상승작용을 일으켜 기존 전지 보다 우수한 고온 보존 특성을 보임을 알 수 있다.As can be seen from Table 1, when Al (OH) 3 is contained in the positive electrode and the negative electrode (Example 1, Comparative Examples 1 to 3) it can be seen that the increase in AC impedance after high temperature storage can be prevented. On the other hand, in the case of Comparative Example 4 in which only two types of additives were used in the electrolyte solution without using Al (OH) 3 , an additive was not used in the electrolyte solution in terms of remaining capacity and recovery capacity (Comparative Example 1) or one type of additive. It can be seen that it is superior to the case of using only (Comparative Examples 2 and 3). In addition, it can be seen that the case of Example 1 using Al (OH) 3 and two kinds of additives is superior to that of using only two kinds of additives (Comparative Example 4) without Al (OH) 3 . Therefore, it can be seen that the two additives and Al (OH) 3 must be used together to produce synergistic effects and show better high temperature storage characteristics than conventional batteries.

(2) 도 2는 실시예 1과 비교예 4의 고온 보존 후 충방전 곡선을 보여주고있다. 실시예 1의 경우 비교예 4보다 저항 증가로 인한 방전 전압의 강하가 매우 적어 회복 용량 (mAh) 뿐아니라, 에너지 밀도(Wh)의 저하를 막아준다.(2) Figure 2 shows the charge and discharge curves after preservation of high temperature in Example 1 and Comparative Example 4. In the case of Example 1, the drop of the discharge voltage due to the increase in resistance is much smaller than that of Comparative Example 4, thereby preventing the reduction of energy density (Wh) as well as the recovery capacity (mAh).

본 발명은 전해액에 특정한 2종의 첨가제를 포함시켜 전지를 제조함으로써 고온 보존 후 잔존 용량을 향상시킬 수 있으며, 또 양극과 음극 각각 또는 모두의 활물질 슬러리 제조 시 소량의 금속 수산화물을 혼입하고 이와 함께 전해액에 상기 특정한 2종 첨가제를 사용함으로써, 고온 보존 시 용량감소 최소화에 있어서 최대 효과를 달성할 수 있다.The present invention can improve the remaining capacity after high temperature storage by preparing a battery by including a specific two kinds of additives in the electrolyte, and also a small amount of metal hydroxide in the preparation of the active material slurry of each of the positive electrode and negative electrode, and together with the electrolyte solution By using the above specific two kinds of additives, it is possible to achieve the maximum effect in minimizing capacity reduction during high temperature storage.

Claims (4)

양극, 음극, 전해액을 포함하는 리튬 이차 전지에 있어서,In a lithium secondary battery comprising a positive electrode, a negative electrode, an electrolyte solution, 상기 양극, 음극, 또는 둘다는 금속 수산화물을 함유하고,The positive electrode, the negative electrode, or both contain a metal hydroxide, 전해액은 하기 화학식 1의 제1 첨가제 및 화학식 2, 화학식 3 또는 화학식 4의 구조를 갖는 제2 첨가제를 함유하는 것이 특징인 리튬 이차 전지.The electrolyte solution is characterized by containing a first additive of the formula (1) and a second additive having a structure of formula (2), (3) or (4). [화학식 1][Formula 1] [화학식 2][Formula 2] [화학식 3][Formula 3] [화학식 4][Formula 4] 화학식 1에서, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5의 알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로 구성된 군에서 선택된 것임In formula (1), R 1 and R 2 are independently of each other hydrogen, a C 1 -C 5 alkenyl group, a C 1 -C 5 alkyl group, a halogen, or a C 1 -C 5 alkyl group or a phenyl group unsubstituted or substituted with halogen or Selected from the group consisting of phenoxy groups 화학식 2 내지 4에서, R은 C1∼C5알케닐(alkenyl)기 또는 C1∼C5알킬기 이고, R1과 R2는 서로 독립적으로 수소, C1∼C5알케닐기, C1∼C5알킬기, 할로겐, 또는 C1∼C5알킬기 또는 할로겐으로 치환되거나 치환되지 않은 페닐기 또는 페녹시기로 구성된 군에서 선택된 것임.In Formulas 2 to 4, R is C 1 ~C 5 alkenyl (alkenyl) group, or a C 1 ~C 5 alkyl group, R 1 and R 2 are independently from each other hydrogen, C 1 ~C 5 alkenyl group, C 1 ~ Selected from the group consisting of a C 5 alkyl group, a halogen, or a C 1 -C 5 alkyl group or a phenyl group or a phenoxy group unsubstituted or substituted with a halogen. 제1항에 있어서, 상기 금속 수산화물은 Al(OH)3, Mg(OH)2, Ca(OH)2, LiOH, NaOH로 구성된 군에서 1종 이상 선택된 것이 특징인 리튬 이차 전지.The lithium secondary battery of claim 1, wherein the metal hydroxide is selected from the group consisting of Al (OH) 3 , Mg (OH) 2 , Ca (OH) 2 , LiOH, and NaOH. 제1항 또는 제2항에 있어서, 제1 첨가제는 VC(vinylene carbonate), 메틸 에스테르 인 것이 특징인 리튬 이차 전지.The lithium secondary battery according to claim 1 or 2, wherein the first additive is VC (vinylene carbonate) or methyl ester. 제1항 또는 제2항에 있어서, 제2첨가제는 프로판 술톤(propane sultone, PS), 프로펜 술톤(Propene sultone), 디메틸 술폰(Dimethyl sulfone), 디페닐 술폰(Diphenyl sulfone), 디비닐 술폰(Divinyl sulfone), 또는 메탄 술폰산 인 것이 특징인 리튬 이차 전지.The method of claim 1 or 2, wherein the second additive is propane sultone (PS), propene sultone, dimethyl sulfone, diphenyl sulfone, divinyl sulfone ( Divinyl sulfone), or a lithium secondary battery, characterized in that methane sulfonic acid.
KR1020030050216A 2003-07-22 2003-07-22 The lithium secondary battery with the high temperature conservation-property improved KR100561654B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030050216A KR100561654B1 (en) 2003-07-22 2003-07-22 The lithium secondary battery with the high temperature conservation-property improved

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030050216A KR100561654B1 (en) 2003-07-22 2003-07-22 The lithium secondary battery with the high temperature conservation-property improved

Publications (2)

Publication Number Publication Date
KR20050011213A true KR20050011213A (en) 2005-01-29
KR100561654B1 KR100561654B1 (en) 2006-03-15

Family

ID=37223300

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030050216A KR100561654B1 (en) 2003-07-22 2003-07-22 The lithium secondary battery with the high temperature conservation-property improved

Country Status (1)

Country Link
KR (1) KR100561654B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895191B1 (en) * 2006-04-12 2009-04-24 주식회사 엘지화학 Process for preparing 1,3-propenesultone
KR101135502B1 (en) * 2008-12-22 2012-04-16 삼성에스디아이 주식회사 Lithium secondary battery
WO2022035272A1 (en) * 2020-08-13 2022-02-17 솔브레인 주식회사 Electrolyte and secondary battery comprising same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657225B1 (en) 2003-09-05 2006-12-14 주식회사 엘지화학 Electrolyte solvent for improving safety of battery and lithium secondary battery comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100895191B1 (en) * 2006-04-12 2009-04-24 주식회사 엘지화학 Process for preparing 1,3-propenesultone
KR101135502B1 (en) * 2008-12-22 2012-04-16 삼성에스디아이 주식회사 Lithium secondary battery
US8273478B2 (en) 2008-12-22 2012-09-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2022035272A1 (en) * 2020-08-13 2022-02-17 솔브레인 주식회사 Electrolyte and secondary battery comprising same

Also Published As

Publication number Publication date
KR100561654B1 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
EP3742537B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR102633527B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP4841116B2 (en) Nonaqueous electrolyte secondary battery
JP7094601B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it
EP3651254B1 (en) Lithium secondary battery having improved high-temperature storage characteristics
JP2022529793A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it
CN111640975B (en) Electrolyte composition for lithium ion electrochemical cells
US7749660B2 (en) Electrolyte for improving life characteristics at high temperature and lithium secondary battery comprising the same
KR102018756B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP7378601B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same
JPH09147913A (en) Nonaqueous electrolyte battery
KR20200089624A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte for lithium secondary battery comprising the same, and lithium secondary battery
KR100612095B1 (en) Lithium ion battery having an improved conserved property at a high temperature
US7858241B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary batter using the same
JP2022529794A (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing them
JP2022528246A (en) Non-aqueous electrolyte solution additive for lithium secondary batteries, non-aqueous electrolyte solution for lithium secondary batteries and lithium secondary batteries containing this
KR20220009894A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR100804980B1 (en) Additives for secondarty battery and lithium secondary battery using the same
KR100561654B1 (en) The lithium secondary battery with the high temperature conservation-property improved
KR100623476B1 (en) Lithium ion battery using a thin layer coating
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
US20050053838A1 (en) Non-aqueous electrolyte secondary battery
KR20230082579A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20210070609A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JPH0750174A (en) Non-aqueous solvent electrolyte secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 14