KR20050007968A - Boiler insulation thickness calculation method - Google Patents

Boiler insulation thickness calculation method Download PDF

Info

Publication number
KR20050007968A
KR20050007968A KR1020030047612A KR20030047612A KR20050007968A KR 20050007968 A KR20050007968 A KR 20050007968A KR 1020030047612 A KR1020030047612 A KR 1020030047612A KR 20030047612 A KR20030047612 A KR 20030047612A KR 20050007968 A KR20050007968 A KR 20050007968A
Authority
KR
South Korea
Prior art keywords
temperature
insulation
thickness
calculating
boiler
Prior art date
Application number
KR1020030047612A
Other languages
Korean (ko)
Inventor
김대중
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020030047612A priority Critical patent/KR20050007968A/en
Publication of KR20050007968A publication Critical patent/KR20050007968A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: A method for automatically calculating an insulation thickness of a boiler using a calculation formula is provided to save manpower needed for calculating the insulation thickness by easily calculating the optimal insulation thickness of the boiler and minimize a calculation error by systematically arranging considerable factors for each item. CONSTITUTION: A quality and the thickness of the insulation/refractory, emissivity of a coated material for the insulation/refractory, a convection coefficient of each application part are inputted, and at least one from an outer diameter, an inner temperature, and an outer temperature is inputted in case of a pipe(S10). Estimated surface/boundary layer temperatures are fixed(S12). Heat transfer is calculated. The surface temperature and the boundary layer temperature are calculated/verified(S16). In the case that the calculated temperature is identical with the verified temperature, the thickness of the corresponding insulation is fixed(S20).

Description

보일러 단열재 두께 산출방법{BOILER INSULATION THICKNESS CALCULATION METHOD}Boiler insulation thickness calculation method {BOILER INSULATION THICKNESS CALCULATION METHOD}

본 발명은 보일러 단열재 두께 산출방법에 관한 것으로서, 소정의 소프트웨어로 작성된 계산식에, 보온 및 내화재의 재질 선택입력하고, 보온 및 내화재의 두께, 보온 및 내화재의 표면 피복자재의 방사계수, 적용부위별 대류상수 입력, 파이프의 경우는 외경, 내부온도(운전온도), 외부 온도를 입력하여 자동으로 보온재의 두께를 산출할 수 있도록 하는 보일러 단열재 두께 산출방법에 관한 것이다.The present invention relates to a method for calculating the thickness of a boiler insulation material, and inputs and selects the material of the thermal insulation and the refractory material into a calculation formula prepared by predetermined software, and the thickness of the thermal insulation and the refractory material, the radiation coefficient of the surface coating material of the thermal insulation and the refractory material, and convection by application area. In the case of constant input and pipe, it relates to a method of calculating the thickness of the insulation of the boiler to automatically calculate the thickness of the insulation by inputting the outer diameter, the internal temperature (operating temperature) and the external temperature.

열에너지를 변환시켜 전기에너지를 얻는 방식의 총칭인 화력발전은, 일반적으로 화석연료를 연소시켜 발생한 열에너지로 물을 가열시켜 증기로 바꾸고, 이러한 증기가 갖는 에너지로 증기터빈 발전기를 구동시켜 전기를 발생시킨다. 이러한 화력설비에서는 열에너지 공급원인 보일러의 열손실을 최소화 하는 것이 중요하므로 보일러에는 단열재가 설치된다.Thermal power generation, which is a general method of converting thermal energy to obtain electric energy, generally heats water with steam generated by burning fossil fuel and converts it into steam, and uses steam energy to generate steam by driving a steam turbine generator. . In such a thermal power plant, it is important to minimize the heat loss of the boiler which is a source of heat energy, so the insulation is installed in the boiler.

여기서, 단열재의 두께는 제작원가에 지대한 영향을 끼치는 요소이다. 단열재는 다양한 재질의 다양한 크기로 제조될 수 있기 때문에, 보일러의 조건, 단열재의 재질 등을 모두 고려하여 최적의 두께로 제작하는 것이 바람직하다.Here, the thickness of the heat insulator is a factor that greatly affects the manufacturing cost. Since the heat insulating material may be manufactured in various sizes of various materials, it is preferable to manufacture the optimum thickness in consideration of both the condition of the boiler, the material of the heat insulating material, and the like.

그런데, 종래에는 단열재의 두께산출을 위한 체계적인 수단이 제공되지 아니하여, 단열재 설계에 필요한 수치를 얻기 위해 대부분은 수계산에 의존하고 있으므로, 그 만큼의 인력이 소요될 뿐 만 아니라, 계산 상의 오류가 발생할 가능성도 높다는 문제점이 있었다.However, conventionally, a systematic means for calculating the thickness of the insulation is not provided, and since most of them rely on water calculation to obtain the values necessary for the design of the insulation, not only does it require much manpower but also calculation errors may occur. There was a problem that the possibility is high.

본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 보일러 단열재의 두께에 설정 시 계산 상의 오류를 최소화하는 한편, 산출을 용이하게 하는보일러 단열재 두께 산출방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above-described problems, and has an object to provide a boiler insulation thickness calculation method that minimizes the calculation error when setting to the thickness of the boiler insulation, while facilitating the calculation.

도 1은 본 발명에 따른 보일러 단열재 두께 산출방법의 산출흐름도,1 is a calculation flow chart of the method for calculating the thickness of the boiler insulation according to the present invention,

도 2는 본 발명의 보일러 단열재 두께 산출방법에 따른 계산프로그램의 시작화면,Figure 2 is a start screen of the calculation program according to the boiler insulation thickness calculation method of the present invention,

도 3은 도 2의 계산프로그램의 일 실시예에 따른 계산서,3 is a bill according to an embodiment of the calculation program of FIG.

도 4는 도 2의 계산프로그램의 다른 실시예에 따른 계산서이다.4 is a bill according to another embodiment of the calculation program of FIG.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

10 : 시작화면 20, 30 : 계산서10: start screen 20, 30: bill

22, 31 : 프로젝트입력부 23, 32 : 대류상수입력부22, 31: project input unit 23, 32: convective constant input unit

24, 33 : 방사계수입력부 25, 34 : 적용코드 입력부24, 33: radiation coefficient input unit 25, 34: application code input unit

26, 35 : 단열재선정부 27, 36 : 결과치 표시부26, 35: Insulation material preliminary 27, 36: Result display unit

28, 37 : 단열재 두께입력부 29, 38 : 계산버튼28, 37: insulation thickness input unit 29, 38: calculation button

전술한 목적을 달성하기 위한 본 발명에 따른 보일러 단열재 두께 산출방법은, 보온 및 내화재의 재질, 보온 및 내화재의 두께, 보온 및 내화재의 표면피복 자재의 방사계수, 적용부위별 대류상수 입력, 파이프의 경우는 외경, 내부온도, 외부온도 데이터 중 적어도 어느 하나를 입력하는 단계와; 예상 표면온도 및 경계층 온도를 설정하는 단계와; 열전달을 산출하는 단계와; 표면 및 경계층 온도를 계산하여 검증하는 단계와; 상기 계산온도와 검증온도가 일치할 경우 해당 보온재의 두께로 산정하는 단계를 포함하는 것을 특징으로 한다.Boiler insulation thickness calculation method according to the present invention for achieving the above object, the material of the thermal insulation and refractory material, the thickness of the thermal insulation and refractory material, the radiation coefficient of the surface coating material of the thermal insulation and refractory material, the input of convection constant for each application area, pipe The case may include inputting at least one of an outer diameter, an internal temperature, and external temperature data; Setting an expected surface temperature and a boundary layer temperature; Calculating heat transfer; Calculating and verifying surface and boundary layer temperatures; And calculating the thickness of the thermal insulation material when the calculated temperature and the verification temperature coincide with each other.

이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 배관 단열재 설계방법에 대해서 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the pipe insulation design method according to a preferred embodiment of the present invention.

도 1은 본 발명에 따른 보일러 단열재 두께 산출방법의 흐름도이다. 도 1에 도시된 바와 같이, 사용자는 보온 및 내화재의 재질, 보온 및 내화재의 두께, 보온 및 내화재의 표면피복 자재의 방사계수, 적용부위별 대류상수 입력, 파이프의 경우는 외경, 내부온도, 외부온도 등의 데이터를 입력하고(S10), 예상표면온도 및경계층 온도를 1차 설정한 후(S12), 열전달을 계산하고(S14), 표면 및 경계층 온도를 계산하여 검증한다(S16).1 is a flowchart of a method for calculating the thickness of a boiler insulation according to the present invention. As shown in Figure 1, the user is a material of thermal insulation and refractory material, the thickness of the thermal insulation and refractory material, the radiation coefficient of the surface coating material of the thermal insulation and refractory material, the input of convection constant for each application area, in the case of pipe, outer diameter, internal temperature, external After inputting data such as temperature (S10), firstly setting the expected surface temperature and boundary layer temperature (S12), calculating heat transfer (S14), and verifying the surface and boundary layer temperatures by calculating (S16).

여기서, 계산온도와 검증온도가 일치하는지 여부에 따라(S18), 일치할 경우 산출이 완료되어 계산결과가 출력되고(S20), 일치하지 아니할 경우, 다시 열전달 계산을 실시한다.Here, depending on whether or not the calculated temperature and the verification temperature is the same (S18), if it is matched, the calculation is completed and the calculated result is output (S20), if it is not matched, the heat transfer calculation is performed again.

여기서, 각 단열재에 따른 방산열량, 열전도율, 표면의 열전도율 등을 산출하기 위한 수식들은 이미 널리 알려진 것으로서, 이러한 수식을 이용하여 상술한 산출과정들을 Excel프로그램을 통해 구현한다.Here, the equations for calculating the heat dissipation, thermal conductivity, thermal conductivity of the surface, etc. according to each insulating material are well known, and the above calculation processes are implemented through the Excel program using these equations.

도 2내지 도 4는 본 발명의 보일러 단열재 두께 산출방법에 따른 계산서를 도시한 것으로서, 도면에 도시된 바와 같이, 단열재 두께를 산출하는데 필요한 항목들을 수집하여 각 항목 별로 사용자가 해당 데이터를 입력할 수 있도록 워크시트를 작성한 것이다.2 to 4 illustrate a bill according to the boiler insulation thickness calculation method of the present invention. As shown in the drawing, items necessary for calculating insulation thickness can be collected and a user can input corresponding data for each item. I have written a worksheet to help.

도 2는 워크시트의 시작화면(10)을 도시한 것으로서, 평면형일 경우 평면형선택버튼(12)을 선택하고, 원통형일 경우 원통형 선택버튼(14)을 선택한다. 여기서, 사용자가 평면형 선택버튼(12)을 선택한 경우 화면에 표시되는 계산서는 3에 도시된 바와 같다.FIG. 2 shows the start screen 10 of the worksheet, in which the flat selection button 12 is selected in the case of a flat type, and the cylindrical selection button 14 is selected in the case of a cylindrical type. Here, the calculation displayed on the screen when the user selects the planar selection button 12 is as shown in FIG.

도 3과 같은 계산서(20)가 표시되면, 먼저 프로젝트입력부(22)에 해당 프로젝트명을 입력하고, 적용코드입력부(25)에 해당 코드를 체크한다.When the bill 20 as shown in FIG. 3 is displayed, the project name is first input to the project input unit 22, and the corresponding code is checked to the application code input unit 25.

단열재선정부(26)에 보온 및 내화재의 재질을 설정하여 입력한다. 그리고, 단열재 두계입력부(28)에 두께 설정값을 입력하고, 보온 및 내화재 표면 피복재의방사계수 및 적용부위별 대류상수를 각각 방사계수입력부(24)와 대류상수입력부(23)에 입력한다.Insulating material selection unit 26 is input by setting the material of the insulation and fireproof material. Then, the thickness setting value is input to the heat insulating material head input unit 28, and the radiation coefficient and the convective constant for each application region of the heat insulating material and the refractory material surface coating material are respectively input to the radiation coefficient input part 24 and the convective constant input part 23, respectively.

이 외에도, 파이프일 경우 외경을 입력하여야 하며, 내부온도(운전온도)및 외부온도, 풍속 등의 데이터를 입력한 후 계산버튼(29)을 선택하면 사용자가 입력한 파라미터에 따라, 프로그램을 통해 보온 및 내화재의 표면온도, 본온재의 경계층 온도, 각 본 및 내화재의 평균온도와 열전도율, 보온 및 내화재 표면의 열전달율, 단위 면적당 방산열량이 자동으로 산출되어 결과치 표시부(27)에 표시된다. 따라서, 파라미터를 입력하고 프로그램에서 제공하는 실행 단추를 누르면 정확한 표면온도와 경계층 온도가 구해질 때까지 반복 계산을 하여, 원하는 조건에 적절한 보온재의 두께를 산출할 수 있다.In addition, in the case of pipes, the outer diameter must be input, and after inputting data such as internal temperature (operating temperature), external temperature, and wind speed, and selecting the calculation button 29, according to the parameter input by the user, the temperature is maintained through the program. And the surface temperature of the refractory material, the boundary layer temperature of the insulating material, the average temperature and the thermal conductivity of the screen and the refractory material, the heat transfer rate of the thermal insulation and the refractory material, and the amount of heat dissipation per unit area are automatically calculated and displayed on the result display unit 27. Therefore, when the parameters are input and the execution button provided by the program is pressed, the thickness of the heat insulating material suitable for the desired condition can be calculated by repeatedly calculating until the accurate surface temperature and the boundary layer temperature are obtained.

한편, 사용자가 원통형 선택버튼(14)을 선택한 경우 화면에 표시되는 계산서는 4에 도시된 바와 같다.On the other hand, when the user selects the cylindrical selection button 14, the calculation displayed on the screen is as shown in 4.

도 4과 같은 계산서(30)가 표시되면, 먼저 프로젝트입력부(31)에 해당 프로젝트명을 입력하고, 적용코드입력부(34)에 해당 코드를 체크한다.When the bill 30 as shown in FIG. 4 is displayed, the project name is first input to the project input unit 31, and the corresponding code is checked to the application code input unit 34.

단열재선정부(35)에 보온 및 내화재의 재질을 설정하여 입력한다. 그리고, 단열재 두계입력부(37)에 두께 설정값을 입력하고, 보온 및 내화재 표면 피복재의 방사계수 및 적용부위별 대류상수를 각각 방사계수입력부(33)와 대류상수입력부(32)에 입력한다.Insulating material selection unit (35) to set the material of the insulation and refractory material. Then, the thickness setting value is input to the heat insulating material head input unit 37, and the radiation coefficient of the heat insulating material and the refractory material surface covering material and the convection constant for each application region are input to the radiation coefficient input part 33 and the convection constant input part 32, respectively.

이 외에도, 파이프일 경우 외경을 입력하여야 하며, 내부온도(운전온도)및 외부온도, 풍속 등의 데이터를 입력한 후 계산버튼(38)을 선택하면 사용자가 입력한 파라미터에 따라, 프로그램을 통해 보온 및 내화재의 표면온도, 본온재의 경계층 온도, 각 본 및 내화재의 평균온도와 열전도율, 보온 및 내화재 표면의 열전달율, 단위 면적당 방산열량이 자동으로 산출되어 결과치 표시부(36)에 표시된다. 따라서, 파라미터를 입력하고 프로그램에서 제공하는 실행 단추를 누르면 정확한 표면온도와 경계층 온도가 구해질 때까지 반복 계산을 하여, 원하는 조건에 적절한 보온재의 두께를 산출할 수 있다.In addition, in the case of pipes, the outer diameter must be input, and after inputting data such as internal temperature (operating temperature), external temperature, and wind speed, and selecting the calculation button 38, according to the parameter input by the user, the temperature is maintained through the program. And the surface temperature of the refractory material, the boundary layer temperature of the insulating material, the average temperature and thermal conductivity of each of the book and the refractory material, the heat transfer rate of the thermal insulation and the refractory material, and the amount of heat dissipation per unit area are automatically calculated and displayed on the result display unit 36. Therefore, when the parameters are input and the execution button provided by the program is pressed, the thickness of the heat insulating material suitable for the desired condition can be calculated by repeatedly calculating until the accurate surface temperature and the boundary layer temperature are obtained.

이상의 계산식은 윈도우스 프로그램인 마이크로소프트 엑셀을 이용하여 프로그래밍이 가능하므로, 설정하고자 하는 보온재, 대류상수, 방사계수 등의 해당 파라메터를 엑셀로 작성된 보일러 단열재 두께산출 계산서에 입력함으로써 총 열방산량이 자동으로 산출할 수 있다.Since the above formula can be programmed using Microsoft Excel, a Windows program, the total heat dissipation is automatically calculated by inputting the parameters such as the insulation, convection constant, and radiation coefficient to be set in the boiler insulation thickness calculation statement written in Excel. can do.

즉, 본 발명은 Excel프로그램의 워크시트에 해당되는 파라메터를 입력하고, 입력된 각 항목에 대한 연산은 상술한 계산식의 연산을 수행하는 Excel함수를 이용함으로써 최적의 보일러 단열재 두께를 용이하게 계산해 내도록 하고 있으며, 본 발명에 따른 실시예는 상술한 것에 한정되지 아니하고, 본 발명과 관련하여 통상의 지식을 가진 자에게 자명한 범위 내에서 다양하게 변형하여 실시할 수 있다.That is, the present invention inputs the parameters corresponding to the worksheet of the Excel program, and the calculation for each input item to easily calculate the optimal boiler insulation thickness by using the Excel function that performs the calculation of the above-described formula. In addition, the embodiment according to the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope apparent to those skilled in the art in connection with the present invention.

이상에서 설명한 바와 같은 본 발명에 따르면, 최적의 보일러 단열재 두께를 용이하게 산출해 내는 것이 가능하므로 이에 소요되던 인력을 절약할 수 있을 뿐만아니라, 고려해야 할 요소들을 항목별로 체계적으로 정리 함으로써 계산 상의 오류를 최소화 할 수 있다According to the present invention as described above, it is possible to easily calculate the optimum thickness of the insulation of the boiler, not only can save the manpower required, but also systematically organize the factors to be considered by item by item Can be minimized

Claims (1)

보온 및 내화재의 재질, 보온 및 내화재의 두께, 보온 및 내화재의 표면피복 자재의 방사계수, 적용부위별 대류상수 입력, 파이프의 경우는 외경, 내부온도, 외부온도 데이터 중 적어도 어느 하나를 입력하는 단계와;Entering at least one of the material of thermal insulation and fireproof material, the thickness of thermal insulation and fireproof material, the radiation coefficient of the surface coating material of thermal insulation and fireproof material, the convection constant for each application area, and in the case of pipes, the outer diameter, the internal temperature and the external temperature data. Wow; 예상 표면온도 및 경계층 온도를 설정하는 단계와;Setting an expected surface temperature and a boundary layer temperature; 열전달을 산출하는 단계와;Calculating heat transfer; 표면 및 경계층 온도를 계산하여 검증하는 단계와;Calculating and verifying surface and boundary layer temperatures; 상기 계산온도와 검증온도가 일치할 경우 해당 보온재의 두께로 산정하는 단계를 포함하는 것을 특징으로 하는 보온재 두께 산출방법.And calculating the thickness of the thermal insulation material when the calculated temperature and the verification temperature coincide with each other.
KR1020030047612A 2003-07-12 2003-07-12 Boiler insulation thickness calculation method KR20050007968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030047612A KR20050007968A (en) 2003-07-12 2003-07-12 Boiler insulation thickness calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030047612A KR20050007968A (en) 2003-07-12 2003-07-12 Boiler insulation thickness calculation method

Publications (1)

Publication Number Publication Date
KR20050007968A true KR20050007968A (en) 2005-01-21

Family

ID=37221268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030047612A KR20050007968A (en) 2003-07-12 2003-07-12 Boiler insulation thickness calculation method

Country Status (1)

Country Link
KR (1) KR20050007968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720819B1 (en) * 2005-07-04 2007-05-21 현대중공업 주식회사 Calculation for heating coil length in Tankers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720819B1 (en) * 2005-07-04 2007-05-21 현대중공업 주식회사 Calculation for heating coil length in Tankers

Similar Documents

Publication Publication Date Title
Stack et al. Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage
CN104632311B (en) Steamturbine complete set of equipments opens dynamic control device
Hoffschmidt et al. Performance evaluation of the 200-kW th HiTRec-II open volumetric air receiver
Wetter GenOptÖ–A Generic Optimization Program
You et al. Modeling of fluid flow and heat transfer in a trough solar collector
Agagna et al. An improved model for predicting the performance of parabolic trough solar collectors
Mazzoni et al. A simulation tool for concentrated solar power based on micro gas turbine engines
Khanmohammadi et al. Exergoeconomic evaluation of a two-pressure level fired combined-cycle power plant
Massardo Internal reforming solid oxide fuel cell gas turbine combined cycles (IRSOFC-GT)—Part II: exergy and thermoeconomic analyses
Wang et al. Thermal model of a solar thermochemical reactor for metal oxide reduction
Dunn et al. An experimental study of ammonia receiver geometries for dish concentrators
CN101749060A (en) Cooling system and method for a turbomachine
Kutkan et al. Modeling of turbulent premixed CH4/H2/air flames including the influence of stretch and heat losses
Peng et al. Effect of tube size on the thermal stress in concentrating solar receiver tubes
Yi et al. Simulation of a 220 kW hybrid SOFC gas turbine system and data comparison
Wiranegara et al. Minimum environmental load extension through compressed air extraction: Numerical analysis of a dry low NOx combustor
KR20050007968A (en) Boiler insulation thickness calculation method
Koholé et al. Flat-plate solar collector thermal performance and optimal operation mode by exergy analysis and numerical simulation
Kikstra Modelling, design and control of a cogenerating nuclear gas turbine plant.
Piotrowska et al. Application of parametric identification methods for the analysis of the heat exchanger dynamics
KR20040100382A (en) Conduit keep warm material setting-up method
Bausa et al. Dynamic Optimization of Startup and Load-Increasing Processes in Power Plants—Part II: Application
Riveros-Rosas et al. Three-dimensional analysis of a concentrated solar flux
CN107451304A (en) The modelling by mechanism computational methods of reheater transfer function model
CN114549232A (en) Hybrid energy flow calculation method for electricity-heat comprehensive energy system

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination