KR20050007963A - Wind load and seismic load calculation method - Google Patents
Wind load and seismic load calculation method Download PDFInfo
- Publication number
- KR20050007963A KR20050007963A KR1020030047607A KR20030047607A KR20050007963A KR 20050007963 A KR20050007963 A KR 20050007963A KR 1020030047607 A KR1020030047607 A KR 1020030047607A KR 20030047607 A KR20030047607 A KR 20030047607A KR 20050007963 A KR20050007963 A KR 20050007963A
- Authority
- KR
- South Korea
- Prior art keywords
- wind
- calculating
- load
- coefficient
- height
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 title claims description 27
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000012986 modification Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/02—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/02—Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Remote Sensing (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Atmospheric Sciences (AREA)
- Environmental Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Acoustics & Sound (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
본 발명은 풍하중 및 지진하중 산출 방법에 관한 것으로, 특히 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있도록 하는 풍하중 및 지진하중 산출 방법에 관한 것이다.The present invention relates to a wind load and earthquake load calculation method, and more particularly, to a wind load and earthquake load calculation method that can automatically calculate the wind load and earthquake load for each height based on the geographical inherent information of the region where the building is located. will be.
일반적으로 건물을 시공하기 전에 건물의 안전성, 경제성, 시공성을 고려하여 구조물을 설계하게 되는 데, 구조물을 설계할 때 건물이 세워지고 난 후에 건물이 견뎌야 할 각각의 외력을 시공전에 예측하여 건물이 안전하게 서 있을 수 있도록 한다.전술한 바와 같이, 시공전에 예측한 외력을 설계하중이라고 하는 데, 설계하중으로는 고정하중, 적재하중, 적설하중, 풍하중, 지진하중, 지하수압 및 토압, 온도하중, 유체압 등이 있다.In general, before designing a structure, the structure is designed in consideration of the safety, economics, and constructability of the building. When designing the structure, the building is predicted before construction by predicting each external force that the building must endure after the building is built. As described above, the external force predicted before construction is called the design load, and the design load includes fixed load, loading load, snow load, wind load, earthquake load, groundwater pressure and earth pressure, temperature load, and fluid pressure. Etc.
전술한, 설계하중 중에서 풍하중과 지진하중은 건출물 하중 기준에 준하여 해당 구조물이 위치할 지역의 지역적 특성을 고려하여 구조물의 높이별 풍하중과 지진하중을 계산하게 되는 데, 종래에는 수작업을 통해 풍하중과 지진하중을 계산하고 있다.The wind load and the earthquake load of the design load are calculated by considering the regional characteristics of the area where the structure is to be located, based on the building load criteria, and the wind load and the earthquake load by the height of the structure. The load is being calculated.
이에 따라, 복잡한 산출 과정에 의해 풍하중과 지진하중을 산출하는 데 소요되는 시간이 많아지게 되며, 계산 오류가 발생할 수 있게 되는 문제점이 있다.Accordingly, the time required to calculate the wind load and the earthquake load by a complicated calculation process increases, and there is a problem that a calculation error may occur.
본 발명은 전술한 문제점을 해결하기 위해서 안출된 것으로, 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있도록 하는 풍하중 및 지진하중 산출 방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, and provides a wind load and earthquake load calculation method for automatically calculating the wind load and earthquake load for each height of the building based on the geographical inherent information of the region where the building is located. Has its purpose.
도 1 및 도 2는 본 기술의 일 실시예에 따른 풍하중 및 지진하중 산출 방법을 설명하기 위한 플로우챠트.1 and 2 are a flow chart for explaining a wind load and earthquake load calculation method according to an embodiment of the present technology.
전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 풍하중 산출 방법은, 풍하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과; 노풍도에 따른 대기 경계층 높이, 기준 경도풍 높이 및 고도 분포 지수를 높이별로 계산하여 고도 분포 계수를 산출하는 과정과; 상기 산출된 고도 분포 계수와 상기 변수 입력 과정에서 입력받은 기본 풍속, 중요도 계수 및 풍속 할증 계수에 의거하여 높이별 설계 속도압을 산출하는 과정과; 상기 산출된 설계 속도압과 상기 변수 입력과정에서 입력받은 외압 계수에 의거하여 설계 풍력을 산출하는 과정과; 상기 산출된 설계 풍력과 풍하중 면적에 의거하여 설계에 직접 적용되는 풍하중을 산출하는 과정을 포함하여 이루어지는 것이 바람직하다.Wind load calculation method according to an embodiment of the present invention for achieving the above object is a variable input process for receiving a variety of variables required for calculation of the wind load; Calculating an altitude distribution coefficient by calculating an air boundary layer height, a reference longitude wind height, and an altitude distribution index according to the altitude for each height; Calculating a design speed pressure for each height based on the calculated altitude distribution coefficient and the basic wind speed, the importance coefficient, and the wind speed premium coefficient received in the variable input process; Calculating a design wind power based on the calculated design speed pressure and an external pressure coefficient received in the variable input process; It is preferable to include the step of calculating the wind load directly applied to the design based on the calculated design wind and wind load area.
나아가, 상기 변수는, 건축물이 설치될 지역의 기본 풍속, 상기 건축물의 용도 및 규모에 따른 중요도 계수, 상기 건축물이 위치할 지형에 따른 풍속 할증 계수, 외압 계수를 포함하는 것이 바람직하다.Further, the variable may include a basic wind speed of the area where the building is to be installed, an importance factor according to the use and scale of the building, a wind speed premium coefficient according to the terrain in which the building is located, and an external pressure coefficient.
한편, 본 발명의 일 실시예에 따른 지진하중 산출 방법은, 지진하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과; 상기 변수 입력 과정에서 입력받은 지반 계수 및 기본 진동 주기에 의거하여 동적 계수를 산출하는 과정과; 상기 산출된 동적 계수와 상기 변수 입력 과정에서 입력받은 지역 계수, 중요도 계수, 반응 수정 계수와 전체 중량에 의거하여 밑면 전단력 및 지진 계수를 산출하는 과정과; 각 층의 높이 및 중량에 의거하여 각 층에서의 지진하중을 산출하는 과정을 포함하여 이루어지는 것이 바람직하다.On the other hand, earthquake load calculation method according to an embodiment of the present invention, the variable input process for receiving a variety of variables required for the earthquake load calculation calculation; Calculating a dynamic coefficient based on the ground coefficient and the basic vibration period received in the variable input process; Calculating a bottom shear force and an earthquake coefficient based on the calculated dynamic coefficients, the area coefficients, the importance coefficients, the response modification coefficients, and the total weights received in the variable input process; It is preferable to include the process of calculating the earthquake load in each layer based on the height and weight of each layer.
나아가, 상기 변수는, 지역 계수, 중요도 계수, 반응 수정 계수, 기본 진동 주기, 건물 높이, 지반 계수를 포함하는 것이 바람직하다.Furthermore, the variable preferably includes a local coefficient, a importance coefficient, a response correction coefficient, a basic vibration period, a building height, and a ground coefficient.
이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 풍하중 및 지진하중 산출 방법에 대해서 상세하게 설명한다.Hereinafter, a wind load and an earthquake load calculation method according to a preferred embodiment of the present invention with reference to the accompanying drawings will be described in detail.
도 1 및 도 2는 본 기술의 일 실시예에 따른 풍하중 및 지진하중 산출 방법을 설명하기 위한 플로우챠트로, 도 1은 풍하중 산출 방법을 설명하기 위한 플로우챠트이고, 도 2는 지진하중 산출 방법을 설명하기 위한 플로우챠트이다.1 and 2 are flow charts for explaining the wind load and earthquake load calculation method according to an embodiment of the present technology, Figure 1 is a flow chart for explaining the wind load calculation method, Figure 2 is a method for calculating the earthquake load This is a flowchart for explanation.
우선, 풍하중 산출 과정을 살펴보면, 도 1에 도시하는 바와 같이, 풍하중 산출 계산에 필요한 각종 변수를 입력받는다(S10).First, referring to the wind load calculation process, as shown in FIG. 1, various variables required for the wind load calculation are input (S10).
상기한 과정 S10에서 입력받는 변수로는, 해당 구조물이 설치될 지역의 기본 풍속(V0), 건축물의 용도 및 규모에 따른 중요도 계수(Iw), 건축물이 위치할 지형에 따른 풍속 할증 계수(Kzt), 밀폐형 구조물의 각 방향별(상, 하, 측) 풍하중 외압 계수(Cpe) 또는 완전 개방형 구조물의 풍하중 외압 계수(Cf) 등이 있다.Variables received in the above process S10, the basic wind speed (V 0 ) of the area where the structure is to be installed, the importance factor (Iw) according to the use and scale of the building, the wind speed premium coefficient (Kzt) according to the terrain where the building is located ), Wind load external pressure coefficient (Cpe) for each direction (up, down, side) of a closed structure or wind load external pressure coefficient (Cf) of a fully open structure.
이후에는, 건설 지점 주변 지역의 지표면 상태를 나타내는 노풍도에 따른 대기 경계층 높이, 기준 경도풍 높이 및 고도 분포 지수 등을 높이별로 자동 계산하여 고도 분포 계수(Kzt)를 산출하고(S12), 수학식 1에 의거하여 해당 높이별 설계 속도압(qz)을 구한다(S14).Thereafter, the altitude distribution coefficient (Kzt) is calculated by automatically calculating the height of the air boundary layer, the reference longitude wind height, and the altitude distribution index according to the altitude indicating the ground surface area around the construction point for each height (S12), Equation 1 Based on the design velocity pressure qz for each height is obtained (S14).
기본 풍속(V0)이 30, 중요도 계수(Iw) 및 풍속 할증 계수(Kzt)가 각각 1이라고 가정했을 때, 산출된 설계 속도압(qz)은 표 1과 같다.Assuming that the basic wind speed V 0 is 30, the importance factor Iw and the wind speed premium coefficient Kzt are each 1, the calculated design speed pressure qz is shown in Table 1.
상기한 과정 S14를 통해 설계 속도압(qz)을 산출한 후에는, 수학식 2 및 3에 나타내는 바와 같이, 노풍도별 구조 골조용 가스트 영향 계수(Gf)와, 상기한 과정 S10에서 입력받은 외압 계수(Cpe/Cf)와, 상기한 과정 S14에서 산출된 설계 속도압(qz)에 의거하여 설계 풍력(pf)을 산출한다(S16).After calculating the design speed pressure qz through the above-described process S14, as shown in equations (2) and (3), the gust influence coefficients (Gf) for structural skeletons according to the degree of exposure and the external pressure input in the above-described process S10 are obtained. The design wind power pf is calculated based on the coefficient Cpe / Cf and the design speed pressure qz calculated in the above-described process S14 (S16).
전술한, 수학식 2는 밀폐형 및 일부 개방형 구조물의 설계 풍력 산출에 사용되는 수학식이고, 수학식 3은 완전 개방형 구조물의 설계 풍력 산출에 사용되는 수학식이다.Equation 2 described above is an equation used to calculate the design wind power of the enclosed and some open structures, and Equation 3 is an equation used to calculate the design wind power of the fully open structure.
한편, 외압 계수(Cpe)가 0.8이라고 가정했을 때, 산출된 설계 풍력(pf)은 표 2와 같다.On the other hand, assuming that the external pressure coefficient (Cpe) is 0.8, the calculated design wind power (pf) is shown in Table 2.
이후에는, 수학식 4에 나타내는 바와 같이, 상기한 과정 S16에서 산출한 설계 풍력(pf)과 풍하중 면적(A)에 의거하여 설계에 직접 적용되는 풍하중(Wf)을 산출한다(S18).Thereafter, as shown in Equation 4, the wind load Wf directly applied to the design is calculated based on the design wind power pf and wind load area A calculated in the above-described step S16 (S18).
한편, 지진하중 산출 과정은, 도 2에 도시하는 바와 같이, 지진하중 산출 계산에 필요한 각종 변수를 입력받는다(S20). 상기한 과정 S20에서 입력받는 변수로는, 지역 계수(A), 중요도 계수(IE), 반응 수정 계수(R), 기본 진동 주기(T), 건물 높이(hn, m),지반 계수(S) 등이있다. 이후에는, 수학식 5에 나타내는 바와 같이, 지반 계수(S) 및 기본 진동 주기(T)에 의거하여 동적 계수(C)를 산출한다(S22).Meanwhile, in the seismic load calculation process, as shown in FIG. 2, various variables required for the earthquake load calculation are input (S20). Variables received in the above process S20, the area coefficient (A), the importance factor (I E ), the response correction coefficient (R), the basic vibration period (T), the building height (hn, m), the ground coefficient (S ) Etc. Thereafter, as shown in Equation 5, the dynamic coefficient C is calculated based on the ground coefficient S and the basic vibration period T (S22).
전술한 바와 같이, 동적 계수(C)는 수학식 5에 의해 산출되는 데, 산출된 값이 1.75를 초과할 경우에는 1.75를 사용한다. 상기한 과정 S22를 통해 동적 계수를 산출한 후에는, 수학식 6 및 7에 의거하여 총 지진하중인 밑면 전단력(V) 및 총 지진 계수(Seismic factor)를 산출한다(S24, S26).As described above, the dynamic coefficient C is calculated by Equation 5, but when the calculated value exceeds 1.75, 1.75 is used. After calculating the dynamic coefficient through the above-described process S22, the base shear force V and the total seismic factor under the total earthquake are calculated based on Equations 6 and 7 (S24 and S26).
전술한 수학식 6에서 W는 건축물의 전체 중량으로, 각 층의 중량을 합산한 값이다.In Equation 6 described above, W is the total weight of the building and is the sum of the weights of the floors.
이후에는, 수학식 8에 의거하여 각 층에서의 지진하중(Fi)를 산출하는 데(S28), 산출된 층지진하중(Fi)의 총합은 상기한 과정 S에서 산출한 밑면 전단력(V)과 일치하게 된다.Subsequently, the seismic load (Fi) in each layer is calculated based on Equation 8 (S28), and the sum of the calculated layer earthquake loads (Fi) is equal to the bottom shear force (V) calculated in the above-described process S and Will match.
전술한, 수학식 8에서 k는 보정 계수이다.In Equation 8 described above, k is a correction factor.
지역 계수(A)가 0.11, 중요도 계수(IE)가 1.2, 동적 계수(C)가 1.62, 전체 중량(W)이 85(ton), 반응 수정 계수(R)가 3.5, 기본 진동 주기(T)가 1.05, 건물 높이(hn, m)가 60, 지반 계수(S)가 2.0, 보정 계수(k)가 1.5라고 가정했을 때, 산출되는 층지진하중(Fi)는 표 3과 같다.The area coefficient (A) is 0.11, the importance factor (I E ) is 1.2, the dynamic coefficient (C) is 1.62, the total weight (W) is 85 (ton), the reaction correction factor (R) is 3.5, the basic vibration period (T ) Is assumed to be 1.05, building height (hn, m) is 60, ground coefficient (S) is 2.0, and correction factor (k) is 1.5.
표 3에서 Fi/Wi는 각 층에서의 지진 계수이다.In Table 3, Fi / Wi is the seismic coefficient in each layer.
본 발명의 풍하중 및 지진하중 산출 방법은 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수 있다.Wind load and earthquake load calculation method of the present invention is not limited to the above-described embodiment can be carried out in various modifications within the range allowed by the technical idea of the present invention.
이상에서 설명한 바와 같은 본 발명의 풍하중 및 지진하중 산출 방법에 따르면, 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있게 된다.According to the wind load and earthquake load calculation method of the present invention as described above, it is possible to automatically calculate the wind load and earthquake load for each height based on the geographical inherent information of the region where the building is located.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030047607A KR20050007963A (en) | 2003-07-12 | 2003-07-12 | Wind load and seismic load calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030047607A KR20050007963A (en) | 2003-07-12 | 2003-07-12 | Wind load and seismic load calculation method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050007963A true KR20050007963A (en) | 2005-01-21 |
Family
ID=37221263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030047607A KR20050007963A (en) | 2003-07-12 | 2003-07-12 | Wind load and seismic load calculation method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050007963A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101324752B1 (en) * | 2011-08-25 | 2013-11-05 | 경북대학교 산학협력단 | Method and apparatus for calculating velocity pressure exposure coefficient |
KR20150107011A (en) * | 2014-03-12 | 2015-09-23 | 경북대학교 산학협력단 | Apparatus and method for calculating wind load considering topographic factor |
US9864099B2 (en) | 2012-11-20 | 2018-01-09 | Kyungpook National University Industry-Academic Cooperation | Apparatus and method for calculating wind load |
KR20200082957A (en) * | 2018-12-31 | 2020-07-08 | 경북대학교 산학협력단 | Apparatus and method for calculating design wind load |
CN111966955A (en) * | 2020-08-20 | 2020-11-20 | 东南大学 | Method for calculating wind load aiming at intelligent pole |
CN114781033A (en) * | 2022-04-27 | 2022-07-22 | 中铁四局集团建筑工程有限公司 | Method for determining thickness of disassembly-free heat preservation template for outer wall |
KR102453306B1 (en) * | 2022-05-27 | 2022-10-07 | 서울대학교 산학협력단 | Generation method of time history directional wind loads considering coherence |
-
2003
- 2003-07-12 KR KR1020030047607A patent/KR20050007963A/en not_active Application Discontinuation
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101324752B1 (en) * | 2011-08-25 | 2013-11-05 | 경북대학교 산학협력단 | Method and apparatus for calculating velocity pressure exposure coefficient |
US9864099B2 (en) | 2012-11-20 | 2018-01-09 | Kyungpook National University Industry-Academic Cooperation | Apparatus and method for calculating wind load |
KR20150107011A (en) * | 2014-03-12 | 2015-09-23 | 경북대학교 산학협력단 | Apparatus and method for calculating wind load considering topographic factor |
KR20200082957A (en) * | 2018-12-31 | 2020-07-08 | 경북대학교 산학협력단 | Apparatus and method for calculating design wind load |
CN111966955A (en) * | 2020-08-20 | 2020-11-20 | 东南大学 | Method for calculating wind load aiming at intelligent pole |
CN114781033A (en) * | 2022-04-27 | 2022-07-22 | 中铁四局集团建筑工程有限公司 | Method for determining thickness of disassembly-free heat preservation template for outer wall |
KR102453306B1 (en) * | 2022-05-27 | 2022-10-07 | 서울대학교 산학협력단 | Generation method of time history directional wind loads considering coherence |
WO2023229116A1 (en) * | 2022-05-27 | 2023-11-30 | 서울대학교 산학협력단 | Method for calculating time-history wind loads in considertion of correlation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gupta et al. | Estimation of seismic drift demands for frame structures | |
Mendis et al. | Wind loading on tall buildings | |
Barroso et al. | Probabilistic seismic demand analysis of controlled steel moment‐resisting frame structures | |
Kennedy et al. | Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards | |
KR20050007963A (en) | Wind load and seismic load calculation method | |
Atam | Friction damper-based passive vibration control assessment for seismically-excited buildings through comparison with active control: A case study | |
Rosenblueth | Seismic design requirements in a Mexican 1976 code | |
Kawaguchi et al. | Time history response of a tall building with a tuned mass damper under wind force | |
Bea | Reliability considerations in offshore platform criteria | |
Thakur et al. | Influence of rooftop telecommunication tower on set back-step back building resting on different ground slopes | |
Khedr | Seismic analysis of lattice towers | |
Erickson et al. | Base Isolation for Industrial Structures: Design and Construction Essentials | |
Kumar et al. | Along wind response of free standing tri-pole Lattice towers | |
Ferreira et al. | Comparisons of a tall building wind response with and without a TMD | |
Dutta et al. | Case study of a 40‐storey buckling‐restrained braced frame building located in Los Angeles | |
Preeti et al. | Comparative Study of Four Legged Self-Supported Angular Telecommunication Tower on Ground and Mounted on Roof Top | |
KR102467571B1 (en) | Method for reinforcing design of buildings using lateral load | |
Guidi et al. | N’Albero, A Temporary Spatial Structure Made of Steel Scaffolding System: Loading Tests as Tool to Check Structural Design | |
Teal | Seismic drift control and building periods | |
Vaidya et al. | Feasibility evaluation of base isolation for the aseismic design of structures | |
Barros et al. | Effects of Wind in Tall Buildings: a comparison for a real case and its vibration control using a Tuned Mass Damper | |
Barroso et al. | Evaluating the effectiveness of structural control within the context of performance-based engineering | |
Delavar | Seismic Assessment of 10-Story Building Using Tuned Mass Damper | |
Hooshmand et al. | Evaluation of dynamic analysis of diagrid tall steel building subjected to wind with control approach of operation and acceleration criteria | |
Flint et al. | The development of the British draft code of practice for the loading of lattice towers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |