KR20050007963A - Wind load and seismic load calculation method - Google Patents

Wind load and seismic load calculation method Download PDF

Info

Publication number
KR20050007963A
KR20050007963A KR1020030047607A KR20030047607A KR20050007963A KR 20050007963 A KR20050007963 A KR 20050007963A KR 1020030047607 A KR1020030047607 A KR 1020030047607A KR 20030047607 A KR20030047607 A KR 20030047607A KR 20050007963 A KR20050007963 A KR 20050007963A
Authority
KR
South Korea
Prior art keywords
wind
calculating
load
coefficient
height
Prior art date
Application number
KR1020030047607A
Other languages
Korean (ko)
Inventor
김대중
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020030047607A priority Critical patent/KR20050007963A/en
Publication of KR20050007963A publication Critical patent/KR20050007963A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/02Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring forces exerted by the fluid on solid bodies, e.g. anemometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE: A method for calculating the wind load and a seismic load is provided to automatically calculate the wind load and the seismic load based on the geometric characteristic of the area to construct the buildings. CONSTITUTION: A method for calculating the wind load and a seismic load includes the steps of: a variable input process(S10) for receiving various variable required for calculating the wind load; a process(S12) for calculating the coefficients of altitude distribution by calculating the atmosphere boundary height, a reference height for longitude wind and the altitude distribution index; a process(S14) for calculating the design speed pressure for each height based on the basic wind speed, the degree of significance and the wind speed coefficient; a process(S16) for calculating the design wind force based on the external pressure coefficient; and a process(S18) for calculating the wind load directly applying to the design based on the calculated design wind force and the wind load area.

Description

풍하중 및 지진하중 산출 방법{WIND LOAD AND SEISMIC LOAD CALCULATION METHOD}Wind load and earthquake load calculation method {WIND LOAD AND SEISMIC LOAD CALCULATION METHOD}

본 발명은 풍하중 및 지진하중 산출 방법에 관한 것으로, 특히 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있도록 하는 풍하중 및 지진하중 산출 방법에 관한 것이다.The present invention relates to a wind load and earthquake load calculation method, and more particularly, to a wind load and earthquake load calculation method that can automatically calculate the wind load and earthquake load for each height based on the geographical inherent information of the region where the building is located. will be.

일반적으로 건물을 시공하기 전에 건물의 안전성, 경제성, 시공성을 고려하여 구조물을 설계하게 되는 데, 구조물을 설계할 때 건물이 세워지고 난 후에 건물이 견뎌야 할 각각의 외력을 시공전에 예측하여 건물이 안전하게 서 있을 수 있도록 한다.전술한 바와 같이, 시공전에 예측한 외력을 설계하중이라고 하는 데, 설계하중으로는 고정하중, 적재하중, 적설하중, 풍하중, 지진하중, 지하수압 및 토압, 온도하중, 유체압 등이 있다.In general, before designing a structure, the structure is designed in consideration of the safety, economics, and constructability of the building. When designing the structure, the building is predicted before construction by predicting each external force that the building must endure after the building is built. As described above, the external force predicted before construction is called the design load, and the design load includes fixed load, loading load, snow load, wind load, earthquake load, groundwater pressure and earth pressure, temperature load, and fluid pressure. Etc.

전술한, 설계하중 중에서 풍하중과 지진하중은 건출물 하중 기준에 준하여 해당 구조물이 위치할 지역의 지역적 특성을 고려하여 구조물의 높이별 풍하중과 지진하중을 계산하게 되는 데, 종래에는 수작업을 통해 풍하중과 지진하중을 계산하고 있다.The wind load and the earthquake load of the design load are calculated by considering the regional characteristics of the area where the structure is to be located, based on the building load criteria, and the wind load and the earthquake load by the height of the structure. The load is being calculated.

이에 따라, 복잡한 산출 과정에 의해 풍하중과 지진하중을 산출하는 데 소요되는 시간이 많아지게 되며, 계산 오류가 발생할 수 있게 되는 문제점이 있다.Accordingly, the time required to calculate the wind load and the earthquake load by a complicated calculation process increases, and there is a problem that a calculation error may occur.

본 발명은 전술한 문제점을 해결하기 위해서 안출된 것으로, 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있도록 하는 풍하중 및 지진하중 산출 방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, and provides a wind load and earthquake load calculation method for automatically calculating the wind load and earthquake load for each height of the building based on the geographical inherent information of the region where the building is located. Has its purpose.

도 1 및 도 2는 본 기술의 일 실시예에 따른 풍하중 및 지진하중 산출 방법을 설명하기 위한 플로우챠트.1 and 2 are a flow chart for explaining a wind load and earthquake load calculation method according to an embodiment of the present technology.

전술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 풍하중 산출 방법은, 풍하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과; 노풍도에 따른 대기 경계층 높이, 기준 경도풍 높이 및 고도 분포 지수를 높이별로 계산하여 고도 분포 계수를 산출하는 과정과; 상기 산출된 고도 분포 계수와 상기 변수 입력 과정에서 입력받은 기본 풍속, 중요도 계수 및 풍속 할증 계수에 의거하여 높이별 설계 속도압을 산출하는 과정과; 상기 산출된 설계 속도압과 상기 변수 입력과정에서 입력받은 외압 계수에 의거하여 설계 풍력을 산출하는 과정과; 상기 산출된 설계 풍력과 풍하중 면적에 의거하여 설계에 직접 적용되는 풍하중을 산출하는 과정을 포함하여 이루어지는 것이 바람직하다.Wind load calculation method according to an embodiment of the present invention for achieving the above object is a variable input process for receiving a variety of variables required for calculation of the wind load; Calculating an altitude distribution coefficient by calculating an air boundary layer height, a reference longitude wind height, and an altitude distribution index according to the altitude for each height; Calculating a design speed pressure for each height based on the calculated altitude distribution coefficient and the basic wind speed, the importance coefficient, and the wind speed premium coefficient received in the variable input process; Calculating a design wind power based on the calculated design speed pressure and an external pressure coefficient received in the variable input process; It is preferable to include the step of calculating the wind load directly applied to the design based on the calculated design wind and wind load area.

나아가, 상기 변수는, 건축물이 설치될 지역의 기본 풍속, 상기 건축물의 용도 및 규모에 따른 중요도 계수, 상기 건축물이 위치할 지형에 따른 풍속 할증 계수, 외압 계수를 포함하는 것이 바람직하다.Further, the variable may include a basic wind speed of the area where the building is to be installed, an importance factor according to the use and scale of the building, a wind speed premium coefficient according to the terrain in which the building is located, and an external pressure coefficient.

한편, 본 발명의 일 실시예에 따른 지진하중 산출 방법은, 지진하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과; 상기 변수 입력 과정에서 입력받은 지반 계수 및 기본 진동 주기에 의거하여 동적 계수를 산출하는 과정과; 상기 산출된 동적 계수와 상기 변수 입력 과정에서 입력받은 지역 계수, 중요도 계수, 반응 수정 계수와 전체 중량에 의거하여 밑면 전단력 및 지진 계수를 산출하는 과정과; 각 층의 높이 및 중량에 의거하여 각 층에서의 지진하중을 산출하는 과정을 포함하여 이루어지는 것이 바람직하다.On the other hand, earthquake load calculation method according to an embodiment of the present invention, the variable input process for receiving a variety of variables required for the earthquake load calculation calculation; Calculating a dynamic coefficient based on the ground coefficient and the basic vibration period received in the variable input process; Calculating a bottom shear force and an earthquake coefficient based on the calculated dynamic coefficients, the area coefficients, the importance coefficients, the response modification coefficients, and the total weights received in the variable input process; It is preferable to include the process of calculating the earthquake load in each layer based on the height and weight of each layer.

나아가, 상기 변수는, 지역 계수, 중요도 계수, 반응 수정 계수, 기본 진동 주기, 건물 높이, 지반 계수를 포함하는 것이 바람직하다.Furthermore, the variable preferably includes a local coefficient, a importance coefficient, a response correction coefficient, a basic vibration period, a building height, and a ground coefficient.

이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 풍하중 및 지진하중 산출 방법에 대해서 상세하게 설명한다.Hereinafter, a wind load and an earthquake load calculation method according to a preferred embodiment of the present invention with reference to the accompanying drawings will be described in detail.

도 1 및 도 2는 본 기술의 일 실시예에 따른 풍하중 및 지진하중 산출 방법을 설명하기 위한 플로우챠트로, 도 1은 풍하중 산출 방법을 설명하기 위한 플로우챠트이고, 도 2는 지진하중 산출 방법을 설명하기 위한 플로우챠트이다.1 and 2 are flow charts for explaining the wind load and earthquake load calculation method according to an embodiment of the present technology, Figure 1 is a flow chart for explaining the wind load calculation method, Figure 2 is a method for calculating the earthquake load This is a flowchart for explanation.

우선, 풍하중 산출 과정을 살펴보면, 도 1에 도시하는 바와 같이, 풍하중 산출 계산에 필요한 각종 변수를 입력받는다(S10).First, referring to the wind load calculation process, as shown in FIG. 1, various variables required for the wind load calculation are input (S10).

상기한 과정 S10에서 입력받는 변수로는, 해당 구조물이 설치될 지역의 기본 풍속(V0), 건축물의 용도 및 규모에 따른 중요도 계수(Iw), 건축물이 위치할 지형에 따른 풍속 할증 계수(Kzt), 밀폐형 구조물의 각 방향별(상, 하, 측) 풍하중 외압 계수(Cpe) 또는 완전 개방형 구조물의 풍하중 외압 계수(Cf) 등이 있다.Variables received in the above process S10, the basic wind speed (V 0 ) of the area where the structure is to be installed, the importance factor (Iw) according to the use and scale of the building, the wind speed premium coefficient (Kzt) according to the terrain where the building is located ), Wind load external pressure coefficient (Cpe) for each direction (up, down, side) of a closed structure or wind load external pressure coefficient (Cf) of a fully open structure.

이후에는, 건설 지점 주변 지역의 지표면 상태를 나타내는 노풍도에 따른 대기 경계층 높이, 기준 경도풍 높이 및 고도 분포 지수 등을 높이별로 자동 계산하여 고도 분포 계수(Kzt)를 산출하고(S12), 수학식 1에 의거하여 해당 높이별 설계 속도압(qz)을 구한다(S14).Thereafter, the altitude distribution coefficient (Kzt) is calculated by automatically calculating the height of the air boundary layer, the reference longitude wind height, and the altitude distribution index according to the altitude indicating the ground surface area around the construction point for each height (S12), Equation 1 Based on the design velocity pressure qz for each height is obtained (S14).

기본 풍속(V0)이 30, 중요도 계수(Iw) 및 풍속 할증 계수(Kzt)가 각각 1이라고 가정했을 때, 산출된 설계 속도압(qz)은 표 1과 같다.Assuming that the basic wind speed V 0 is 30, the importance factor Iw and the wind speed premium coefficient Kzt are each 1, the calculated design speed pressure qz is shown in Table 1.

노풍도Old road 높이(m)Height (m) AA BB CC DD 55 1919 3737 5656 7272 1010 1919 3737 5656 8484 1515 1919 3737 6464 9191 2020 1919 4343 7070 9696 3030 2626 5151 7979 104104 4040 3131 5858 8686 111111 5050 3636 6464 9292 116116 6060 4141 6969 9797 120120 7070 4545 7474 101101 124124 8080 4949 7878 106106 127127 9090 5353 8282 109109 130130 100100 5757 8686 113113 133133 150150 7474 103103 127127 144144 200200 9090 117117 139139 153153 250250 104104 129129 149149 160160 300300 117117 140140 157157 350350 130130 150150 400400 142142 159159 450450 153153 500500 165165

상기한 과정 S14를 통해 설계 속도압(qz)을 산출한 후에는, 수학식 2 및 3에 나타내는 바와 같이, 노풍도별 구조 골조용 가스트 영향 계수(Gf)와, 상기한 과정 S10에서 입력받은 외압 계수(Cpe/Cf)와, 상기한 과정 S14에서 산출된 설계 속도압(qz)에 의거하여 설계 풍력(pf)을 산출한다(S16).After calculating the design speed pressure qz through the above-described process S14, as shown in equations (2) and (3), the gust influence coefficients (Gf) for structural skeletons according to the degree of exposure and the external pressure input in the above-described process S10 are obtained. The design wind power pf is calculated based on the coefficient Cpe / Cf and the design speed pressure qz calculated in the above-described process S14 (S16).

전술한, 수학식 2는 밀폐형 및 일부 개방형 구조물의 설계 풍력 산출에 사용되는 수학식이고, 수학식 3은 완전 개방형 구조물의 설계 풍력 산출에 사용되는 수학식이다.Equation 2 described above is an equation used to calculate the design wind power of the enclosed and some open structures, and Equation 3 is an equation used to calculate the design wind power of the fully open structure.

한편, 외압 계수(Cpe)가 0.8이라고 가정했을 때, 산출된 설계 풍력(pf)은 표 2와 같다.On the other hand, assuming that the external pressure coefficient (Cpe) is 0.8, the calculated design wind power (pf) is shown in Table 2.

노풍도Old road 높이(m)Height (m) AA BB CC DD 55 3838 6565 8686 103103 1010 3838 6565 8686 212212 1515 3838 6565 9797 131131 2020 3838 7575 106106 139139 3030 5151 9090 120120 150150 4040 6262 102102 130130 159159 5050 7272 112112 139139 167167 6060 8181 121121 147147 173173 7070 9090 130130 154154 178178 8080 9898 138138 160160 183183 9090 106106 145145 166166 187187 100100 114114 152152 172172 191191 150150 149149 182182 194194 208208 200200 180180 206206 211211 220220 250250 208208 228228 226226 230230 300300 235235 247247 239239 00 350350 260260 264264 00 00 400400 284284 280280 00 00 450450 307307 00 00 00 500500 329329 00 00 00

이후에는, 수학식 4에 나타내는 바와 같이, 상기한 과정 S16에서 산출한 설계 풍력(pf)과 풍하중 면적(A)에 의거하여 설계에 직접 적용되는 풍하중(Wf)을 산출한다(S18).Thereafter, as shown in Equation 4, the wind load Wf directly applied to the design is calculated based on the design wind power pf and wind load area A calculated in the above-described step S16 (S18).

한편, 지진하중 산출 과정은, 도 2에 도시하는 바와 같이, 지진하중 산출 계산에 필요한 각종 변수를 입력받는다(S20). 상기한 과정 S20에서 입력받는 변수로는, 지역 계수(A), 중요도 계수(IE), 반응 수정 계수(R), 기본 진동 주기(T), 건물 높이(hn, m),지반 계수(S) 등이있다. 이후에는, 수학식 5에 나타내는 바와 같이, 지반 계수(S) 및 기본 진동 주기(T)에 의거하여 동적 계수(C)를 산출한다(S22).Meanwhile, in the seismic load calculation process, as shown in FIG. 2, various variables required for the earthquake load calculation are input (S20). Variables received in the above process S20, the area coefficient (A), the importance factor (I E ), the response correction coefficient (R), the basic vibration period (T), the building height (hn, m), the ground coefficient (S ) Etc. Thereafter, as shown in Equation 5, the dynamic coefficient C is calculated based on the ground coefficient S and the basic vibration period T (S22).

전술한 바와 같이, 동적 계수(C)는 수학식 5에 의해 산출되는 데, 산출된 값이 1.75를 초과할 경우에는 1.75를 사용한다. 상기한 과정 S22를 통해 동적 계수를 산출한 후에는, 수학식 6 및 7에 의거하여 총 지진하중인 밑면 전단력(V) 및 총 지진 계수(Seismic factor)를 산출한다(S24, S26).As described above, the dynamic coefficient C is calculated by Equation 5, but when the calculated value exceeds 1.75, 1.75 is used. After calculating the dynamic coefficient through the above-described process S22, the base shear force V and the total seismic factor under the total earthquake are calculated based on Equations 6 and 7 (S24 and S26).

전술한 수학식 6에서 W는 건축물의 전체 중량으로, 각 층의 중량을 합산한 값이다.In Equation 6 described above, W is the total weight of the building and is the sum of the weights of the floors.

이후에는, 수학식 8에 의거하여 각 층에서의 지진하중(Fi)를 산출하는 데(S28), 산출된 층지진하중(Fi)의 총합은 상기한 과정 S에서 산출한 밑면 전단력(V)과 일치하게 된다.Subsequently, the seismic load (Fi) in each layer is calculated based on Equation 8 (S28), and the sum of the calculated layer earthquake loads (Fi) is equal to the bottom shear force (V) calculated in the above-described process S and Will match.

전술한, 수학식 8에서 k는 보정 계수이다.In Equation 8 described above, k is a correction factor.

지역 계수(A)가 0.11, 중요도 계수(IE)가 1.2, 동적 계수(C)가 1.62, 전체 중량(W)이 85(ton), 반응 수정 계수(R)가 3.5, 기본 진동 주기(T)가 1.05, 건물 높이(hn, m)가 60, 지반 계수(S)가 2.0, 보정 계수(k)가 1.5라고 가정했을 때, 산출되는 층지진하중(Fi)는 표 3과 같다.The area coefficient (A) is 0.11, the importance factor (I E ) is 1.2, the dynamic coefficient (C) is 1.62, the total weight (W) is 85 (ton), the reaction correction factor (R) is 3.5, the basic vibration period (T ) Is assumed to be 1.05, building height (hn, m) is 60, ground coefficient (S) is 2.0, and correction factor (k) is 1.5.

hi(m)hi (m) Wi(ton)Wi (ton) (Wi*hi)k (Wi * hi) k FiFi Fi/WiFi / Wi 55 55 5656 0.00.0 0.000.00 1010 55 158158 0.00.0 0.000.00 1515 55 290290 0.00.0 0.010.01 2020 55 447447 0.00.0 0.010.01 3030 55 822822 0.10.1 0.010.01 4040 55 1,2651,265 0.10.1 0.020.02 5050 55 1,7681,768 0.20.2 0.030.03 6060 55 2,3242,324 0.20.2 0.040.04 7070 55 2,9282,928 0.30.3 0.050.05 8080 55 3,5783,578 0.30.3 0.060.06 9090 55 4,2694,269 0.40.4 0.070.07 100100 55 5,0005,000 0.40.4 0.090.09 110110 55 5,7685,768 0.50.5 0.100.10 120120 55 6,5736,573 0.60.6 0.110.11 130130 55 7,4117,411 0.60.6 0.130.13 140140 55 8,2838,283 0.70.7 0.140.14 150150 55 9,1869,186 0.80.8 0.160.16 -- -- -- -- -- -- synthesis 8585 60,12560,125 5.25.2 1.041.04

표 3에서 Fi/Wi는 각 층에서의 지진 계수이다.In Table 3, Fi / Wi is the seismic coefficient in each layer.

본 발명의 풍하중 및 지진하중 산출 방법은 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수 있다.Wind load and earthquake load calculation method of the present invention is not limited to the above-described embodiment can be carried out in various modifications within the range allowed by the technical idea of the present invention.

이상에서 설명한 바와 같은 본 발명의 풍하중 및 지진하중 산출 방법에 따르면, 건축물이 위치할 지역의 지리적 고유 정보에 의거하여 건축물의 높이별 풍하중과 지진하중을 자동으로 산출할 수 있게 된다.According to the wind load and earthquake load calculation method of the present invention as described above, it is possible to automatically calculate the wind load and earthquake load for each height based on the geographical inherent information of the region where the building is located.

Claims (4)

풍하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과;A variable input process for receiving various variables required for wind load calculation calculation; 노풍도에 따른 대기 경계층 높이, 기준 경도풍 높이 및 고도 분포 지수를 높이별로 계산하여 고도 분포 계수를 산출하는 과정과;Calculating an altitude distribution coefficient by calculating an air boundary layer height, a reference longitude wind height, and an altitude distribution index according to the altitude for each height; 상기 산출된 고도 분포 계수와 상기 변수 입력 과정에서 입력받은 기본 풍속, 중요도 계수 및 풍속 할증 계수에 의거하여 높이별 설계 속도압을 산출하는 과정과;Calculating a design speed pressure for each height based on the calculated altitude distribution coefficient and the basic wind speed, the importance coefficient, and the wind speed premium coefficient received in the variable input process; 상기 산출된 설계 속도압과 상기 변수 입력 과정에서 입력받은 외압 계수에 의거하여 설계 풍력을 산출하는 과정과;Calculating a design wind power based on the calculated design speed pressure and an external pressure coefficient received in the variable input process; 상기 산출된 설계 풍력과 풍하중 면적에 의거하여 설계에 직접 적용되는 풍하중을 산출하는 과정을 포함하여 이루어지는 풍하중 산출 방법.Wind load calculation method comprising the step of calculating the wind load directly applied to the design based on the calculated design wind and wind load area. 제 1항에 있어서, 상기 변수는,The method of claim 1, wherein the variable, 건축물이 설치될 지역의 기본 풍속, 상기 건축물의 용도 및 규모에 따른 중요도 계수, 상기 건축물이 위치할 지형에 따른 풍속 할증 계수, 외압 계수를 포함하는 것을 특징으로 하는 풍하중 산출 방법.Basic wind speed of the area where the building is to be installed, importance factor according to the use and scale of the building, wind speed premium coefficient according to the terrain in which the building is located, wind pressure calculation method comprising the external pressure coefficient. 지진하중 산출 계산에 필요한 각종 변수를 입력받는 변수 입력 과정과;A variable input process for receiving various variables necessary for calculating the earthquake load; 상기 변수 입력 과정에서 입력받은 지반 계수 및 기본 진동 주기에 의거하여동적 계수를 산출하는 과정과;Calculating dynamic coefficients based on the ground coefficients and the basic vibration periods inputted in the variable input process; 상기 산출된 동적 계수와 상기 변수 입력 과정에서 입력받은 지역 계수, 중요도 계수, 반응 수정 계수와 전체 중량에 의거하여 밑면 전단력 및 지진 계수를 산출하는 과정과;Calculating a bottom shear force and an earthquake coefficient based on the calculated dynamic coefficients, the area coefficients, the importance coefficients, the response modification coefficients, and the total weights received in the variable input process; 각 층의 높이 및 중량에 의거하여 각 층에서의 지진하중을 산출하는 과정을 포함하여 이루어지는 지진하중 산출 방법.An earthquake load calculation method comprising the step of calculating the earthquake load in each floor based on the height and weight of each floor. 제 3항에 있어서, 상기 변수는,The method of claim 3, wherein the variable, 지역 계수, 중요도 계수, 반응 수정 계수, 기본 진동 주기, 건물 높이, 지반 계수를 포함하는 것을 특징으로 하는 지진하중 산출 방법.An earthquake load calculation method comprising an area coefficient, a importance factor, a response correction factor, a basic vibration period, a building height, and a ground coefficient.
KR1020030047607A 2003-07-12 2003-07-12 Wind load and seismic load calculation method KR20050007963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030047607A KR20050007963A (en) 2003-07-12 2003-07-12 Wind load and seismic load calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030047607A KR20050007963A (en) 2003-07-12 2003-07-12 Wind load and seismic load calculation method

Publications (1)

Publication Number Publication Date
KR20050007963A true KR20050007963A (en) 2005-01-21

Family

ID=37221263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030047607A KR20050007963A (en) 2003-07-12 2003-07-12 Wind load and seismic load calculation method

Country Status (1)

Country Link
KR (1) KR20050007963A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324752B1 (en) * 2011-08-25 2013-11-05 경북대학교 산학협력단 Method and apparatus for calculating velocity pressure exposure coefficient
KR20150107011A (en) * 2014-03-12 2015-09-23 경북대학교 산학협력단 Apparatus and method for calculating wind load considering topographic factor
US9864099B2 (en) 2012-11-20 2018-01-09 Kyungpook National University Industry-Academic Cooperation Apparatus and method for calculating wind load
KR20200082957A (en) * 2018-12-31 2020-07-08 경북대학교 산학협력단 Apparatus and method for calculating design wind load
CN111966955A (en) * 2020-08-20 2020-11-20 东南大学 Method for calculating wind load aiming at intelligent pole
CN114781033A (en) * 2022-04-27 2022-07-22 中铁四局集团建筑工程有限公司 Method for determining thickness of disassembly-free heat preservation template for outer wall
KR102453306B1 (en) * 2022-05-27 2022-10-07 서울대학교 산학협력단 Generation method of time history directional wind loads considering coherence

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324752B1 (en) * 2011-08-25 2013-11-05 경북대학교 산학협력단 Method and apparatus for calculating velocity pressure exposure coefficient
US9864099B2 (en) 2012-11-20 2018-01-09 Kyungpook National University Industry-Academic Cooperation Apparatus and method for calculating wind load
KR20150107011A (en) * 2014-03-12 2015-09-23 경북대학교 산학협력단 Apparatus and method for calculating wind load considering topographic factor
KR20200082957A (en) * 2018-12-31 2020-07-08 경북대학교 산학협력단 Apparatus and method for calculating design wind load
CN111966955A (en) * 2020-08-20 2020-11-20 东南大学 Method for calculating wind load aiming at intelligent pole
CN114781033A (en) * 2022-04-27 2022-07-22 中铁四局集团建筑工程有限公司 Method for determining thickness of disassembly-free heat preservation template for outer wall
KR102453306B1 (en) * 2022-05-27 2022-10-07 서울대학교 산학협력단 Generation method of time history directional wind loads considering coherence
WO2023229116A1 (en) * 2022-05-27 2023-11-30 서울대학교 산학협력단 Method for calculating time-history wind loads in considertion of correlation

Similar Documents

Publication Publication Date Title
Gupta et al. Estimation of seismic drift demands for frame structures
Mendis et al. Wind loading on tall buildings
Barroso et al. Probabilistic seismic demand analysis of controlled steel moment‐resisting frame structures
Kennedy et al. Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards
KR20050007963A (en) Wind load and seismic load calculation method
Atam Friction damper-based passive vibration control assessment for seismically-excited buildings through comparison with active control: A case study
Rosenblueth Seismic design requirements in a Mexican 1976 code
Kawaguchi et al. Time history response of a tall building with a tuned mass damper under wind force
Bea Reliability considerations in offshore platform criteria
Thakur et al. Influence of rooftop telecommunication tower on set back-step back building resting on different ground slopes
Khedr Seismic analysis of lattice towers
Erickson et al. Base Isolation for Industrial Structures: Design and Construction Essentials
Kumar et al. Along wind response of free standing tri-pole Lattice towers
Ferreira et al. Comparisons of a tall building wind response with and without a TMD
Dutta et al. Case study of a 40‐storey buckling‐restrained braced frame building located in Los Angeles
Preeti et al. Comparative Study of Four Legged Self-Supported Angular Telecommunication Tower on Ground and Mounted on Roof Top
KR102467571B1 (en) Method for reinforcing design of buildings using lateral load
Guidi et al. N’Albero, A Temporary Spatial Structure Made of Steel Scaffolding System: Loading Tests as Tool to Check Structural Design
Teal Seismic drift control and building periods
Vaidya et al. Feasibility evaluation of base isolation for the aseismic design of structures
Barros et al. Effects of Wind in Tall Buildings: a comparison for a real case and its vibration control using a Tuned Mass Damper
Barroso et al. Evaluating the effectiveness of structural control within the context of performance-based engineering
Delavar Seismic Assessment of 10-Story Building Using Tuned Mass Damper
Hooshmand et al. Evaluation of dynamic analysis of diagrid tall steel building subjected to wind with control approach of operation and acceleration criteria
Flint et al. The development of the British draft code of practice for the loading of lattice towers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application