KR20050006499A - Method for Forming Interlayer Insulating Film of Semiconductor Device - Google Patents

Method for Forming Interlayer Insulating Film of Semiconductor Device Download PDF

Info

Publication number
KR20050006499A
KR20050006499A KR1020030046336A KR20030046336A KR20050006499A KR 20050006499 A KR20050006499 A KR 20050006499A KR 1020030046336 A KR1020030046336 A KR 1020030046336A KR 20030046336 A KR20030046336 A KR 20030046336A KR 20050006499 A KR20050006499 A KR 20050006499A
Authority
KR
South Korea
Prior art keywords
gas
boron
fsg
film
interlayer insulating
Prior art date
Application number
KR1020030046336A
Other languages
Korean (ko)
Other versions
KR101017052B1 (en
Inventor
박상종
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020030046336A priority Critical patent/KR101017052B1/en
Publication of KR20050006499A publication Critical patent/KR20050006499A/en
Application granted granted Critical
Publication of KR101017052B1 publication Critical patent/KR101017052B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02131Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being halogen doped silicon oxides, e.g. FSG

Abstract

PURPOSE: A method for forming an interlayer dielectric of a semiconductor device is provided to decrease a dielectric constant of an FSG(fluorinated silicate glass) layer and improve stability of the FSG layer by injecting source gas of boron in a manner that a part of silicon atoms is replaced by boron atoms while maintaining the same content of fluorine atoms as a conventional technology. CONSTITUTION: An interlayer dielectric is formed of an FSG layer. In depositing the FSG layer, source gas of boron is injected. The source gas of boron is selected from a group of BH3 gas, BF3 gas and a composition thereof. The content of boron atoms of the FSG layer is 3-20 atom percent.

Description

반도체소자의 층간절연막 형성방법{Method for Forming Interlayer Insulating Film of Semiconductor Device}Method for Forming Interlayer Insulating Film of Semiconductor Device

본 발명은 반도체소자의 층간절연막 형성방법에 관한 것으로, 더욱 상세하게는 금속배선간의 층간 절연을 위한 절연막으로 사용되는 FSG(Fluorinated Silicate Glass, SiOF)막의 유전상수를 낮추고, 안정성을 향상시키기 위한 FSG막 형성방법에 관한 것이다.The present invention relates to a method for forming an interlayer insulating film of a semiconductor device, and more particularly, to reduce the dielectric constant of an FSG (Fluorinated Silicate Glass, SiOF) film used as an insulating film for interlayer insulation between metal wirings, and to improve stability. It relates to a formation method.

반도체장치의 금속배선(metal layer)은 반도체장치의 속도, 수율 및 신뢰성에 큰 영향을 주기 때문에, 금속배선 형성공정은 반도체장치 제조공정 중에 매우 중요한 위치를 차지하고 있다. 반도체장치는 일반적으로 다수의 회로 소자들을 집적한 장치로서, 다수의 회로소자들을 보다 효과적으로 집적하기 위하여 다층 구조(multi layer)를 점차 많이 사용하고 있다.Since the metal layer of the semiconductor device has a great influence on the speed, yield and reliability of the semiconductor device, the metallization forming process occupies a very important position in the semiconductor device manufacturing process. BACKGROUND In general, semiconductor devices are devices in which a plurality of circuit elements are integrated, and in order to more effectively integrate a plurality of circuit elements, multi-layers are increasingly used.

다층 구조를 갖는 반도체장치라 함은 다수의 회로소자들이 서로 다른 층들에형성되는 구조를 일컫는 것으로, 이들의 상호 연결을 위해 배선구조 역시 다층화된다.The semiconductor device having a multi-layer structure refers to a structure in which a plurality of circuit elements are formed in different layers, and the wiring structure is also multilayered for interconnection thereof.

다층 배선구조란 금속 배선층과 금속 층간절연막이 상호 교대로 반복되는 구조로서, 금속 배선층에서의 단락이나 금속 층간절연막의 불량에 기인하는 금속 배선층간의 단선을 방지하는 것이 요구된다.The multilayer wiring structure is a structure in which the metal wiring layer and the metal interlayer insulating film are alternately repeated, and it is required to prevent the disconnection between the metal wiring layers due to a short circuit in the metal wiring layer or a failure of the metal interlayer insulating film.

따라서 반도체소자를 형성하기 위하여 상·하부에 다수의 금속배선을 형성시킨 후, 상·하부층의 금속배선을 서로 절연하기 위하여 층간절연막을 형성한다. 상기 층간절연막으로는 여러 가지 물질이 사용되고 있으나, 종래에는 주로 USG (Undoped Silicate Glass)막을 사용하였다.Therefore, after forming a plurality of metal wirings on the upper and lower portions to form a semiconductor device, an interlayer insulating film is formed to insulate the metal wirings of the upper and lower layers from each other. Various materials are used as the interlayer insulating film, but a conventional USG (Undoped Silicate Glass) film is mainly used.

그러나 반도체소자가 고집적화 됨에 따라 금속배선간의 간격도 점점 좁아지면서 더욱 저유전상수를 갖는 절연물질을 필요로 하게 되었다. 이에 따라 종래의 USG막에서의 산소원자 대신 불소원자를 치환 첨가한 FSG막을 증착하여 유전상수를 종래의 4.0에서 약 3.5 정도로 낮추기에 이르렀다.However, as semiconductor devices have been highly integrated, the gaps between metal wirings have become narrower, requiring an insulating material having a lower dielectric constant. Accordingly, the dielectric constant was lowered to about 3.5 from the conventional 4.0 by depositing a FSG film substituted with a fluorine atom instead of an oxygen atom in the conventional USG film.

최근 RIE(Reactive Ion Etching) 공정으로 알루미늄 배선을 형성시키는 경우 및 다마신 공정으로 구리 배선을 형성시키는 경우 층간 절연물질로 FSG막을 가장 많이 사용하고 있다.Recently, in the case of forming the aluminum wiring by the Reactive Ion Etching (RIE) process and the copper wiring by the damascene process, the FSG film is most often used as an interlayer insulating material.

이때 불소원자의 양이 증가함에 따라 FSG막의 매립 특성이 향상되고 유전상수가 낮아져 소자의 동작 특성이 향상되기는 하나, 불소원자의 양이 9원자% 이상으로 증가되면 FSG막의 안정도가 저하되어 신뢰성 특성이 열화되고, 불소원자의 상분리 현상이 나타나기 때문에 FSG막에서의 불소원자 함량에는 한계가 있다.In this case, as the amount of fluorine atoms increases, the buried characteristics of the FSG film are improved and the dielectric constant is lowered, thereby improving the operation characteristics of the device. There is a limit to the content of fluorine atoms in the FSG film due to deterioration and phase separation of fluorine atoms.

현재는 일반적으로 FSG막의 안정도를 위해 불소원자 함량을 3 내지 9원자% 정도로 하여 유전상수를 3.7 정도로 관리하고 있다.Currently, the dielectric constant is controlled at about 3.7 with the fluorine atom content of about 3 to 9 atomic% for the stability of the FSG film.

본 발명은 금속배선간의 층간절연막으로 사용되는 FSG막의 유전상수를 낮추고 안정도를 향상시키기 위하여, 불소원자의 함량은 종래와 동일한 수준으로 유지하면서 실리콘원자의 일부가 붕소원자로 치환되도록 붕소의 소스가스를 주입하여 FSG막을 형성하는 방법을 제공하는 것을 목적으로 한다.In the present invention, in order to lower the dielectric constant of the FSG film used as the interlayer insulating film between the metal wirings and to improve the stability, the source gas of boron is injected such that a part of the silicon atoms is replaced with boron atoms while maintaining the same content of fluorine atoms. It is an object of the present invention to provide a method for forming an FSG film.

도 1은 본 발명에 따른 FSG(Fluorinated Silicate Glass)막의 화학 구조를 나타내는 모식도.1 is a schematic diagram showing the chemical structure of a Fluorinated Silicate Glass (FSG) film according to the present invention.

상기 목적을 달성하기 위하여 본 발명에서는 FSG(Fluorinated Silicate Glass, SiOF)막으로 층간절연막을 형성하는 반도체소자의 층간절연막 형성방법에 있어서, 상기 FSG막 증착시 붕소(B)의 소스가스를 주입하는 것을 특징으로 하는 반도체소자의 층간절연막 형성방법을 제공한다.In order to achieve the above object, in the present invention, in the method of forming an interlayer insulating film of a semiconductor device in which an interlayer insulating film is formed of an FSG (Fluorinated Silicate Glass, SiOF) film, injecting a source gas of boron (B) during the deposition of the FSG film. A method of forming an interlayer insulating film of a semiconductor device is provided.

상기 반도체소자의 층간절연막 형성방법에 있어서, 상기 붕소의 소스가스는 BH3가스, BF3가스 및 이들의 혼합 가스로 이루어진 군으로부터 선택되는 것과,In the method for forming an interlayer insulating film of the semiconductor device, the source gas of boron is selected from the group consisting of BH 3 gas, BF 3 gas, and a mixed gas thereof,

상기 FSG막은 붕소원자의 함유량이 3 내지 20원자%인 것과,The FSG film has a boron atom content of 3 to 20 atom%,

상기 FSG막은 고밀도 플라즈마 화학기상증착 방법 또는 플라즈마 인핸스드 화학기상증착 방법에 의해 형성되는 것을 특징으로 한다.The FSG film is formed by a high density plasma chemical vapor deposition method or a plasma enhanced chemical vapor deposition method.

또한, 본 발명에서는 붕소원자를 3 내지 20원자% 함유하는 FSG막을 층간절연막으로 포함하는 반도체소자를 제공한다.The present invention also provides a semiconductor device comprising an FSG film containing 3 to 20 atomic percent boron atoms as an interlayer insulating film.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 FSG막은 고밀도 플라즈마 화학기상증착 방법 또는 플라즈마 인핸스드 화학기상증착 방법으로 증착하는 것이 바람직하다.The FSG film of the present invention is preferably deposited by a high density plasma chemical vapor deposition method or a plasma enhanced chemical vapor deposition method.

이때 붕소의 소스가스로서 BH3가스, BF3가스 또는 이들의 혼합 가스를 사용하고, 산소의 소스가스로서 N2O 가스 또는 O2가스를 사용하고, 실리콘의 소스가스로서 SiH4를 사용하며, 불소의 소스가스로서 SiF4를 사용하고, 공정상 압력을 맞추기 위한 희석(dilution)의 역할을 하는 가스로서 N2가스, He 가스 또는 Ar 가스를 사용하는 것이 바람직하다.In this case, BH 3 gas, BF 3 gas, or a mixed gas thereof is used as the source gas of boron, N 2 O gas or O 2 gas is used as the source gas of oxygen, and SiH 4 is used as the source gas of silicon, SiF 4 is used as the source gas of fluorine, and N 2 gas, He gas, or Ar gas is preferably used as a gas that serves as a dilution to match the process pressure.

고밀도 플라즈마 화학기상증착 방법을 이용하여 증착공정을 수행하는 경우에는 산소의 소스가스로서 O2가스를 이용하고, 플라즈마 인핸스드 화학기상증착 방법을 이용하여 증착공정을 수행하는 경우에는 산소의 소스가스로 N2O를 사용하는 것이 일반적이다.When performing the deposition process using the high density plasma chemical vapor deposition method, O 2 gas is used as the source gas of oxygen, and when the deposition process is performed using the plasma enhanced chemical vapor deposition method, the source gas of oxygen is used. It is common to use N 2 O.

상기 붕소의 소스가스 주입량은 최종적으로 형성되는 FSG막에서 붕소원자 함량이 3 내지 20원자%가 되도록 조절하고, 불소의 소스가스 주입량은 최종적으로 형성되는 FSG막에서의 불소원자 함량이 3 내지 9원자%가 되도록 조절해야 한다.The source gas injection amount of boron is adjusted so that the boron atom content is 3 to 20 atomic% in the finally formed FSG film, and the source gas injection amount of fluorine is 3 to 9 atoms in the finally formed FSG film. Adjust to%.

이는 붕소원자의 함량이 20원자% 이상으로 증가하면 결정화 등의 문제점이 있고, 불소원자의 함량이 9원자% 이상으로 증가하면 FSG막의 안정도가 저하되어 신뢰성 특성이 열화되고, 불소원자의 상분리 현상이 나타나는 문제점이 있기 때문이다.If the boron atom content is increased to 20 atomic% or more, there is a problem such as crystallization.If the content of fluorine atom is increased to 9 atomic% or more, the stability of the FSG film is deteriorated, reliability characteristics are deteriorated, and phase separation of fluorine atoms is prevented. This is because there is a problem.

붕소의 소스가스로서 BF3가스를 이용하는 경우에는 BF3가 붕소의 소스가스로서의 역할뿐만 아니라 불소의 소스가스로서의 역할도 수행하고, 불소의 소스가스인 SiF4는 실리콘의 소스가스로서의 역할도 수행한다.When using a BF 3 gas as a source gas of boron, the BF 3 is also serve as a source gas, as well as serving as a source gas of fluorine, boron, and the source gas of the fluorine SiF 4 may also serve as a source gas of silicon .

따라서, 상기에서 언급한 붕소원자 함량이 3 내지 20원자%이고, 불소원자 함량이 3 내지 9원자%인 FSG막을 얻기 위해서는 두 가지의 원자를 제공하는 소스가스를 사용하는 경우를 고려하여, 단일 원자를 제공하는 소스가스들과의 사용비율을 적절히 조절하여 증착공정을 수행해야 한다.Therefore, in order to obtain an FSG film having a boron atom content of 3 to 20 atomic% and a fluorine atom content of 3 to 9 atomic% mentioned above, considering a case of using a source gas providing two atoms, a single atom The deposition process should be performed by appropriately adjusting the use ratio with the source gases.

또한, 본 발명에서는 고밀도 플라즈마 화학기상증착 방법 또는 플라즈마 인핸스드 화학기상증착 방법을 이용하기 때문에 증착 챔버의 크기, 증착 챔버의 수 및 증착 챔버에 가해지는 RF 전력량에 의해서도 소스가스들의 주입량이 다양하게 변화될 수 있다.In addition, in the present invention, since the high density plasma chemical vapor deposition method or the plasma enhanced chemical vapor deposition method is used, the injection amount of the source gases varies according to the size of the deposition chamber, the number of deposition chambers, and the amount of RF power applied to the deposition chamber. Can be.

도 1은 본 발명에 따른 FSG(Fluorinated Silicate Glass)막의 화학 구조를 나타내는 모식도이다.1 is a schematic diagram showing the chemical structure of a Fluorinated Silicate Glass (FSG) film according to the present invention.

도 1에서 보이는 바와 같이, 본 발명에서의 FSG막은 배위수(coordination number)가 4인 실리콘(Si) 원자의 일부가 배위수가 3인 붕소(B) 원자로 치환됨으로서 막을 구성하는 원자와 원자간의 오픈되는 공간(S)이 증가되는 것을 알 수 있다.As shown in FIG. 1, in the present invention, the FSG film is opened between atoms constituting the film by replacing a portion of a silicon (Si) atom having a coordination number of 4 with a boron (B) atom having a coordination number of 3; It can be seen that the space S is increased.

그 결과, FSG막의 유전상수가 낮아져 소자의 동작특성이 향상되고, 습식식각시 식각용액에 의해 식각되는 속도가 작아져 막의 안정도가 향상되어 소자의 신뢰성 특성이 향상된다.As a result, the dielectric constant of the FSG film is lowered to improve the operation characteristics of the device, the rate of etching by the etching solution during wet etching is reduced, and the stability of the film is improved, thereby improving the reliability characteristics of the device.

상기의 본 발명에 따라 제조된 FSG막은 반도체소자의 층간절연막으로 사용된다.The FSG film manufactured according to the present invention is used as an interlayer insulating film of a semiconductor device.

이하, 본 발명을 구체적인 실시예에 의거하여 상세히 설명한다. 단, 본 발명이 하기의 실시예에 의해 국한되는 것은 아니다.Hereinafter, the present invention will be described in detail based on specific examples. However, this invention is not limited by the following Example.

실시예 1Example 1

알루미늄 배선이 형성된 구조물의 전체표면 상부에 고밀도 플라즈마 화학기상증착 장비(Novellus사의 Speed)를 이용하여, 싱글 타입의 증착 챔버에 1000 내지 3000W의 RF 전력을 가한 상태에서, BH3가스를 2 내지 20sccm, O2가스를 10 내지 300sccm, SiH4가스를 5 내지 100sccm, SiF4가스를 5 내지 100sccm, Ar 가스를 10 내지 100sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를 제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.Using high density plasma chemical vapor deposition equipment (Novellus Speed) on the entire surface of the structure on which the aluminum wiring was formed, BH 3 gas was applied in a range of 2 to 20 sccm while applying RF power of 1000 to 3000 W to a single type deposition chamber. A semiconductor device in which an interlayer insulating film was formed as an FSG film by injecting O 2 gas at 10 to 300 sccm, SiH 4 gas at 5 to 100 sccm, SiF 4 gas at 5 to 100 sccm, and Ar gas at a flow rate of 10 to 100 sccm. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

실시예 2Example 2

알루미늄 배선이 형성된 구조물의 전체표면 상부에 고밀도 플라즈마 화학기상증착 장비(AMAT사의 Centura)를 이용하여, 싱글 타입의 증착 챔버에 1000 내지 3000W의 RF 전력을 가한 상태에서, BF3가스를 2 내지 20sccm, O2가스를 10 내지 300sccm, SiH4가스를 5 내지 100sccm, SiF4가스를 5 내지 100sccm, Ar 가스를 10 내지 100sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.Using a high density plasma chemical vapor deposition equipment (Centura, AMAT) on the entire surface of the structure on which the aluminum wiring was formed, BF 3 gas was supplied with 2 to 20 sccm while applying 1000 to 3000 W of RF power to a single type deposition chamber. A semiconductor device in which an interlayer insulating film was formed as an FSG film by injecting O 2 gas at 10 to 300 sccm, SiH 4 gas at 5 to 100 sccm, SiF 4 gas at 5 to 100 sccm, and Ar gas at a flow rate of 10 to 100 sccm. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

실시예 3Example 3

다마신 공정에 의해 구리 배선이 형성된 구조물의 전체표면 상부에 플라즈마 인핸스드 화학기상증착 장비(AMAT사의 P-5000/Centura/Producer)를 이용하여, 싱글 타입의 증착 챔버에 50 내지 1000W의 RF 전력을 가한 상태에서, BH3가스를 2 내지 100sccm, N2O 가스를 10 내지 2000sccm, SiH4가스를 10 내지 1000sccm, SiF4가스를 10 내지 1000sccm, He 가스를 100 내지 5000sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를 제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.A plasma-enhanced chemical vapor deposition apparatus (P-5000 / Centura / Producer, AMAT Co., Ltd.) is applied on the entire surface of the structure in which the copper wiring is formed by the damascene process. In the applied state, an interlayer insulating film was injected by flowing BH 3 gas at 2 to 100 sccm, N 2 O gas at 10 to 2000 sccm, SiH 4 gas at 10 to 1000 sccm, SiF 4 gas at 10 to 1000 sccm, and He gas at a flow rate of 100 to 5000 sccm. The semiconductor device in which the FSG film | membrane was formed was produced. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

실시예 4Example 4

다마신 공정에 의해 구리 배선이 형성된 구조물의 전체표면 상부에 플라즈마 인핸스드 화학기상증착 장비(AMAT사의 P-5000/Centura/Producer)를 이용하여, 싱글 타입의 증착 챔버에 50 내지 1000W의 RF 전력을 가한 상태에서, BF3가스를 2 내지 100sccm, N2O 가스를 10 내지 2000sccm, SiH4가스를 10 내지 1000sccm, SiF4가스를 10 내지 1000sccm, He 가스를 100 내지 5000sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를 제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.A plasma-enhanced chemical vapor deposition apparatus (P-5000 / Centura / Producer, AMAT Co., Ltd.) is applied on the entire surface of the structure in which the copper wiring is formed by the damascene process. In the applied state, an interlayer insulating film was injected with a flow rate of 2 to 100 sccm of BF 3 gas, 10 to 2000 sccm of N 2 O gas, 10 to 1000 sccm of SiH 4 gas, 10 to 1000 sccm of SiF 4 gas, and 100 to 5000 sccm of He gas. The semiconductor device in which the FSG film | membrane was formed was produced. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

실시예 5Example 5

다마신 공정에 의해 구리 배선이 형성된 구조물의 전체표면 상부에 플라즈마 인핸스드 화학기상증착 장비(Novellus사의 Sequel)를 이용하여, 멀티 스테이션 타입의 증착 챔버에 300 내지 1500W의 RF 전력을 가한 상태에서, BH3가스를 100 내지 400sccm, N2O 가스를 500 내지 10000sccm, SiH4가스를 100 내지 2000sccm, SiF4가스를 100 내지 2000sccm, N2가스를 1000 내지 10000sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를 제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.BH is applied to the multi-station deposition chamber by applying RF power of 300 to 1500 W to the multi-station type deposition chamber using a plasma enhanced chemical vapor deposition apparatus (Sequel of Novellus) on the entire surface of the structure where the copper wiring is formed by the damascene process. 3 Inject gas at 100 to 400 sccm, N 2 O gas at 500 to 10000 sccm, SiH 4 gas at 100 to 2000 sccm, SiF 4 gas at 100 to 2000 sccm, and N 2 gas at a flow rate of 1000 to 10000 sccm. The formed semiconductor device was manufactured. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

실시예 6Example 6

다마신 공정에 의해 구리 배선이 형성된 구조물의 전체표면 상부에 플라즈마 인핸스드 화학기상증착 장비(Novellous의 Sequel)를 이용하여, 멀티 스테이션 타입의 증착 챔버에 증착 챔버에 300 내지 1500W의 RF 전력을 가한 상태에서, BF3가스를 100 내지 400sccm, N2O 가스를 500 내지 10000sccm, SiH4가스를 100 내지 2000sccm, SiF4가스를 100 내지 2000sccm, N2가스를 1000 내지 10000sccm의 유량으로 주입하여 층간절연막을 FSG막으로 형성한 반도체소자를 제조하였다. 이때 형성된 FSG막은 붕소원자를 3 내지 20원자% 함유하고, 불소원자를 3 내지 9원자% 함유하였다.RF power of 300-1500 W was applied to the deposition chamber in the multi-station type deposition chamber by using plasma enhanced chemical vapor deposition equipment (Sequel of Novellous) on the entire surface of the structure where the copper wiring was formed by the damascene process. in, and from 100 to 400sccm, 500 an N 2 O gas to 10000sccm, 100 the SiH 4 gas to 2000sccm, 100 the SiF 4 gas to 2000sccm, 1000 a N 2 gas to injection at a flow rate of 10000sccm a BF 3 gas to the interlayer insulating film A semiconductor device formed of an FSG film was manufactured. At this time, the formed FSG film contained 3 to 20 atomic% of boron atoms and 3 to 9 atomic% of fluorine atoms.

이상에서 설명한 바와 같이, 본 발명에서는 반도체소자 제조공정중 금속배선간의 층간 절연을 위한 절연막으로 FSG막 증착시 붕소의 소스가스를 주입하여 실리콘원자의 일부가 붕소원자로 치환되도록 함으로써, 막을 구성하는 원자와 원자간의 오픈되는 공간을 증가시켜 유전상수를 낮추어 소자의 동작특성이 향상되고, 습식식각시 식각용액에 의해 식각되는 속도가 작아져 막의 안정도가 향상되어 소자의 신뢰성 특성이 향상된다.As described above, in the present invention, the source gas of boron is injected into the insulating film for interlayer insulation between metal wirings during the semiconductor device manufacturing process so that a part of the silicon atoms is replaced with boron atoms, thereby injecting a portion of the silicon atoms into boron atoms. By increasing the open space between atoms to lower the dielectric constant, the operation characteristics of the device is improved, the speed of etching by the etching solution during wet etching is reduced, the stability of the film is improved to improve the reliability characteristics of the device.

Claims (5)

FSG(Fluorinated Silicate Glass, SiOF)막으로 층간절연막을 형성하는 반도체소자의 층간절연막 형성방법에 있어서, 상기 FSG막 증착시 붕소(B)의 소스가스를 주입하는 것을 특징으로 하는 반도체소자의 층간절연막 형성방법.A method of forming an interlayer insulating film of a semiconductor device in which an interlayer insulating film is formed of an FSG (Fluorinated Silicate Glass, SiOF) film, wherein the source gas of boron (B) is injected during deposition of the FSG film. Way. 제 1 항에 있어서,The method of claim 1, 상기 붕소의 소스가스는 BH3가스, BF3가스 및 이들의 혼합 가스로 이루어진 군으로부터 선택되는 것을 특징으로 하는 반도체소자의 층간절연막 형성방법.And the source gas of boron is selected from the group consisting of BH 3 gas, BF 3 gas and a mixture of these gases. 제 1 항에 있어서,The method of claim 1, 상기 FSG막은 붕소원자의 함유량이 3 내지 20원자%인 것을 특징으로 하는 반도체소자의 층간절연막 형성방법.The FSG film has a boron atom content of 3 to 20 atom%. 제 1 항에 있어서,The method of claim 1, 상기 FSG막은 고밀도 플라즈마 화학기상증착 방법 또는 플라즈마 인핸스드 화학기상증착 방법에 의해 형성되는 것을 특징으로 하는 반도체소자의 층간절연막 형성방법.Wherein said FSG film is formed by a high density plasma chemical vapor deposition method or a plasma enhanced chemical vapor deposition method. 붕소원자를 3 내지 20원자% 함유하는 FSG막을 층간절연막으로 포함하는 반도체소자.A semiconductor device comprising an FSG film containing 3 to 20 atomic percent boron atoms as an interlayer insulating film.
KR1020030046336A 2003-07-09 2003-07-09 Method for Forming Interlayer Insulating Film of Semiconductor Device KR101017052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030046336A KR101017052B1 (en) 2003-07-09 2003-07-09 Method for Forming Interlayer Insulating Film of Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030046336A KR101017052B1 (en) 2003-07-09 2003-07-09 Method for Forming Interlayer Insulating Film of Semiconductor Device

Publications (2)

Publication Number Publication Date
KR20050006499A true KR20050006499A (en) 2005-01-17
KR101017052B1 KR101017052B1 (en) 2011-02-23

Family

ID=37220301

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030046336A KR101017052B1 (en) 2003-07-09 2003-07-09 Method for Forming Interlayer Insulating Film of Semiconductor Device

Country Status (1)

Country Link
KR (1) KR101017052B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652335B1 (en) * 2005-12-29 2006-11-30 동부일렉트로닉스 주식회사 Method of treating low-k dielectric layer with boron-containing gas
US7226875B2 (en) * 2004-11-30 2007-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method for enhancing FSG film stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950995A (en) * 1995-08-07 1997-02-18 Sony Corp Silicon-based oxide and interlayer insulating film for semiconductor device
JPH1126445A (en) * 1997-07-01 1999-01-29 Hitachi Ltd Insulating film, film-forming method and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226875B2 (en) * 2004-11-30 2007-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method for enhancing FSG film stability
KR100652335B1 (en) * 2005-12-29 2006-11-30 동부일렉트로닉스 주식회사 Method of treating low-k dielectric layer with boron-containing gas

Also Published As

Publication number Publication date
KR101017052B1 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
US7239017B1 (en) Low-k B-doped SiC copper diffusion barrier films
US6570256B2 (en) Carbon-graded layer for improved adhesion of low-k dielectrics to silicon substrates
US7420275B1 (en) Boron-doped SIC copper diffusion barrier films
US7282438B1 (en) Low-k SiC copper diffusion barrier films
US6417092B1 (en) Low dielectric constant etch stop films
US6855645B2 (en) Silicon carbide having low dielectric constant
US7888741B2 (en) Structures with improved interfacial strength of SiCOH dielectrics and method for preparing the same
US6365527B1 (en) Method for depositing silicon carbide in semiconductor devices
US8889235B2 (en) Dielectric barrier deposition using nitrogen containing precursor
US7923819B2 (en) Interlayer insulating film, wiring structure and electronic device and methods of manufacturing the same
US6518646B1 (en) Semiconductor device with variable composition low-k inter-layer dielectric and method of making
US20060043588A1 (en) Semiconductor device including a low-k metallization layer stack for enhanced resistance against electromigration
US6149779A (en) Low-k BSG gap fill process using HDP
US20100311240A1 (en) Method of manufacturing a semiconductor device
US20010041458A1 (en) Film forming method, semiconductor device manufacturing method, and semiconductor device
US20030085408A1 (en) Oxygen-doped silicon carbide etch stop layer
KR101017052B1 (en) Method for Forming Interlayer Insulating Film of Semiconductor Device
US6548892B1 (en) Low k dielectric insulator and method of forming semiconductor circuit structures
CN1551346A (en) Method to generate porous organic dielectric
WO2001041203A1 (en) Improved flourine doped sio2 film
JP2008218507A (en) Interlayer insulating film and wiring structure, and method for manufacturing the same
US20060115980A1 (en) Method for decreasing a dielectric constant of a low-k film
KR100365753B1 (en) Formation method of intermetallic insulator in semiconductor device
KR100327582B1 (en) Formation method of inter layer dielectric in semiconductor device
JP4325569B2 (en) Method of forming organic silicon film and semiconductor device having organic silicon film

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140116

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee