KR20050004316A - Prediction method of polluted air dispersion using multiple meteorological data - Google Patents

Prediction method of polluted air dispersion using multiple meteorological data Download PDF

Info

Publication number
KR20050004316A
KR20050004316A KR1020030042551A KR20030042551A KR20050004316A KR 20050004316 A KR20050004316 A KR 20050004316A KR 1020030042551 A KR1020030042551 A KR 1020030042551A KR 20030042551 A KR20030042551 A KR 20030042551A KR 20050004316 A KR20050004316 A KR 20050004316A
Authority
KR
South Korea
Prior art keywords
meteorological
observation data
data
weather
prediction method
Prior art date
Application number
KR1020030042551A
Other languages
Korean (ko)
Inventor
김현구
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020030042551A priority Critical patent/KR20050004316A/en
Publication of KR20050004316A publication Critical patent/KR20050004316A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air

Abstract

PURPOSE: A prediction method of polluted air dispersion is provided to improve the accuracy of predicted air quality results by maximally utilizing meteorological data of the direction and speed of wind changed by a local topography. CONSTITUTION: The polluted air dispersion is predicted by the method of calculating a pollutant concentration in an object area from a meteorological data of a meteorological observatory using gaussian plume dispersion model. Specifically, the method comprises performing the prediction of individual pollutant concentration by utilizing a plurality of meteorological data observed at multiple meteorological observatories scattered in the object area and adding up all of the data to calculate overall pollutant concentration of the object area. The meteorological observatory for providing meteorological data about a pollution source of a predetermined position is selected using a positional function by the space division method.

Description

복수 기상관측자료를 이용한 대기오염 확산 예측 방법{Prediction method of polluted air dispersion using multiple meteorological data}Prediction method of polluted air dispersion using multiple meteorological data}

본 발명은 환경영향평가에 사용되는 가우시안 연기확산모델의 예측 정확도를 향상시키는 동시에 적용 대상면적을 확대하는 복수 기상관측자료를 이용한 대기오염 확산 예측 방법에 관한 것이다.The present invention relates to an air pollution spread prediction method using a plurality of meteorological observation data which improves the prediction accuracy of the Gaussian smoke diffusion model used for environmental impact assessment and increases the application area.

대기오염과 관련된 환경영향평가에서는 대상지역의 대기질 현황을 예측하거나 대기오염 배출시설의 신설에 의한 지역 대기질의 변화를 예상하기 위하여 대기확산모델을 사용한다.Environmental impact assessments related to air pollution use the air diffusion model to predict the current state of air quality in the target area or to predict regional air quality changes due to the establishment of air pollution emission facilities.

우리나라의 경우 상기 목적을 위한 대기확산모델 중 미국 환경청에서 추천하는 가우시안 연기확산모델을 차용하여 사용해오고 있으며, 가우시안 연기확산모델의 경우 적용의 간편성이 환경영향평가의 목적 및 용도와 부합되기 때문에 현재까지도 널리 사용되고 있다.Korea has been using the Gaussian smoke diffusion model recommended by the US Environmental Protection Agency among the air diffusion models for the above purposes. It is widely used.

그러나 상기 가우시안 연기확산모델은 해당 지역 내에서 선택된 대표 측정소의 기상자료를 활용하여 해당 지역 전체의 대기오염 확산을 예측하는 방법으로, 근본적으로 미국과 같은 넓은 평탄지형에 적합하도록 개발되었기 때문에 산지지형인 우리 나라의 지형 및 기상환경에는 매우 부적합하고, 필연적으로 예측결과에 상당한 오차가 발생되는 문제점이 있다.However, the Gaussian smoke diffusion model is a method of predicting the spread of air pollution throughout the region by using weather data from selected representative stations in the region. It is very unsuitable for the terrain and weather environment of our country, and inevitably there is a problem that a considerable error occurs in the prediction result.

이에 본 발명은 전술한 바와 같이 미국 환경청의 추천 대기확산모델 중 가우시안 연기확산모델을 우리 나라에 적용할 때 발생하는 기술적인 문제점 해결을 위하여 안출한 것으로서, 본 발명의 목적은 산지 또는 계곡과 같은 국지지형에 의하여 변형되는 풍향, 풍속의 기상관측자료를 최대한 활용함으로써 대기질 예측결과의 정확도를 향상시킬 수 있도록 된 복수 기상관측자료를 이용한 대기오염 확산 예측 방법을 제공함에 있다.Accordingly, the present invention has been made to solve the technical problems that occur when applying the Gaussian smoke diffusion model of the recommended atmosphere diffusion model of the US Environmental Protection Agency in our country as described above, the object of the present invention is a local area such as a mountain or valley The present invention provides a method for predicting the spread of air pollution using multiple weather observation data, which can improve the accuracy of the air quality prediction results by utilizing the weather observation data of the wind direction and wind speed transformed by the terrain.

또한, 본 발명은 국지지형에 의한 기상조건의 영향이 최대한 고려된 예측결과를 얻기 위한 효과적인 오염도 계산방법을 제시할 수 있도록 된 복수 기상관측자료를 이용한 대기오염 확산 예측 방법을 제공함에 또다른 목적이 있다.In addition, another object of the present invention is to provide an air pollution spread prediction method using a plurality of meteorological observation data that can provide an effective pollution degree calculation method for obtaining a prediction result considering the influence of meteorological conditions by local type as much as possible. have.

도 1은 기상관측소와 공간분할된 부분영역을 나타내는 개략도이다.1 is a schematic diagram showing a meteorological station and a spatially divided partial region.

도 2는 본 발명의 효용성을 검증하기 위해 실시한 복수 기상관측자료를 이용한 대기오염 확산예측법에 의한 대상지역의 총먼지 지면농도분포도이다.2 is a total dust surface concentration distribution map of a target region by air pollution diffusion prediction method using a plurality of weather observation data carried out to verify the effectiveness of the present invention.

도 3은 본 발명의 효용성을 검증하기 위해 실시한 복수 기상관측자료를 이용한 대기오염 확산예측법에 의한 예측농도와 실측농도간의 상관분석도이다.Figure 3 is a correlation analysis between the predicted concentration and the measured concentration by air pollution diffusion prediction method using a plurality of weather observation data carried out to verify the effectiveness of the present invention.

도 4는 도 2에 대한 종래의 단일 기상관측자료를 이용한 대기오염 확산예측법에 의한 대상지역의 총먼지 지면농도분포도이다.4 is a total dust surface concentration distribution map of a target region by air pollution diffusion prediction method using conventional single meteorological observation data for FIG.

도 5는 도 3에 대한 종래의 단일 기상관측자료를 이용한 대기오염 확산예측법에 의한 예측농도와 실측농도간의 상관분석도이다.FIG. 5 is a correlation analysis diagram between the predicted concentration and the measured concentration by the air pollution diffusion prediction method using the conventional single meteorological observation data of FIG. 3.

상기한 바와 같은 목적을 달성하기 위하여 본 발명은, 대상지역을 기상관측소의 위치에 따라 다수개로 공간분할하고, 각 분할지역의 기상관측소로부터 획득한 기상관측자료를 활용하여 전체 대상지역의 대기오염을 예측하는 것을 특징으로 한다.In order to achieve the object as described above, the present invention is divided into a plurality of target areas according to the location of the meteorological station, and by using the weather observation data obtained from the meteorological station of each divided region to reduce the air pollution of the entire target area. It is characterized by the prediction.

즉, 본 발명은 대상지역 내 다수 개소의 기상관측소로부터 획득한 기상관측자료를 이용함에 있어서 대상지역을 공간분할방식에 의해 분할하여 각각의 해당구역에 포함되는 오염원에 대하여 해당구역의 기상관측자료를 적용하여 계산을 수행한 후 예측결과를 결합함으로써 국지지형에 의한 기상조건의 영향이 최대한 고려된 예측결과를 제공한다.That is, according to the present invention, when using meteorological observation data obtained from a plurality of meteorological stations in the target area, the target area is divided by a space division method, and the meteorological observation data of the corresponding area is divided for the pollutant included in each corresponding area. The calculation results are applied and the prediction results are combined to provide the prediction result considering the influence of the weather condition by local type as much as possible.

또한, 본 발명은 측후소의 기상관측자료를 입력조건으로 하여 가우시안 연기확산모델을 이용하여 오염농도를 계산함에 있어서,In addition, the present invention is to calculate the pollution concentration using the Gaussian smoke diffusion model using the weather observation data of the weather station,

복수개소의 측후소로부터 관측된 기상자료를 활용하여 개별적인 오염농도 예측을 수행하고, 이를 합산하여 대상지역 전체의 오염농도를 산출하는 복수 기상관측자료를 이용한 대기오염 확산 예측 방법을 제공한다.Provides a method for predicting air pollution spread using multiple meteorological observation data that estimates individual pollutant concentrations by using meteorological data observed from multiple side stations and adds them together to calculate the pollutant concentration of the entire area.

여기서 본 발명은 상기 가우시안 연기확산모델의 입력자료 구성시 임의 위치의 오염원에 적용되는 측후소의 기상관측자료를 선택함에 있어서 공간분할법에 의한 위치함수에 의해 선택하는 복수 기상관측자료를 이용한다.Here, the present invention uses a plurality of meteorological observation data selected by a position function by a spatial division method in selecting meteorological observation data of the rear and rear stations applied to the pollutant at any position when constructing the input data of the Gaussian smoke diffusion model.

상기 공간분할법에 의한 위치함수는 기상관측소와의 거리를 최소로하는 위치를 연결하여 공간 분할선을 생성하는 함수로, 상기 함수를 통해 각 기상관측소가 포함된 영역이 적절히 분할된다.The location function by the spatial division method is a function of generating a space dividing line by connecting a position that minimizes the distance to the weather station, and through this function, an area including each weather station is appropriately divided.

또한, 본 발명은 오염원에 적용되는 측후소의 기상관측자료를 선택함에 있어서 오염원으로부터 측정소까지의 거리가 최소가 되는 측정소의 기상관측자료를 선택하는 것을 특징으로 한다.In addition, the present invention is characterized in selecting the meteorological observation data of the measurement station is the minimum distance from the pollution source to the measurement station in selecting the meteorological observation data of the weather station applied to the pollution source.

즉, 공간분할법에 의해 대상지역이 분할되었을 때 각 분할지역내의 존재하는 오염원에 대해서는 그 구역에 해당하는 기상관측소의 기상자료를 사용하게 되는 것이다.In other words, when the target area is divided by the spatial partitioning method, the weather data of the weather station corresponding to the area is used for the pollutant existing in each divided area.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1에 예시된 바와 같이 대기오염확산에 의한 환경영향평가를 위하여 선택한 대상지역 내에 ①, ②, ③, ④, ⑤, ⑥의 여섯 개소의 기상관측소가 존재한다고 할 때, 본 실시예에 의하면 전체 대상영역은 영역 내에 존재하는 기상관측소의 개수만큼의 부분영역으로 공간분할하되 각각의 기상관측소를 하나씩 포함하는 부분영역으로 공간분할한다.As illustrated in FIG. 1, when six meteorological stations including ①, ②, ③, ④, ⑤, and ⑥ exist within the selected area for the environmental impact assessment by air pollution diffusion, according to this embodiment, The target area is divided into subregions as many as the number of meteorological stations present in the area, but divided into subregions each containing one meteorological station.

상기 분할영역 각각을 상기 기상관측소의 순서에 맏춰 I, II, III, IV, V, VI으로 칭한다. 예컨데, 도 1에서 굵은 선으로 공간분할된 바와 같이 부분영역 I은 기상관측소 ①을 포함하며, 부분영역 II, III, IV, V, VI 모두 각각 그러하다.Each of the divided regions is referred to as I, II, III, IV, V, VI in the order of the meteorological station. For example, as shown in FIG. 1, the partial region I includes the meteorological station 1, and the subregions II, III, IV, V, and VI are the same.

여기서 본 발명에 의한 상기 공간분할방법은 기상관측소와의 거리를 최소로하는 함수를 적용하여 생성된 분할선에 의해 구역을 나누는 것으로, 기상관측소에서 측정된 기상요소의 유효성이 기상관측소로부터 이격된 거리에 따라 감소하는 물리적인 특성을 이용한 것이다.Here, the spatial division method according to the present invention divides an area by a dividing line generated by applying a function that minimizes the distance to the weather station, and the distance of the effectiveness of the meteorological elements measured at the weather station is separated from the weather station. As the physical properties decrease according to.

한편, 가우시안 확산모델을 운용하기 위해서는 입력조건으로 기상자료와 오염원으로부터의 배출자료 그리고 지형자료가 필요하다.On the other hand, in order to operate the Gaussian diffusion model, weather data, emission data from pollutant sources and topographical data are required as input conditions.

본 발명에 의하면 대상영역을 도 1에 예시된 바와 같이 기상관측소를 포함하는 부분영역으로 공간분할하고, 각각의 부분영역에서 영역 내에 존재하는 오염원의 배출자료와 기상관측소의 기상자료를 입력조건으로 사용하되 지형자료는 전체영역의 지형자료를 사용하여 전체영역에 대하여 대기확산에 의한 오염도를 계산한다.According to the present invention, the target area is divided into sub-regions including a meteorological station as illustrated in FIG. 1, and the emission data of the pollutant and the meteorological data of the meteorological station in each sub-region are used as input conditions. However, the topographical data is calculated using atmospheric diffusion for the whole area using the topographical data of the whole area.

그리고 전체영역의 대기확산에 의한 오염도는 부분영역별로 작성된 오염도를 중첩하여 합산함으로써 계산된다.And the pollution degree by the air diffusion of the whole area is computed by overlapping and adding the pollution degree prepared for each partial area.

실시예Example

본 발명에 따른 대기확산에 의한 오염도 계산결과의 예측 정확도 향상 효과를 입증하기 위해서 공단이 밀집된 대상지역의 오염도 계산을 수행하였다.In order to demonstrate the effect of improving the prediction accuracy of the pollution degree calculation result by air diffusion according to the present invention, the pollution degree calculation of the target area where the industrial complex is concentrated was performed.

도 1은 대상영역의 지형도와 영역 내에 존재하는 기상관측소의 위치를 보여주고 있으며, 본 발명에 의한 공간분할방법으로 대상영역을 6개의 부분영역으로 분할하였다.FIG. 1 shows the topographic map of the target area and the location of the weather station within the area. The target area is divided into six sub-regions by the spatial division method according to the present invention.

도 2는 각각의 분할영역에 대하여 분할영역 내에 존재하는 오염원의 배출정보와 영역 내에 존재하는 기상관측소의 기상자료를 입력하고, 전체영역에 대한 지형자료를 입력하여 전체영역에서의 오염도를 계산한 후, 개별 분할영역에 대한 계산결과를 중첩하여 합산한 지면오염분포도를 보여주고 있다.FIG. 2 inputs emission information of pollutant sources present in the partitions and weather data of meteorological stations present in the areas for each partition, and calculates pollution levels in the entire area by inputting topographic data for the entire area. In addition, it shows the ground contamination distribution summed up by overlaying the calculation results for individual partitions.

도 2와 비교하여 도 4는 종래의 단일 기상관측자료만을 이용하여 수행된 기존의 대기확산모델 방식에 의한 지면오염분포도를 보여주고 있으며, 이 결과는 가장 대표적인 기상관측소인 ⑥의 기상자료만을 이용하여 계산된 것이다.Compared with FIG. 2, FIG. 4 shows a ground pollution distribution map by the conventional atmospheric diffusion model performed using only a single weather observation data, and this result uses only the weather data of ⑥, the most representative weather station. It is calculated.

도 2와 도 4를 비교하여 보면, 각각의 방식에 의한 지면오염분포도는 매우 큰 차이를 보이고 있으며, 본 발명에 의해 예측된 도 2에서는 실측결과와 동일한 영역에서 고농도가 예측된 반면, 기존의 단일 기상관측자료를 이용한 예측과인 도 4에서는 전혀 다른 영역에서 고농도가 발생하고 있음을 확인하였다.Comparing FIG. 2 and FIG. 4, the ground pollution distribution diagrams of the respective methods show a very large difference. In FIG. 2 predicted by the present invention, a high concentration was predicted in the same region as the measured result, whereas the conventional single In the prediction section using weather observation data, Figure 4 confirms that high concentrations occur in completely different areas.

도 3은 대상영역 내에서 측정된 오염도와 본 발명에 의한 공간분할방법을 적용한 계산결과의 상관분석을 나타내는 것으로, 가로축은 대기확산모델 예측값이며 세로축은 대기오염도 실측값이다. 상관분석에 의한 상관도는 가장 이상적인 상관도인 1.0과 매우 근접하는 1.067로, 본 발명에 의한 예측정확도가 매우 우수함을 증명하고 있다.Figure 3 shows the correlation analysis between the pollution measured in the target area and the calculation result applying the spatial division method according to the present invention, the horizontal axis is the air diffusion model predicted value, the vertical axis is the air pollution measured value. The correlation by correlation analysis is 1.067, which is very close to 1.0, which is the most ideal correlation, which proves that the prediction accuracy according to the present invention is excellent.

상기 도 3과 비교하여 도 5는 종래의 단일 기상관측자료를 사용한 경우로, 종래의 단일 기상관측자료를 사용한 예측방법에 의한 상관계수는 0.8695로 상관도가 전혀 없음을 나타내고 있으므로, 기존 방식은 적용이 불가능함을 확인할 수 있다.Compared to FIG. 3, FIG. 5 shows a case where the conventional single meteorological observation data is used, and the correlation coefficient by the prediction method using the conventional single meteorological observation data is 0.8695, indicating that there is no correlation at all. You can see that this is impossible.

이상 설명한 바와 같은 본 발명에 따른 복수 기상관측자료를 이용한 대기오염 확산 예측 방법을 적용하여 대기확산모델을 사용하게 되면, 한 지점의 기상관측자료만을 이용하여 대상지역 전체에 대한 오염지도를 작성하던 기존의 방법에 비하여 국지지형에 의하여 변형되는 풍향 및 풍속을 보다 현실적으로 반영함으로써 오염농도의 예측결과의 정확성을 향상시킬 수 있으며, 아울러 해석가능한 대상지역의 면적을 확대할 수 있다.When the air diffusion model is used by applying the air pollution spread prediction method using the multiple weather observation data according to the present invention as described above, the existing pollution map for the entire target area is prepared using only the weather observation data of one point. Compared to the method, the wind direction and wind speed modified by the local type can be more realistically reflected to improve the accuracy of the prediction result of the pollutant concentration, and the area of the target area that can be analyzed can be expanded.

또한, 본 발명은 대기오염 배출원이 산재하여 있는 복잡한 양상을 띄는 우리나라의 대부분의 공단지역에 적합한 방식으로, 기존의 단일 기상관측자료에 의한 확산예측은 적용이 불가능함에도 불구하고 본 발명에 의한 복수 기상관측자료에 의한 확산예측은 상관분석을 통하여 정확한 예측이 가능하게 된다.In addition, the present invention is suitable for most industrial zones in Korea, where the air pollution source is scattered, and the multi-phase gas phase according to the present invention is not applicable even though the diffusion prediction based on the existing single meteorological observation data is not applicable. Diffusion prediction based on observation data enables accurate prediction through correlation analysis.

따라서 본 발명에 의한 대기확산모델을 환경영향평가에 적용함으로써 보다 신뢰성 있는 평가결과를 제공할 수 있게 된다.Therefore, by applying the atmospheric diffusion model according to the present invention to the environmental impact assessment it is possible to provide a more reliable evaluation results.

Claims (3)

측후소의 기상관측자료를 입력조건으로 하여 가우시안 연기확산모델을 이용하여 대상지역의 오염농도를 계산함에 있어서,In calculating the concentration of pollutants in the target area using Gaussian smoke diffusion model using the weather observation data of the stations, 대상지역에 산재된 복수개소의 측후소로부터 관측된 기상관측자료를 활용하여 개별적인 오염농도 예측을 수행하고, 이를 합산하여 대상지역 전체의 오염농도를 산출하는 것을 특징으로 하는 복수 기상관측자료를 이용한 대기오염 확산 예측 방법.Air pollution using plural meteorological observation data, characterized by performing individual pollutant concentration predictions by using meteorological observation data observed from a plurality of weather stations scattered in the target area, and summing them up to calculate the pollutant concentration of the entire target area. Spread prediction method. 제 1 항에 있어서, 임의 위치의 오염원에 대한 기상관측자료 제공을 위한 측후소가 공간분할법에 의한 위치함수에 의해 선택되는 것을 특징으로 하는 복수 기상관측자료를 이용한 대기오염 확산 예측 방법.The air pollution spread prediction method using a plurality of meteorological observation data according to claim 1, characterized in that the climatic station for providing meteorological observation data for a pollutant at any position is selected by a position function by a spatial division method. 제 2 항에 있어서, 상기 공간분할법에 의한 위치함수는 오염원으로부터 측정소까지의 최저거리를 구하는 함수로, 오염원에 대한 기상관측자료는 그 구역에 해당하는 기상관측소로부터 제공되는 것을 특징으로 하는 복수 기상관측자료를 이용한 대기오염 확산 예측 방법.The method of claim 2, wherein the location function by the spatial division method is a function of obtaining a minimum distance from a source to a measurement station, and the weather observation data for the source is provided from a meteorological station corresponding to the area. Air pollution spread prediction method using data.
KR1020030042551A 2003-06-27 2003-06-27 Prediction method of polluted air dispersion using multiple meteorological data KR20050004316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030042551A KR20050004316A (en) 2003-06-27 2003-06-27 Prediction method of polluted air dispersion using multiple meteorological data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030042551A KR20050004316A (en) 2003-06-27 2003-06-27 Prediction method of polluted air dispersion using multiple meteorological data

Publications (1)

Publication Number Publication Date
KR20050004316A true KR20050004316A (en) 2005-01-12

Family

ID=37219005

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030042551A KR20050004316A (en) 2003-06-27 2003-06-27 Prediction method of polluted air dispersion using multiple meteorological data

Country Status (1)

Country Link
KR (1) KR20050004316A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650267B1 (en) * 2005-10-19 2006-11-27 주식회사 포스코 Method for predicting falling dust
CN108064047A (en) * 2018-01-17 2018-05-22 北京工商大学 A kind of water quality sensor network optimization dispositions method based on population
CN115032332A (en) * 2022-04-28 2022-09-09 武汉大学 Method for measuring strong point source carbon emission based on vehicle-mounted system
CN115840793A (en) * 2022-12-12 2023-03-24 四川大学 Meteorological space normalization method and system based on random forest
CN116862266A (en) * 2023-07-25 2023-10-10 南京创蓝科技有限公司 Method and system for improving operation precision of fog gun vehicle based on big data

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650267B1 (en) * 2005-10-19 2006-11-27 주식회사 포스코 Method for predicting falling dust
CN108064047A (en) * 2018-01-17 2018-05-22 北京工商大学 A kind of water quality sensor network optimization dispositions method based on population
CN108064047B (en) * 2018-01-17 2021-02-09 北京工商大学 Water quality sensor network optimization deployment method based on particle swarm
CN115032332A (en) * 2022-04-28 2022-09-09 武汉大学 Method for measuring strong point source carbon emission based on vehicle-mounted system
CN115840793A (en) * 2022-12-12 2023-03-24 四川大学 Meteorological space normalization method and system based on random forest
CN115840793B (en) * 2022-12-12 2024-05-07 四川大学 Meteorological space normalization method and system based on random forest
CN116862266A (en) * 2023-07-25 2023-10-10 南京创蓝科技有限公司 Method and system for improving operation precision of fog gun vehicle based on big data

Similar Documents

Publication Publication Date Title
Russo et al. Shipping emissions over Europe: a state-of-the-art and comparative analysis
McHugh et al. ADMS–Urban: an air quality management system for traffic, domestic and industrial pollution
Elbir Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey
Carnevale et al. Surrogate models to compute optimal air quality planning policies at a regional scale
CN102116734B (en) Method and system for forecasting pollutant source
Matějíček et al. A GIS-based approach to spatio-temporal analysis of environmental pollution in urban areas: A case study of Prague's environment extended by LIDAR data
Suder et al. Determination of ventilation channels in urban area: a case study of Wrocław (Poland)
Efthimiou et al. An optimized inverse modelling method for determining the location and strength of a point source releasing airborne material in urban environment
Huang et al. Surveillance efficiency evaluation of air quality monitoring networks for air pollution episodes in industrial parks: Pollution detection and source identification
Yang et al. Spatiotemporal characterization and mapping of PM2. 5 concentrations in southern Jiangsu Province, China
CN115453069A (en) Remote sensing tracing method for urban ozone overproof pollution
Kopka et al. Framework for stochastic identification of atmospheric contamination source in an urban area
Lagzi et al. Simulation of the dispersion of nuclear contamination using an adaptive Eulerian grid model
Elkamel et al. A heuristic optimization approach for Air Quality Monitoring Network design with the simultaneous consideration of multiple pollutants
Shahi et al. Assessment of the spatio-temporal variability of the added value on precipitation of convection-permitting simulation over the Iberian Peninsula using the RegIPSL regional earth system model
Lloyd et al. Increased accuracy of geostatistical prediction of nitrogen dioxide in the United Kingdom with secondary data
Carnevale et al. An integrated air quality forecast system for a metropolitan area
KR20050004316A (en) Prediction method of polluted air dispersion using multiple meteorological data
JP2005121474A (en) Apparatus for analyzing index distribution of atmospheric substance
Guo et al. A mobile sensing system for urban monitoring with adaptive resolution
Polydoras et al. Air quality predictions: dispersion model vs Box-Jenkins stochastic models. An implementation and comparison for Athens, Greece
Heyns Reduced target-resolution strategy for rapid multi-observer site location optimisation
Johansson et al. Evaluation of air quality using dynamic land-use regression and fusion of environmental information
Saeb et al. Air pollution estimation from traffic flows in Tehran highways
Zhou et al. Source characterization of airborne emissions using a sensor network: Examining the impact of sensor quality, quantity, and wind climatology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application