KR200454934Y1 - Temperature data processing method of double-end optical distribution temperature measuring equipment - Google Patents

Temperature data processing method of double-end optical distribution temperature measuring equipment Download PDF

Info

Publication number
KR200454934Y1
KR200454934Y1 KR2020080015623U KR20080015623U KR200454934Y1 KR 200454934 Y1 KR200454934 Y1 KR 200454934Y1 KR 2020080015623 U KR2020080015623 U KR 2020080015623U KR 20080015623 U KR20080015623 U KR 20080015623U KR 200454934 Y1 KR200454934 Y1 KR 200454934Y1
Authority
KR
South Korea
Prior art keywords
temperature
optical fiber
sensor
temperature data
measuring
Prior art date
Application number
KR2020080015623U
Other languages
Korean (ko)
Other versions
KR20100005630U (en
Inventor
이근량
Original Assignee
이근량
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이근량 filed Critical 이근량
Priority to KR2020080015623U priority Critical patent/KR200454934Y1/en
Publication of KR20100005630U publication Critical patent/KR20100005630U/en
Application granted granted Critical
Publication of KR200454934Y1 publication Critical patent/KR200454934Y1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2213/00Temperature mapping

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

본 발명은 광섬유에 펄스형 광을 입사하여 생기는 산란광 중에 광섬유 주변 온도에 반응하는 파장신호와 광 펄스 입사 후 되돌아오는 산란광의 시간차를 측정하여 광섬유 주변의 온도를 측정하는 광섬유 분포온도 측정 장치에 관한 것으로, 상세하게는 센서용 광섬유 양쪽 끝에서 온도를 측정하는 더블엔드방식으로 센서 광케이블을 포설하여 온도를 측정하는 경우, 센서용 광섬유 양쪽끝에서 온도를 측정하여 취득한 2개의 온도데이터를 하나의 온도데이터로 처리하는 방법에 관한 것으로, 취득한 2개의 온도데이터를 센서용 광섬유 전체 길이에 절반씩만을 취하여 2개의 앞부분의 온도데이터를 결합하여 최종적으로 하나의 온도데이터를 만드는 방식을 특징으로 한다. The present invention relates to an optical fiber distribution temperature measuring device for measuring the temperature around the optical fiber by measuring the time difference between the wavelength signal in response to the optical fiber ambient temperature and the scattered light returned after the light pulse incident in the scattered light generated by the incident light pulse type to the optical fiber In detail, in the case of measuring the temperature by installing the sensor optical cable in the double-end method of measuring the temperature at both ends of the optical fiber for the sensor, two temperature data obtained by measuring the temperature at both ends of the optical fiber for the sensor are measured as one temperature data. It relates to a method of processing, characterized in that the two pieces of temperature data obtained by taking only half of the total length of the optical fiber for the sensor to combine the temperature data of the two front parts to finally make one temperature data.

광섬유 분포온도측정정치, 센서용 광섬유, 싱글엔드, 더블엔드, 라만산란광, 스트크스광, 안티스토크스광 Optical fiber distribution temperature measurement politics, optical fiber for sensors, single-ended, double-ended, Raman scattered light, streak light, anti-stoke light

Description

더블엔드방식의 광분포온도 측정장비의 온도데이터 처리방식 { Temperature data processing method for double ended optical fiber distributed temperature masuring equipment } Temperature data processing method for double ended optical distribution temperature measuring equipment {Temperature data processing method for double ended optical fiber distributed temperature masuring equipment}

본 발명은 광섬유를 센서로 이용하여 광섬유 내에서 발생하는 라만 산란광을 측정하여 온도를 계산하는 광섬유 분포 온도측정 장치에 관한 것이다.     The present invention relates to an optical fiber distribution temperature measurement device for calculating a temperature by measuring the Raman scattered light generated in the optical fiber using the optical fiber as a sensor.

라만 산란광을 이용한 광섬유 온도 측정장치는 광섬유 한쪽 끝에 파장 λo의 레이저 펄스 광을 입사하면 광섬유 내에서는 λs의 스토크스광과 λas의 안티스토크스광라는 2가지 성분의 라만 산란광이 발생된다. 이 두 가지 파장의 진폭 비율이 순수히 온도의 함수이고 광섬유 내에서 되돌아 오는 산란광은 광 펄스를 입력한 끝으로 되돌아오는 시간은 광섬유 내에 빛의 속도를 알고 있어서 산란광이 발생한 위치를 계산할수 있어 광섬유 주변의 온도 분포를 측정하는 장치이다. 스토크스광과 안티스토크스광,두가지 산란광의 측정은 광섬유의 손실 및 파단점 측정에 사용되는 OTDR ( Optical Time Domain Reflectometer) 과 같은 측정방법으로 측정한다. 분포온도 측정은 센서용 광섬유에서 생기는 산란광을 측정하기 때문에 분포온도측정장비와 가까운 센서용 광섬유 부분은 신호대잡음비가 좋아서 온도정밀도가 높으나, 분포온도측정장비와 먼 광섬유 부분은 상대적으로 신호대잡음비가 나쁘기 때문에 온도정밀도가 낮다. 즉 분포온도측정장비가 측정한 거리별 온도의 정밀도는 분포온도 측정장비와 거리가 가까울수록 좋고 멀수록 나쁘게 측정된다. 분포온도측정 장비에 센서용 광섬유의 한쪽 편단만을 연결하는 방식을 싱글앤드방식이라 하는데 이 경우 측정 중에 센서용 광섬유의 손실이 증가하면 온도 계측의 정밀도가 낮아지고 센서용 광섬유가 단선 나는 경우에는 단선이후부터 종단까지의 온도측정은 불가능한 단점이 있다. 이와비교하여 센서용광섬유를 "U"자형으로 포설하고 센서용 광섬유의 종단과 시단을 모두 분포온도측정장비에 연결하는 더블앤드방식은 상기의 문제점을 해결할 수 있으나 이 경우 하나의 센서용 광섬유를 양단에서 측정하기 때문에 양단에서 측정한 두개의 측정결과로 하나의 분포 온도 측정 결과를 계산해야 한다. 대부분의 경우 시단에서 측정하고 난 후에 종단에서 분포온도가 측정되므로, 종단에서 측정한 결과의 시단과 종단을 뒤집어서 시단에서 측정된 내용과 거리상 동일하도록 측정 결과를 배열하는 거리보정 후에 각 거리별 측정된 두개의 온도데이터를 산술평균하여 최종적인 온도 측정결과의 데이터를 산출한다.     In the optical fiber temperature measuring apparatus using Raman scattered light, when laser pulsed light having a wavelength λo is incident on one end of the optical fiber, two kinds of Raman scattered light are generated in the optical fiber, λ s stokes light and λ as anti-stalk light. The amplitude ratio of these two wavelengths is purely a function of temperature, and the scattered light coming back from the optical fiber is the time of returning to the end of the input of the optical pulse. It is a device for measuring the temperature distribution. The measurement of two types of scattered light, Stokes and anti-Stokes, is measured by a measurement method such as Optical Time Domain Reflectometer (OTDR), which is used to measure the loss and break point of optical fiber. Because the distribution temperature measurement measures the scattered light generated by the optical fiber for the sensor, the part of the optical fiber for the sensor close to the distribution temperature measuring device has a good signal-to-noise ratio, so the temperature accuracy is high. Low temperature accuracy In other words, the accuracy of the distance-specific temperature measured by the distribution temperature measuring equipment is measured as the distance between the distribution temperature measuring equipment and the distance is good. The method of connecting only one end of the optical fiber for the sensor to the distribution temperature measuring equipment is called the single-ended method. In this case, if the loss of the optical fiber for the sensor increases during measurement, the accuracy of temperature measurement is lowered, and if the optical fiber for the sensor is disconnected, the disconnection is Temperature measurement from the end to the end is impossible. In comparison, the double-ended method of installing the optical fiber for the sensor in a “U” shape and connecting both the end and the start of the optical fiber for the sensor to the distribution temperature measuring equipment can solve the above problem, but in this case, one optical fiber for the sensor Because we measure at, we have to calculate one distribution temperature measurement result from two measurement results measured at both ends. In most cases, since the distribution temperature is measured at the end after the measurement at the start, the distance is measured after each distance correction, in which the measurement results are arranged to be equal in distance to the measured content at the end by inverting the start and end of the result at the end. Arithmetic average of two temperature data is used to calculate the data of the final temperature measurement result.

상기와 같은 더블앤드 온도처리방식은 시단과 종단에서 취득한 온도데이터의 끝부분, 즉 시단에서 측정한 온도데이터는 종단부분이, 종단에서 측정한 온도데이터는 시단부분의 온도가 분포온도 측정원리상 가장 온도정밀도가 좋지않은 부분이된다. 따라서 시단과 종단의 온도데이터를 산술평균을 하게되면 전체적으로는 온도 정밀도를 향상할 수 있으나 시단에서 측정한 시단부분은 온도정밀도가 가장좋은 부분이지만 종단측에서 측정한 시단부분은 온도정밀도가 가장 낮은 부분이 되고 상기에 기존 방식대로 온도데이터를 처리하면 시단에 최종온도 데이터는 가장 좋은 데이터와 가장나쁜 데이터를 산술평균을 하기 때문에 결과적으로는 시단에서만 측정한 시단부분의 온도데이터와 같은 최상의 온도데이터를 최종데이터로 얻는것은 아니다. In the double-end temperature processing method as described above, the temperature at the end of the temperature data acquired at the start and the end, that is, the temperature data measured at the end is the end, and the temperature at the end is the temperature at the beginning. The temperature accuracy is bad. Therefore, the arithmetic mean of the temperature data of the start and end can improve the temperature accuracy as a whole. However, the start end measured at the start end has the best temperature accuracy, but the start end measured at the end side has the lowest temperature accuracy. When the temperature data is processed according to the conventional method, the final temperature data at the beginning is the arithmetic mean of the best data and the worst data. Consequently, the best temperature data such as the temperature data at the beginning is measured only at the beginning. You don't get it with data.

이와같은 단점을 해결하고 최상의 온도 데이터를 얻기 위해서 본 발명에서는 시단과 종단에서 측정한 두개의 온도데이터 전체를 산술평균하여 최종 온도데이터를 만드는 것이 아니라 시단에서 측정한 온도데이터중에 센서용 광섬유 길이 절반에 해당되는 온도특성이 좋은 부분의 데이터만을 취하고, 종단에서 측정한 온도 데이터 중에 센서용 광섬유 길이 절반에 해당되는 온도특성이 좋은 부분의 데이터만을 취한 후에, 시단 데이터 절반 끝에 거리가 연속적이 되도록 거리 보정을 한 종단의 데이터 절반을 결합하여 전체 온도데이터를 산출한다. 이와같이 처리하면 시단에서 측정한 데이터를 보면 온도특성이 나쁜 종단쪽 반을 버리고, 종단에서 측정한 데이터를 보면 온도특성이 나쁜 시단쪽 반을 버려서 가장 신호대잡음비가 나쁜 신호 부분을 버리기 때문에 기존방식과 비교한다면 전체적으로 최적의 온도데이터를 얻을 수 있다.In order to solve the above disadvantages and obtain the best temperature data, the present invention does not produce the final temperature data by arithmetically averaging the two temperature data measured at the start and the end, but at the half of the optical fiber length for the sensor among the temperature data measured at the start. Only the data of the part with good temperature characteristics is taken, and only the data of the part with good temperature characteristics corresponding to half the length of the optical fiber for the sensor is taken from the temperature data measured at the end, and the distance correction is performed so that the distance is continuous at the end of the starting data. Combine half of the data from one end to yield the full temperature data. In this way, the data measured at the start end discards the terminal half with the poor temperature characteristics, and the data measured at the end discards the signal half with the poor temperature characteristics and discards the signal part with the worst signal-to-noise ratio. If so, you can get the best temperature data.

기존의 더블엔드 광섬유 분포온도측정방식에 비하여 발명된 방식을 사용할 경우 온도정밀도를 향상시킬 수 있는 효과가 있다.Compared to the conventional double-end optical fiber distribution temperature measurement method, the invention can improve the temperature accuracy.

본 발명은 더블앤드방식으로 센서용 광섬유(3)를 사용하는 광섬유 선형 분포온도 측정 장치(1)에서 양 끝(4)와 (5)에서 측정한 온도데이터를 절반씩만 취하여 결합하여 전체 센서용 광섬유의 온도를 산출하는 것이 특징이다. In the present invention, the optical fiber for the entire sensor is combined by taking only half the temperature data measured at both ends (4) and (5) in the optical fiber linear distribution temperature measuring device (1) using the optical fiber (3) for the sensor in a double-ended method. It is characterized by calculating the temperature of.

도면과 실시예를 참조하여 본 발명의 구성을 상세하게 설명한다.With reference to the drawings and embodiments will be described in detail the configuration of the present invention.

도1은 기존의 더블엔드 방식의 온도 데이터 처리방식을 도시한 것이고 도2는 본 발명에 의한 온도데이터 처리방식을 도시한 것이다. 도3은 광섬유 분포온도 측정장치와 더블앤드 방식으로 센서용 광섬유를 연결하여 시스템을 구성한 예이다. 도4는 기존방식과 발명된 방식으로 온도데이터를 처리한 경우 상대적인 신호대잡음비를 비교한 것이다.Figure 1 shows a conventional double-ended temperature data processing method and Figure 2 shows a temperature data processing method according to the present invention. 3 is an example in which a system is constructed by connecting an optical fiber distribution temperature measuring device and a sensor optical fiber in a double-ended manner. Figure 4 compares the relative signal-to-noise ratio when the temperature data is processed in the conventional and invented manner.

더블앤드 분포온도측정장치는 도3과 같이 일정한 길이 L을 갖는 센서용 광섬유(3)와 분포온도 측정장치(1) 사이에 센서용 광섬유(3)의 시단(4)와 종단(5)를 분포온도 측정장치(1)에 순차적으로 연결시켜주는 광스위치(2)로 구성된다. The double-ended distributed temperature measuring device distributes the start end 4 and the end 5 of the optical fiber 3 for a sensor 3 between the optical fiber 3 for a sensor having a constant length L and the distribution temperature measuring device 1 as shown in FIG. 3. It consists of an optical switch (2) connected in sequence to the temperature measuring device (1).

실시 예를 참조하여 본 발명의 작용을 상세히 설명한다.The operation of the present invention will be described in detail with reference to the examples.

도3과 같은 더블앤드 구성을 갖는 경우 우선은 광스위치(2)를 구동하여 센서용 광섬유 시점(4)와 분포온도측정장치(1)을 연결하여 전체 센서용 광섬유(3)의 온도를 도1에 (a)와 같이 측정한다. 다음에는 광스위치(2)를 절환하여 센서용 광섬유 종점(5)와 분포온도측정장치(1)을 연결하여 다시 전체 센서용 광섬유(3)의 온도를 도1에 (b)와 같이 측정한다. 이와 같이 측정된 두개의 온도데이터는 하나의 센서용 광섬유(3)의 온도분포를 (4)와 (5) 양끝에서 측정한 결과이다. 센서용 광섬유의 시점은 L1으로 하고 종점을 L2로 정의하면, 도1에 (a)와 (b)와 같이 측정된 두개의 온도데이터를 하나의 온도데이터로 정리하기 위해서 L2에서부터 시점L1까지 측정한 데이터 도1에(b)를, 먼저 시점에서 측정한 분포온도 측정한 결과 도1에 (a)와 같이 L1에서부터 L2로 측정한 것과 같이 거리를 역으로 L1에서 L2까지 다시 정리하여 거리보정을 하면 도1에 (c)와 같이 된다. 이렇게 얻어진 도1에 (c)와 도1에 (a)를 각 거리마다 온도데이터를 합산 한 후에 2로 나누어서 최종적인 분포온도 측정 결과 도1에 (d)를 얻는다.In the case of having a double-ended configuration as shown in FIG. 3, first, the optical switch 2 is driven to connect the optical fiber viewpoint 4 for the sensor and the distribution temperature measuring device 1 to determine the temperature of the entire optical fiber 3 for the sensor. Measure as in (a). Next, the optical switch 2 is switched to connect the sensor optical fiber endpoint 5 and the distribution temperature measuring device 1 to measure the temperature of the entire optical fiber 3 for the sensor as shown in FIG. The two temperature data measured in this way is the result of measuring the temperature distribution of one sensor optical fiber (3) at both ends (4) and (5). If the start point of the optical fiber for the sensor is defined as L1 and the end point is defined as L2, in order to organize the two temperature data measured as shown in (a) and (b) in FIG. As shown in (b) of FIG. 1, the distribution temperature measured at the time point, as shown in (a) of FIG. 1, the distance is reversed again from L1 to L2 as shown in (a). 1 is as shown in (c). 1 (c) and 1 (a) thus obtained are summed up for each distance, and then divided by 2 to obtain the final distribution temperature measurement result (d) in FIG.

그러나 산란광을 이용한 온도측정을 하는 분포온도측정 원리에 따라서 분포온도측정장치에서 먼 곳에 있는 부분은 상대적으로 잡음이 심하여 온도 정밀도가 낮게된다. 즉 시점(4)를 시작으로 측정한 결과 도1에 (a)의 경우 L2부분으로 갈수록 온도 정밀도가 낮고, 종점(5)를 시작으로 측정한 결과 도1에 (b)의 경우 L1부분으로 갈수록 온도 정밀도가 낮아진다. 따라서 상기와 같이 시단(4)과 거리 역산을 한 종단(5)에서 측정한 온도데이터와 산술평균으로 온도를 계산하는 기존의 방법은 온도 정밀도가 낮은부분이 포함되어 시점L1과 종점L2에서 온도정밀도를 손해볼 수 밖에 없다.However, according to the distribution temperature measurement principle of temperature measurement using scattered light, the part far away from the distribution temperature measuring device is relatively noisy, resulting in low temperature accuracy. In other words, as a result of measuring the starting point (4), the temperature accuracy is lower as it goes to the L2 part in (a) of FIG. Temperature accuracy is lowered. Therefore, the conventional method of calculating the temperature from the temperature data and the arithmetic mean measured at the start end 4 and the end inversion distance 5 as described above includes a low temperature precision part and thus the temperature accuracy at the time point L1 and the end point L2. There is no choice but to lose money.

본 발명은 이와 다르게 시점에서 측정한 온도 데이터, 도1에 (a)에서 분포온도 측정장비부터 전체 센서용 광섬유 거리의 절반 (L/2)를 도2에 (e)와 같이 취한다. 또한 종점에서 측정한 온도데이터, 도1에 (b)에서 분포온도 측정장비로 부터 전체 센서용 광섬유 거리의 절반(L/2)를 도2에 (f)와 같이 취한다. 도2에 (f)의 데이터를 시점을 기준으로 거리를 역산하면 도2에 (g)와 같이되고, 시단에서 측정한 절반의 온도데이터 도2에 (e)와 결합하여 최종분포온도 데이터 도2에 (h)를 산출하는 것을 특징으로 한다.본 발명과 같이 측정을 하면 온도측정에 영향을 주는 신호대 잡음비를 아래와 같이 개선할 수 있어서 결과적으로 온도정밀도가 높아지는 효과가 있다.Alternatively, the present invention takes the temperature data measured at the time point, half (L / 2) of the total optical fiber distance for the sensor from the distribution temperature measuring equipment in Fig. 1 (a) as shown in Fig. 2 (e). In addition, the temperature data measured at the end point, half (L / 2) of the total optical fiber distance for the sensor from the distribution temperature measuring equipment in Figure 1 (b) is taken as shown in Figure 2 (f). Inverting the distance of the data of Fig. 2 (f) from the viewpoint, it becomes as in Fig. 2 (g), and the half temperature data measured at the beginning is combined with Fig. 2 (e) of the final distribution temperature data. It is characterized in that (h) is calculated. In the measurement according to the present invention, the signal-to-noise ratio affecting the temperature measurement can be improved as follows, resulting in an effect of increasing the temperature accuracy.

분포온도의 최고 높은 신호대 잡음비는 분포온도 측정장비와 연결된 센서용 광섬유 부분이 되고 최고로 낮은 신호대 잡음비를 갖는 곳은 분포온도 측정장비에서 가장 먼 끝의 센서용 광섬유이다. 도4에 (a)는 시단(4)에서 측정한 센서용 광섬유 전체 길이에 대한 신호대 잡음이다. 도4에 (b)는 종단(5)에서 측정한 센서용 광섬유 전체 길이에 대한 신호대 잡음이다. 신호대 잡음비의 최대값은 1로 , 최소값은 0로 정의하면 기존에 산술평균방식으로 최종 온도 데이터를 처리하면 도4에 (c)와 같이 전체 센서용 광섬유 길이에 대해서 일정한 0.5인 결과를 얻을 수 있다. 하지만 발명된 방식으로 데이터를 산출하면 도4에 (d)와 같이 시단(4)과 종단(5)에서 최대 1의 값을, 전체 센서용 광섬유 거리 절반 위치에서 0.5의 값을 갖게된다. 따라서 기존에 방법에 비하여 전체적으로 높은 온도정밀도를 갖는 측정결과를 얻을 수 있다.The highest signal-to-noise ratio of the distribution temperature is the part of the sensor fiber connected to the distribution temperature measuring instrument. The lowest signal-to-noise ratio of the distribution temperature is the sensor fiber at the farthest end of the distribution temperature measurement instrument. 4 (a) shows signal-to-noise for the entire length of the optical fiber for the sensor measured at the start end 4. FIG. 4 (b) shows the signal-to-noise for the entire length of the optical fiber for the sensor measured at the terminal 5. FIG. If the maximum value of the signal-to-noise ratio is defined as 1 and the minimum value is 0, when the final temperature data is processed by the arithmetic mean method, as shown in (c) of FIG. 4, a constant value of 0.5 for the entire optical fiber length of the sensor can be obtained. . However, if the data is calculated in the invented manner, as shown in (d) of FIG. 4, the maximum value of 1 is obtained at the start end 4 and the end 5, and 0.5 at the half distance of the optical fiber distance for the entire sensor. Therefore, it is possible to obtain a measurement result with a higher temperature accuracy as a whole compared to the conventional method.

도1. 기존의 더블엔드 방식의 온도 데이터 처리방식Figure 1. Conventional Double-Ended Temperature Data Processing

도2. 본 발명에 의한 온도데이터 처리방식Figure 2. Temperature data processing method according to the present invention

도3. 광섬유 분포온도 측정장치와 더블앤드 방식으로 센서용 광섬유를 포설하여 시스템을 구성한 예Figure 3. Example of constructing a system by installing optical fiber for sensor with double-end method

도4. 기존에 방법과 발명된 방법으로 온도데이터 처리를 하는경우 신호대잡음비Figure 4. Signal-to-noise ratio when temperature data processing by the existing method and the method invented

*도면의 주요부분에 대한 부호의 설명* * Description of the symbols for the main parts of the drawings *

1: 광분포온도측정장치 1: Light distribution temperature measuring device

2: 광스위치2: optical switch

3; 센서용 광섬유3; Optical Fiber for Sensor

4: 센서용 광섬유 시단 4: optical fiber start for sensor

5; 센서용 광섬유 종단 5; Fiber Optic Terminations for Sensors

Claims (1)

길이(L)의 센서용 광섬유 , 광스위치와 분포온도측정장치로 구성되는 더블엔드형 분포온도 측정 장치에 있어서,In the double-ended type distribution temperature measuring device comprising a fiber for a sensor of length L, an optical switch, and a distribution temperature measuring device, 우선 광스위치를 조작하여 센서용 광섬유 시단(L1)에 분포온도측정장치를 연결하여 측정된 길이(L)에 대한 전체 온도데이터 중에 절반인 L1에서 (L1+L/2) 까지의 온도데이터만 보관하고, 그 다음에는 광스위치를 조작하여 종단(L2)에 분포온도장치를 연결하여 측정된 길이(L)에 대한 전체 온도데이터 중에서 절반인 L2에서 (L2-L/2)까지의 온도데이터만을 보관한 후에, 이 절반씩의 두 데이터를 합하여 L1에서 L2까지의 분포 온도데이터로 취합하는 것을 특징으로 하는 분포온도 측정장치의 데이터측정 방식First, only the temperature data of L1 to (L1 + L / 2), which is half of the total temperature data for the measured length L, is connected by connecting the distribution temperature measuring device to the optical fiber start end L1 by the optical switch. Then, operate the optical switch to connect the distribution temperature device to the terminal (L2) to store only the temperature data from L2 to (L2-L / 2), which is half of the total temperature data for the measured length (L). Afterwards, the data measurement method of the distribution temperature measuring device, characterized in that the sum of the two data of each half to collect the distribution temperature data from L1 to L2
KR2020080015623U 2008-11-25 2008-11-25 Temperature data processing method of double-end optical distribution temperature measuring equipment KR200454934Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR2020080015623U KR200454934Y1 (en) 2008-11-25 2008-11-25 Temperature data processing method of double-end optical distribution temperature measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR2020080015623U KR200454934Y1 (en) 2008-11-25 2008-11-25 Temperature data processing method of double-end optical distribution temperature measuring equipment

Publications (2)

Publication Number Publication Date
KR20100005630U KR20100005630U (en) 2010-06-04
KR200454934Y1 true KR200454934Y1 (en) 2011-08-04

Family

ID=44451173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR2020080015623U KR200454934Y1 (en) 2008-11-25 2008-11-25 Temperature data processing method of double-end optical distribution temperature measuring equipment

Country Status (1)

Country Link
KR (1) KR200454934Y1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105741475B (en) * 2016-05-11 2023-08-01 广州天赋人财光电科技有限公司 Redundant distributed optical fiber line type temperature-sensing fire detection method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166740B1 (en) * 1995-04-17 1999-03-20 김광호 Error compensation method for digital audio signal
KR20010088470A (en) * 2001-07-19 2001-09-28 권문구 Correction device of fiber optic temperature sensor for long distance area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0166740B1 (en) * 1995-04-17 1999-03-20 김광호 Error compensation method for digital audio signal
KR20010088470A (en) * 2001-07-19 2001-09-28 권문구 Correction device of fiber optic temperature sensor for long distance area

Also Published As

Publication number Publication date
KR20100005630U (en) 2010-06-04

Similar Documents

Publication Publication Date Title
US9829410B2 (en) Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
US10014935B2 (en) Multiple-acquisition OTDR method and device
US8654320B2 (en) Beam Path Monitoring Device and Beam Path Monitoring System
US8760639B2 (en) Distributed optical fibre sensing
CN108168686B (en) Dual-wavelength distributed optical fiber acoustic sensing system
JP4008470B2 (en) Measuring method and apparatus for measuring polarization mode dispersion of optical fiber
US9252872B2 (en) Crosstalk measuring method and crosstalk measuring device
CN109029769A (en) High-precision temperature demodulation method based on distributed fiber Raman sensing technology
JP7200989B2 (en) Optical fiber transmission loss measurement method and OTDR measurement device
KR101356986B1 (en) A raman sensor system for fiber distributed temperature measurment
JP2023501284A (en) SPECIAL OPTICAL FIBER FOR MEASURING THREE-DIMENSIONAL CURVE SHAPE AND MANUFACTURING METHOD THEREOF, AND SYSTEM FOR MEASURING THREE-DIMENSIONAL CURVE SHAPE USING SPECIAL OPTICAL FIBER
RU2552222C1 (en) Method of measuring temperature distribution and device for realising said method
KR200454934Y1 (en) Temperature data processing method of double-end optical distribution temperature measuring equipment
JP6924791B2 (en) On-site assembly A device that determines the quality of the optical connection of the optical fiber connection in the optical connector.
JP7468638B2 (en) Brillouin optical sensing device and optical sensing method
JP2020118574A (en) Optical pulse tester and optical pulse testing method
JP5493571B2 (en) OTDR waveform judgment method
JP4201995B2 (en) Optical fiber strain measurement method and apparatus
Benson et al. FBG-based sensors for measurement of small distances
KR100812309B1 (en) Inspection system use of optical fiber sensor
JP3856303B2 (en) Optical fiber characteristic evaluation method and apparatus
JPH04332835A (en) Corrective processing method of distributed temperature data
NL2021638B1 (en) Optical signal processing system
WO2022091401A1 (en) Frequency modulation amount measurement device and method
CN208254674U (en) Based on differential pulse pair and the temperature of Raman amplifiction or the sensor of strain

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20150417

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150727

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171003

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 8

EXPY Expiration of term