KR200407810Y1 - The sobent tube of gathering sample and having conbinated means for measurement of contaminated air - Google Patents
The sobent tube of gathering sample and having conbinated means for measurement of contaminated air Download PDFInfo
- Publication number
- KR200407810Y1 KR200407810Y1 KR2020050016721U KR20050016721U KR200407810Y1 KR 200407810 Y1 KR200407810 Y1 KR 200407810Y1 KR 2020050016721 U KR2020050016721 U KR 2020050016721U KR 20050016721 U KR20050016721 U KR 20050016721U KR 200407810 Y1 KR200407810 Y1 KR 200407810Y1
- Authority
- KR
- South Korea
- Prior art keywords
- tubular body
- measurement
- tube
- activated carbon
- spiral
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/261—Drying gases or vapours by adsorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/405—Concentrating samples by adsorption or absorption
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
암나선(A)이 형성되어 있고 내측면에 환상지지링(A2, A2')이 고정형성되어 있으며 환상지지링(A2, A2')에는 내측으로 원형 망상판(A3)이 접지되어 있는 관상체(A)와 일측단에 숫나선(B1)이 형성되어 있고 내측면에는 원형 망상판(B2)이 망상판 고정스프링(B3)에 지지되어 있는 관상체(B)를 암나선(A1)과 숫나선(B1)를 결합시키므로 형성되는 내부공간에 활성탄소 섬유 집속체(B4)를 충진시켜서된 연결부를 갖는 오염공기 측정용 시료흡착관에 관한 것임.A tubular body in which a female spiral A is formed, and the annular support rings A2 and A2 'are fixedly formed on the inner side, and the circular reticulated plate A3 is grounded inward to the annular support rings A2 and A2'. A male spiral (B1) is formed at one end of (A) and a tubular body (B) on which a circular reticulated plate (B2) is supported by a reticulated plate fixing spring (B3) is formed on a female spiral (A1) and a male side. The present invention relates to a sample adsorption tube for measuring polluted air having a connection portion in which an activated carbon fiber condenser (B4) is filled in an inner space formed by coupling the spiral B1.
Description
도 1a는 본 고안 오염공기 측정용 시료 채취관의 종단면도 및 부분품의 정단면도Figure 1a is a longitudinal sectional view of the sampling pipe for measuring the contaminated air of the present invention and the front sectional view of the parts
도 1b는 본 고안 시료 채취관의 다른 실시예의 종단면도Figure 1b is a longitudinal sectional view of another embodiment of the sample collection tube of the present invention
본 고안은 연결부를 갖는 오염공기 측정용 시료흡착관에 관한 것으로 상세하게는 종래 오염공기 측정용 시료흡착관의 흡착물질인 활성탄을 활성탄소 섬유로 대체하므로서 우수한 흡착성과 탈착성을 갖게 되고 활성탄소 섬유의 사용으로 설계 가능케된 연결부를 갖는 오염공기 측정용 시료흡착관에 관한 것이다.The present invention relates to a sample adsorption tube for measuring polluted air having a connection. Specifically, the activated carbon, which is an adsorbent material of the conventional sample for adsorption of contaminated air, is replaced with activated carbon fibers to have excellent adsorption and desorption properties. A sample adsorption tube for contaminated air measurement having connections designed to be possible by use of
활성탄을 이용한 오염공기 중의 오염물질 포집방법은 1930년대부터 시작하에 1940년대까지는 간헐적으로 사용하여 오다가 가스크로마토그래피법으로 분석시 탈착용매로 이황화탄소가 불꽃이온화 검출기에 낮은 감도를 나타내고 분석컬럼에서 체류하는 시간이 짧고 비극성물질의 탈착성이 우수하므로서 1960경부터 유기용제의 시료 채취에 활성탄 흡착관을 사용하고 탈착용매로 이황화탄소가 본격적으로 사용 되었다.The method of capturing pollutants in polluted air using activated carbon is used intermittently from the 1930's until the 1940's, and when carbon dioxide is used as a desorption solvent, carbon disulfide shows a low sensitivity in flame ionization detector and stays in an analytical column. Since the time required is short and the desorption property of nonpolar substances is excellent, activated carbon adsorption tubes were used for sampling organic solvents from around 1960, and carbon disulfide was used as a desorption solvent.
그러나 혼합유기 용제 폭로평가를 위해 사용되고 있는 활성탄 흡착과 이류화탄소법은 비극성유기 용제에는 높은 탈착효율을 보이지만 극성유기 용제의 경우에는 탈착효율이 낮고 유기용제를 탈착시키는 전처리 과정에서 인체에 유해한 고가의 용매를 사용하게 되고 수동적인 시료 전처리 업무로 인해 측정오가가 발생하며 측정시료를 탈착용매로 희석시킴에 따라 검출한계가 저하되어 노출 기준이 낮아지고 있는 벤젠과 같은 물질의 저농도 검출에 영향을 주게되고 황과 석유계 탄화수소로부터 유도된 이황화탄소는 제품에 따라 약간의 차이는 있지만 불순물로 벤젠을 포함하고 있어 탈착용매로 이황화탄소를 사용할 경우 벤젠의 정량을 과대평가할 수 있다.However, activated carbon adsorption and carbon dioxide method, which are used for the exposure assessment of mixed organic solvents, show high desorption efficiency for nonpolar organic solvents. Measurement error occurs due to manual sample preparation, and the detection limit is lowered as the sample is diluted with a desorbent, which affects the detection of low concentrations of substances such as benzene, which are lowering the exposure standard. Carbon disulfides derived from and petroleum hydrocarbons differ slightly depending on the product, but contain benzene as an impurity, so that carbon disulfide can be overestimated when carbon disulfide is used as a desorption solvent.
이와 같이 활성탄 흡착관과 이황화탄소 탈착용매법의 문제점 해결을 위하여 N.N-디메칠 포름아마이드(DMFI), 메타놀 등을 혼합한 보조용매를 사용하기도 하나 큰 탈착효율을 기대할 수 없고 사업장에서 사용하고 있는 혼합 유기용제에 대한 성분을 정확히 파악하지 못하면 보조 탈착 용매에 근로자가 노출될 수 있는 문제점도 제시되고 있다.In order to solve the problems of activated carbon adsorption tube and carbon disulfide desorption method, co-solvents containing NN-dimethylformamide (DMFI) and methanol may be used. However, a large desorption efficiency cannot be expected. If the components of organic solvents are not accurately understood, there is a problem that workers may be exposed to auxiliary desorption solvents.
또한 최근 휘발성 유기화합물(Volatile Orgaric Compound) 분석에 널리 이용되고 있는 열탈착법은 열과 이동상 가스를 이용하여 고체 흡착관의 흡착제에 흡착된 유기용제를 탈착시켜 가스크로마토그래피(gas chromatography)로 직접 전송하는 방법으로 용매를 사용하지 않는다.In addition, the thermal desorption method, which is widely used in the analysis of volatile organic compounds (Volatile Orgaric Compound), is a method of directly desorbing the organic solvent adsorbed to the adsorbent of the solid adsorption tube using heat and mobile phase gas and directly transferring it to gas chromatography. No solvent is used.
이와 같은 탈착법은 열탈착 장치내에서 탈착된 분석대상 물질을 100%까지 가 스크로마토그래피로 전송할 수 있기 때문에 우수한 감도와 전처리 작업의 자동화가 가능하여 우수한 탈착효율을 얻을 수 있으며 ppb-ppt의 낮은 농도 범위의 유기용제 측정도 가능하다. 또한 자동화가 가능하고 인체에 유해한 용매를 사용하지 않으며 시료의 보관 기간이 길고 시료 채취 흡착관을 수십회 정도까지 반복사용이 가능하다.Since the desorption method can transfer up to 100% of the analyte to be desorbed in the thermal desorption device by chromatography, excellent sensitivity and automation of the pretreatment work can be obtained to obtain excellent desorption efficiency and low concentration of ppb-ppt. Organic solvents in the range can also be measured. In addition, it can be automated, does not use solvents that are harmful to the human body, has a long storage period for samples, and can repeatedly use the sampling adsorption tube for several dozen times.
그러나 탈착된 시료는 단지 1회 주입으로 종결되며 열탈착 장치와 상용화된 열탈착용 고체 흡착관의 가격이 매우고가이고 흡착제의 종류에 따라 선택적으로 유기용제를 흡착하며 알 수 없는 혼합유기용제가 발생되는 작업장에서의 유기용제 포집에는 문제가 있다.However, the desorbed sample is terminated by only one injection, and the price of the solid desorption tube for thermal desorption that is commercialized with the desorption device is very expensive, and the adsorbed organic solvent is selectively adsorbed according to the type of adsorbent. There is a problem with organic solvent collection.
이상에서 설명한 최초의 고체 흡착관에 의한 열탈착법은 1979 리챠드H.부라운에 의해 약한 흡착제를 사용하여 열탈착에 의한 그로마토그래피 분석을 통한 대기중 휘발성 유기용제의 ppb 농도 수준까지 측정을 위해 개발되었으며 이 방법이 영국 보건 안전청의 유해물질 측정방법에 채택된 것을 비롯하여 선진국 등은 여러가지의 열탈착 관련 공정시험법을 개발하여 왔으며 이에 대한 국제 규격화 작업을 추진하고 있는 등 혼합 유기용제 측정의 정확성을 높히고 유기용제 분석에 사용되는 용매 탈착법의 대체 방법으로 열탈착용 다공성 흡착제의 개발과 활용에 대한 연구가 활발히 진행되고 있다.The first thermal desorption by solid adsorption tubes described above was developed by Richard H. Brown for the determination of ppb concentrations of volatile organic solvents in the air by chromatographic analysis by thermal desorption using weak adsorbents. In addition to the method adopted in the UK's Hazardous Substance Measurement Method, developed countries and other countries have developed various thermal desorption-related process test methods, and are promoting international standardization. As an alternative to the solvent desorption method, research on the development and utilization of a porous desorbent for thermal desorption is being actively conducted.
이와 같이 공기중 혼합유기용제 측정에 있어 고체흡착관에 의한 열탈착법이 활성탄 흡착관에 의한 이황화탄소의 용매 탈착법보다 많은 장점을 갖고 있음에도 국내에서 널리 사용되지 않는 이유는 아직까지 고체 흡착관 열탈착법에 대한 연구 가 부족하고 열탈착용 고체 흡착관 가격이 고가이며 측정 대상 유기용제에 적합한 선정의 어려움과 측정 비용 등으로 기피하고 있는 이유라 할 수 있다.As mentioned above, although the thermal desorption by solid adsorption tube has many advantages over the solvent desorption of carbon disulfide by activated carbon adsorption tube in the measurement of mixed organic solvents in the air, the reason why it is not widely used in Korea is that The reason for this is that there is a lack of research on the cost, the price of the solid adsorption tube for thermal desorption is expensive, and the difficulty of selecting suitable for the organic solvent to be measured and the cost of evasion are avoided.
본 고안은 오염공기에 노출된 주거환경이나 산업현장의 환경상태를 보다 정확하게 파악할 수 있는 오염공기 측정용 시료 채취 흡착관을 제공함에 있으며 그 수단으로서 종래 흡착관에 충진되는 흡착물질인 활성탄을 활성탄소 섬유로 대체하므로서 흡착성과 탈착성을 향상시킴과 동시에 흡착관에 연결부를 형성하므로서 여과체(여과물질)의 충진과 탈착을 용이하게 하고 측정시간의 단축과 측정분석을 위한 사전처를 신속하게 하므로서 측정오차 범위를 줄일 수 있는 연결부를 갖는 오염공기 측정용 시료흡착관을 제공함에 있다.The present invention provides a sampling adsorption tube for measuring polluted air, which can more accurately grasp the environmental condition of a residential environment or an industrial site exposed to polluted air. By replacing with fiber, it improves adsorption and desorption and at the same time, it forms a connection part in the adsorption tube to facilitate the filling and desorption of the filter medium (filtration material), and to shorten the measurement time and speed up pre-measurement for measurement analysis. It is an object of the present invention to provide a sample adsorption tube for measuring polluted air having a connection to reduce an error range.
도 1a에서와 같이 일측단에 암나선(A1)이 형성되어 있고 내측면에 환상지지링(A2, A2')이 고정 형성되어 있으며 환상지지링(A2')에는 내측으로 원형 망상판(A3)이 접합지지되어 있는 관상체(A)와 일측단에 숫나선(B1)이 형성되어 있고 내측면에는 원형 망상판(B2)이 망상판 고정스프링(B3)에 지지되어 있는 관상체(B)를 관상체(A)의 암나선(A1)과 관상체(B)의 수나선(B1)을 결합시키므로서 형성되는 공간에 활성탄소 섬유 집속체(B4)를 충진시켜서된 연결부를 갖는 오염공기 측정용 시료흡착관이다. 다른 실시예로서 관상체(B) 대신에 일측단에 숫나선(C1)이 형성되어 있고 내측면에 환상지지링(C3)이 고정 형성되어 있으며 환상지지링(C3)에 원형 망상판(C2)이 접지되어 있는 관상체(C)를 관상체(A)와 결합시킨 시료흡착관을 구성시킬 수도 있다.As shown in FIG. 1A, a female spiral A1 is formed at one end, and annular support rings A2 and A2 'are fixedly formed at an inner side thereof, and a circular reticular plate A3 is formed inwardly at the annular support ring A2'. The tubular body A, which is joined and supported, has a male spiral B1 formed at one end thereof, and on the inner side, a tubular body B whose circular reticulated plate B2 is supported by the reticulated plate fixing spring B3. For measuring polluted air having a connection part filled with activated carbon fiber concentrator B4 in a space formed by combining the female spiral A1 of the tubular body A and the male spiral B1 of the tubular body B Sample adsorption tube. In another embodiment, instead of the tubular body (B), a male spiral (C1) is formed at one side end, and the annular support ring (C3) is fixedly formed on the inner side and the circular reticular plate (C2) in the annular support ring (C3). The sample adsorption pipe which combined this grounded tubular body C with the tubular body A can also be comprised.
상기 본 고안에 의한 흡착관의 관상체(A, B, C)들과 부품인 환상지지링, 원형 망상판은 스텐레스 재질로 구성할 수 있고 철재로 형성하여 전면에 아연도금층을 형성시킨 관상체와 부품일 수 있다.The tubular body (A, B, C) of the adsorption tube according to the present invention and the annular support ring, the circular reticular plate, which is a part, can be made of stainless steel and formed of iron and formed of a galvanized layer on the front and It may be a part.
이상과 같은 본 고안은 종래 흡착관에 있어서 흡착물질(흡착제)로서 분말상의 활성탄 대신에 활성탄 섬유소로 대체하므로 설계가능하다. 활성탄 섬유소는 직포나 부직포, 종이 형태로 가공할 수 있고 이들은 관체내에 맞게끔 롤 형태로 하거나 집속시켜 둥근 집속체 형태로 만들 수 있어 취급이 용이하고 충진 및 제거를 신속하고 용이하게 할 수 있는 반면에 활성탄의 경우는 분말상으로 되어 있어 관상체내에 충진 및 제거가 까다롭고 특히 본 고안에 의한 흡착관과 같이 연결부가 있는 흡착관에는 더욱 사용하기가 곤란하다. 그밖에도 활성탄 섬유소를 활성탄과 비교하면 여러가지 장점을 들 수 있다.The present invention as described above can be designed because in the conventional adsorption tube is replaced with activated carbon fiber instead of powdery activated carbon as the adsorbent (adsorbent). Activated carbon fibers can be processed into woven, non-woven, or paper forms, which can be rolled or focused to form round clusters to fit within the tube, making them easy to handle and quick and easy to fill and remove. The activated carbon has a powdery form, which makes it difficult to fill and remove the tubular body, and is particularly difficult to use in an adsorption tube having a connection such as the adsorption tube according to the present invention. In addition, there are various advantages compared to activated carbon fiber compared to activated carbon.
활성탄소 섬유는 20㎛ 이하의 극히 가는 섬유상에 발달된 세공들은 활성탄에 비하여 극히 미세공으로 표면과 내부가 관통되어 있는 연속성의 미세공으로 신속한 흡착성을 가지며 비표면적이 활성탄에 비하여 매우크므로 흡착능이 매우크고 구조적인 특성때문에 혼합물의 선택적 흡착이 가능하며 유기화합물들이 낮은 온도에서 쉽게 탈착되어 재생성이 우수하여 여러번 사용할 수 있으므로 오염공기 측정에 소요되는 경비를 크게 절감할 수 있다.Activated carbon fibers are pores developed on extremely thin fibers with a thickness of 20 μm or less, and are very fine pores, which are continuous micropores that penetrate the surface and the inside, and have rapid adsorptivity, and the specific surface area is much larger than that of activated carbon. Due to its structural characteristics, it is possible to selectively adsorb the mixture, and the organic compounds are easily desorbed at low temperatures and have excellent reproducibility so that they can be used many times, thus greatly reducing the cost of measuring polluted air.
전술한 바와 같이 본 고안에 의한 공기오염 측정을 위한 시료 채취용 흡착관은 흡착과 탈착성이 우수하여 보다 정밀하고 정확한 측정이 가능하므로서 오차범위를 줄일 수 있을 뿐만 아니라 오염측정 시험을 위한 조작상의 시간을 크게 단축시킬 수 있고 활성탄소 섬유체는 재생성이 있어 수회 내지 수십회 사용하므로서 오염공기 측정에 소요되는 경비를 크게 줄일 수 있는 오염공기 측정용 시료 채취 흡착관이라 할 수 있다.As described above, the sample adsorption tube for air pollution measurement according to the present invention has excellent adsorption and desorption properties, so that more accurate and accurate measurement can be achieved, and the operating time for the contamination measurement test can be reduced. It can be greatly reduced and the activated carbon fiber is regenerated, so that it can be referred to as a sampling adsorption tube for polluted air measurement that can greatly reduce the cost required for polluted air measurement by using several times or tens of times.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020050016721U KR200407810Y1 (en) | 2005-06-10 | 2005-06-10 | The sobent tube of gathering sample and having conbinated means for measurement of contaminated air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR2020050016721U KR200407810Y1 (en) | 2005-06-10 | 2005-06-10 | The sobent tube of gathering sample and having conbinated means for measurement of contaminated air |
Publications (1)
Publication Number | Publication Date |
---|---|
KR200407810Y1 true KR200407810Y1 (en) | 2006-02-03 |
Family
ID=44481166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR2020050016721U KR200407810Y1 (en) | 2005-06-10 | 2005-06-10 | The sobent tube of gathering sample and having conbinated means for measurement of contaminated air |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR200407810Y1 (en) |
-
2005
- 2005-06-10 KR KR2020050016721U patent/KR200407810Y1/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kędziora et al. | Extraction media used in needle trap devices—Progress in development and application | |
US4541268A (en) | Method and device for the sampling of trace elements in gases, liquids, solids or in surface layers | |
Pellizzari et al. | Collection and analysis of trace organic vapor pollutants in ambient atmospheres. Thermal desorption of organic vapors from sorbent media | |
AU2010300619B2 (en) | Sorbent devices and methods of using them | |
Wu et al. | Flow injection solid-phase extraction using multi-walled carbon nanotubes packed micro-column for the determination of polycyclic aromatic hydrocarbons in water by gas chromatography–mass spectrometry | |
Aragon et al. | Analysis of organic compounds in air: a review | |
AU667934B2 (en) | Equipment for sampling and work-up for analysis of PAH and other organic compounds, and hydrogen fluoride and sulphur oxides | |
Paolini et al. | Simultaneous sampling of vapor and particle-phase carcinogenic polycyclic aromatic hydrocarbons on functionalized glass fiber filters | |
CN112986463A (en) | Two-section type gas sampling pipe and preparation method and application thereof | |
Jayanty | Evaluation of sampling and analytical methods for monitoring toxic organics in air | |
JP2003185541A (en) | Passive sampler for capturing volatile organic compound | |
KR101583542B1 (en) | System for analyzing VFA in air and method of analyzing VFA using the same | |
Huang et al. | Evaluation and application of a passive air sampler for atmospheric volatile organic compounds | |
CN101337178A (en) | Development of novel absorbent in adsorption heat desorption pipe | |
Ueta et al. | A newly designed solid-phase extraction-type collection device for precise determination of polycyclic aromatic hydrocarbons in air | |
Dobrzyńska et al. | Needle‐trap device for the sampling and determination of chlorinated volatile compounds | |
Patil et al. | Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling | |
KR200407810Y1 (en) | The sobent tube of gathering sample and having conbinated means for measurement of contaminated air | |
CN205562482U (en) | Device of phthalate content among tracer gas | |
Ueta et al. | Needle extraction device for rapid and quantitative gas chromatographic determination of volatile chlorinated hydrocarbons and benzene in soil | |
Uhde | Application of solid sorbents for the sampling of volatile organic compounds in indoor air | |
Dewulf et al. | Measurement of Atmospheric Monocyclic Aromatic Hydrocarbons and Chlorinated C1-and C2-Hydrocarbons at NG. M− 3 Concentration Levels | |
CN110057935A (en) | The measuring method of polychlorinated biphenyl compound in a kind of exhaust gas | |
JP2002357517A (en) | Passive sampler for voc collection | |
JP2003294592A (en) | Sampler for atmospheric trace hazardous substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REGI | Registration of establishment | ||
LAPS | Lapse due to unpaid annual fee |