KR20040110352A - Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule - Google Patents

Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule Download PDF

Info

Publication number
KR20040110352A
KR20040110352A KR1020030039595A KR20030039595A KR20040110352A KR 20040110352 A KR20040110352 A KR 20040110352A KR 1020030039595 A KR1020030039595 A KR 1020030039595A KR 20030039595 A KR20030039595 A KR 20030039595A KR 20040110352 A KR20040110352 A KR 20040110352A
Authority
KR
South Korea
Prior art keywords
activated carbon
water treatment
high speed
ultra
carbon fiber
Prior art date
Application number
KR1020030039595A
Other languages
Korean (ko)
Inventor
이동희
Original Assignee
이동희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이동희 filed Critical 이동희
Priority to KR1020030039595A priority Critical patent/KR20040110352A/en
Publication of KR20040110352A publication Critical patent/KR20040110352A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE: To provide a preparation method of powder for ultra-high speed water treatment capable of separating the adsorbed phosphorus and nitrogen at a ultra-high speed by magnetic force after preparing spherical granule of which surface is modified by copper on the surface of magnetite powder, calcium hydroxide, activated carbon or activated carbon fiber and adsorbing phosphorus and nitrogen onto the spherical granule, and a water treatment process using the powder for ultra-high speed water treatment. CONSTITUTION: The preparation method of fine granule for ultra-high speed water treatment comprises the steps of preparing a mixture by mixing 15 to 60 wt.% of adsorbent which contains 10 to 80 wt.% of magnetic substance of magnetite, and in which 0.1 to 5.0 wt.% of copper is coated on activated carbon or activated carbon fiber, 4 to 29 wt.% of slaked lime, and less than 1.0 wt.% of one-pack polyurethane; preparing fine spherical granule having a granular size of 0.1 to 5.0 mm from the mixture; and forming solid fine granule by heating the fine spherical granule at a temperature of 135 deg.C or less for less than 30 minutes, wherein a specific surface area of the activated carbon or activated carbon fiber is 1,000 to 1,600 m¬2/g, 0.1 to 2.0 wt.% of Cu is coated on the activated carbon by electroless plating, and 0.5 to 5.0 wt.% of Cu is coated on the activated carbon fiber by electroplating.

Description

마그네타이트 분말과 부영양화 물질 및 유기물 흡착제가 함유된 미세구형 과립상태인 수처리 미세과립 제조방법 및 초고속 수처리공정{omitted}Water treatment microgranules manufacturing method and ultra-fast water treatment process in the form of microspherical granules containing magnetite powder, eutrophic material and organic adsorbent

본 발명은 물에 오염된 부영양화 물질인 NH4 +, NO3 -, PO4 -3및 수용성 유기화합물과 환경유해물질을 활성탄, 활성탄소섬유, Ca(OH)2와 마그네타이트가 혼합된 입자를 가진 미세 구형 과립을 이용하여 쉽게 흡착할 수 있으며, 흡착된 환경 유해물질은 마그네타이트에 의해 초고속으로 분리할 수 있는 방법으로, 보다 상세하게는 물속에 용해되어 있는 비휘발성, 휘발성 유기물질을 흡착하기 위해서는 활성탄이나 활성탄소 섬유에 마그네타이트(Fe3O4)가 혼합된 미세 구형분말로 비표면적이 넓은 활성탄 내지는 활성탄 탄소섬유에 촉매인 구리를 코팅하여 흡착률을 매우 증가시키고, 작업의 편리성을 도모하기 위하여 미세한 구형 분말과 자력을 가하여 흡착된 물질을 초고속으로 분리하기 위하여 자력을 가하기 위한 물질 및 재료로 구성되어야 한다. 특히, 부영양화 물질인 질소, 인 및 유해물질을 쉽게 제거하고, 흡착력의 향상을 위해서는 활성탄 내지는 활성탄소 섬유표면에 촉매로서 구리로 표면개질화된 마그네타이트 분말과 자력을 이용한 초고속 수처리 분말 제조방법 및 수처리 공정에 관한 것이다.The invention of the eutrophication of water contamination in NH 4 +, NO 3 -, PO 4 -3 , and a water-soluble organic compounds and hazardous substances activated carbon, activated carbon fibers, Ca (OH) 2 and magnetite is mixed with the particles It can be easily adsorbed using fine spherical granules, and the adsorbed environmental harmful substances can be separated at a high speed by magnetite. More specifically, activated carbon is used to adsorb nonvolatile and volatile organic substances dissolved in water. It is a fine spherical powder in which magnetite (Fe 3 O 4 ) is mixed with activated carbon fiber, and the activated carbon or activated carbon carbon fiber with a large specific surface area is coated with copper as a catalyst to increase the adsorption rate and increase the convenience of work. It should be composed of a fine spherical powder and a material and material for applying magnetic force to separate the adsorbed material at high speed by applying magnetic force. In particular, in order to easily remove nitrogen, phosphorus and toxic substances, which are eutrophic substances, and to improve adsorptive power, magnetite powder surface-modified with copper as a catalyst on activated carbon or activated carbon fiber surface and ultrafast water treatment powder manufacturing method using magnetic force and water treatment process It is about.

지하수, 폐수나 오수 중에 들어있는 물질 중에서 일반적인 처리조작 및 공정으로는 그 정제 효과가 불충분한 것들이 많다. 무기염을 비롯한 다양한 무기물질과 복잡한 유기합성물질이 주범으로 이를 제거하기 위해서는 다양한 폐수고도처리가 요구되고 있다. 이 중 질소 및 인을 포함한 화합물은 이미 1960년대부터 연구되어 왔는데 식물의 성장을 촉진시킴으로써 부영양화를 초래하고, 특히 질산의 경우 유아의 청색증을 유발하는 특성으로 수처리분야의 가장 큰 관심을 끌고 있는 오염물들이다.Many of the substances contained in groundwater, wastewater or sewage have insufficient purification effect in general treatment operations and processes. Various inorganic wastewater advanced treatment is required to remove inorganic salts and various inorganic materials and complex organic synthetic materials. Among these, compounds containing nitrogen and phosphorus have been studied since the 1960's, which causes eutrophication by accelerating plant growth, and especially nitric acid, which causes blue cyanosis of infants. .

일반적으로 높은 질산성 질소의 농도는 질산 수원에 의한 화석으로 그 농도를 낮출 수 있다. 그러나 낮은 질산 농도의 수원 이용이 어려울 경우 질산제거반응이 필요하게 된다. 질산 제거에 그 동안 이용되어온 기술은 이온교환수지법, 생물학적 질산화 및 탈질, 화학적환원, 역삼투압법, 진기투석법 등이 있다. 이 중에서 가장 현실적이고 대규모 정수처리에 이용할 수 있는 공정은 이온교환수지법과 생물학적 탈질 공정이다.In general, high nitrate concentrations can be lowered by fossils from nitrate sources. However, if it is difficult to use a low nitric acid source, the nitric acid removal reaction is required. Techniques that have been used to remove nitric acid include ion exchange resins, biological nitrification and denitrification, chemical reduction, reverse osmosis, and dialysis. Among them, the most practical and available processes for large-scale water purification are ion exchange resin and biological denitrification.

그러나, 두 공정 모두 심각한 단점을 가지고 있다. 그 중에서도 이온교환수지법은 비용면에서 가장 우수하나 농축된 부산물의 처리에 그 한계가 있어 해안 지역이나 부영양화 가능성이 없는 지역에서만 가능한 방법이다. 또한 염을 다량 첨가해야 하기 때문에 운전비용이 많이 들고 수질 자체의 특성이 큰 부식성을 갖고 있다는 단점을 가지고 있다. 일반적으로 생물학적 탈질 공정이 부산물의 걱정없이 가장 경제적이라고 알려져 있으나, 이 또한 후처리나 탄소원에 의한 문제 유발 또는예민한 제어등 여러 가지 해결해야할 점이 많다.However, both processes have serious disadvantages. Among them, the ion exchange resin method is the best in terms of cost, but it is limited to the treatment of concentrated by-products and is therefore only possible in coastal areas or areas where there is no possibility of eutrophication. In addition, since a large amount of salt must be added, the operating cost is high and the characteristics of the water quality itself have a disadvantage of large corrosiveness. In general, the biological denitrification process is known to be the most economical without worrying about by-products, but there are also many problems to be solved, such as post-treatment, causing problems with carbon sources or sensitive control.

이온교환수지법은 기본적으로 주기적 수지의 재생이 필요한 물리화학적 공정이다. 소모된 수지의 주기적 재생은 염화나트륨이나 중탄산나트륨등이 이용되나, 결과적으로 고농도의 질산, 염화나트륨, 중탄산나트륨으로 재처리되거나 폐기되어야 한다. 그러나, 날로 증가하는 환경에 대한 관심과 규제가 최근 들어 더 이상 재생물의 무절제한 폐기를 어렵게 하여 이 공정의 광범위한 적용이 어렵게 되었다.Ion exchange resins are basically physicochemical processes that require regeneration of cyclic resins. Periodic regeneration of the consumed resin may be performed using sodium chloride or sodium bicarbonate, but as a result, it must be reprocessed or discarded with high concentrations of nitric acid, sodium chloride or sodium bicarbonate. However, increasing environmental concerns and regulations in recent years have made it difficult to cleanly dispose of recycled materials, making the widespread application of this process difficult.

수산화철을 이용한 질산의 화학적 제거 방법은 주로 미국에서 연구되어왔다. 여러 가지 환원력을 가진 물질 중에 황산제일철 형태가 가장 경제성이 있는 것으로 알려져 있다. 철금속을 이용한 질산의 환원에는 1에서 5 ppm의 구리 또는 은 촉매를 이용해야 하는데, pH 8.0에서 가장 좋은 결과를 얻으나 이러한 조건은 석회나 소다등을 이용하여 조정이 가능하다. 반응물 중 대개 70 % 가량이 질소나 산화질소의 기체로 얻어지며, 나머지는 암모니아로 환원된다. 이 반응은 완전한 질소 가스로의 환원이 어렵고, 철금속의 이용량이 너무 크다는 단점을 가지고 있다.Chemical removal of nitric acid using iron hydroxide has been studied mainly in the United States. It is known that ferrous sulfate forms are the most economical among various reducing materials. Reduction of nitric acid with ferrous metals requires the use of 1 to 5 ppm copper or silver catalysts, with the best results at pH 8.0, but these conditions can be adjusted with lime or soda. Approximately 70% of the reactants are usually obtained with a gas of nitrogen or nitrogen oxides, the remainder being reduced to ammonia. This reaction has the disadvantage that it is difficult to reduce to complete nitrogen gas, and the use amount of ferrous metal is too large.

생물학적 탈질은 폐수나 정화조 유출물 정화에 가장 널리 이용되고 있다. 유기 기질이 존재할 때 탈질 박테리아가 질산을 질소 기체로 환원시킨다. 가장 널리 이용되는 기질로는 가격이 저렴하고 효과적인 메탄올을 들 수 있다. 박테리아 지지체가 있는 다양한 형태의 여과조를 이용한 생물학적 탈질이 연구되어 왔다. 특히, 박테리아의 성장에 필요한 시간과 반응조의 온도 등이 효율에 큰 영향을 미치며, 메탄올의 충분한 소모가 이루어지도록 주의 깊은 공급이 이루어져야 하는 등의 제어상의 어려움이 있고, 미생물의 성장에 의한 막힘이 주기적으로 발생할 수 있다는단점을 가지고 있다.Biological denitrification is most widely used for the purification of waste water and septic tank effluents. Denitrifying bacteria reduce nitric acid to nitrogen gas when organic substrates are present. The most widely used substrates are methanol, which is inexpensive and effective. Biological denitrification using various types of filtration baths with bacterial supports has been studied. In particular, the time required for the growth of bacteria and the temperature of the reaction tank have a great effect on the efficiency, and there are control difficulties such as careful supply of methanol for sufficient consumption, and the blockage caused by the growth of microorganisms is periodic. It has the disadvantage that it can occur.

한편, 인 발생의 주요 원인으로는 생활폐수와 농업 반송수 등을 들 수 있다. 인은 수생 식물의 성장촉진을 유발하여 부영양화를 초래한다. 폐수내의 인은 재래적인 생물 처리에서 일차 처리로 10 % 정도의 제거가 가능하지만 그 이상의 처리를 위해서는 불용화시킬 수 있는 화학제품을 이용한 약품 침전을 통해서만 가능하다. 그러나 이러한 약품첨가는 용존 고형물의 증가를 초래한다.The main causes of phosphorus generation include domestic wastewater and agricultural return water. Phosphorus promotes the growth of aquatic plants, leading to eutrophication. Phosphorus in wastewater can be removed by 10% from conventional biological treatment as a primary treatment, but for further treatment only by precipitation of chemicals with insoluble chemicals. However, such drug additions result in an increase in dissolved solids.

음용수나 폐수중에 지금까지 알려진 유해성 유기물 흡착시키기 위해서는 일반적으로 1, 2차 처리후 비표면적이 큰 활성탄이나 활성탄소섬유를 이용하여 흡착처리가 선행되어야 한다. 이와 같이 위에서 언급한 종래의 방법을 이용할 경우 처리기간이 장시간 소요되면 처리수와 흡착제와의 분리가 단순히 분리할 수 없다는 단점을 가지고 있다. 지금까지 개발된 기술로 처리할 경우 규모가 큰 설비를 갖추어야 하고, 이에 수반된 많은 인력이 필요하다는 경제적인 부담을 가지고 있을 뿐만 아니라 처리효율도 그다지 높지 않다는 단점을 가지고 있다. 또한 물에 용해된 수용성 유기물을 제거하기 위해서는 대부분이 활성탄 내지는 활성탄소섬유이외의 방법은 흔치 않으며, 처리방법이 있다 할지라도 처리효율이 매우 저조하다. 따라서 활성탄 내지는 활성탄소섬유를 이용하여 물에 용해된 유해물질을 제거하기 위해서는 수중에 살포를 한 후 유기물을 흡착하고 수중에 분산되어 있는 흡착된 활성탄 내지는 활성탄소섬유를 포집하기 위해서는 분리할 수 있는 장치가 필요하고, 분리시간도 상당한 시간이 필요로 한다는 단점을 가지고 있다.In order to adsorb harmful organic substances known to the past in drinking water or wastewater, adsorption treatment should be generally performed by using activated carbon or activated carbon fiber having a large specific surface area after primary and secondary treatments. As described above, in the case of using the conventional method mentioned above, if the treatment period takes a long time, separation between the treated water and the adsorbent cannot be easily separated. When dealing with the technology developed so far, it is not only economically burdensome to have a large facility and a lot of manpower involved, but also has a disadvantage of not very high processing efficiency. In addition, in order to remove the water-soluble organics dissolved in water, most of the methods other than activated carbon or activated carbon fibers are rare, and even if there is a treatment method, the treatment efficiency is very low. Therefore, to remove harmful substances dissolved in water by using activated carbon or activated carbon fiber, it is sprayed in water and then adsorbed organic matter and separated to collect the activated carbon or activated carbon fiber dispersed in water. And the separation time also requires a considerable time.

이와 같은 종래의 방법을 이용할 경우 오염된 거대한 물을 처리하기 위해서는 많은 설비비 및 인건비는 물론 처리시간이 장시간 필요할 뿐만 아니라 재료비가 많이 소요되며, 흡착된 활성탄 및 활성탄소섬유등 흡착재와 처리수를 분리하는데 많은 시간이 필요하며, 경제적으로 많은 문제점을 가지고 있다.In case of using such a conventional method, in order to treat huge contaminated water, not only a large amount of equipment cost and labor cost, but also a long processing time, and a large amount of material cost, are required to separate adsorbents and treated water such as activated carbon and activated carbon fiber. It takes a lot of time and has many problems economically.

따라서 본 발명의 목적은 지금까지 사용하고 있는 수처리 흡착재의 단점을 극복하고, 음용수나 폐수에서 휘발성 내지는 비휘발성 유기화합물을 흡착능력을 보다 향상 시키고, 흡착된 물질을 고속으로 분리하기 위해서는 마그네타이트와 비표면적이 넓은 활성탄이나 활성탄소섬유 표면에 Cu의 촉매를 표면개질화하며, 마그네타이트와 바인더를 혼합하여 구형 분말로 만들어 부영양화물질인 질소, 인은 물론 수용성 유기물질의 흡착률을 향상시킬 뿐만 아니라 흡착된 유기물을 자력을 가해 초고속으로 분리하여 오염된 물을 깨끗하게 정화하고, 마그네타이트인 자성체에 의한 흡착된 물질의 분리를 매우 신속히 처리하여, 종래방법에 의한 폐수처리의 장시간 처리의 단점을 극복하며, 명확한 수처리를 하여 국민의 건강과 자연환경을 보호하고 국민의 불안감을 해소해 줄 수 있는 것이다.Accordingly, an object of the present invention is to overcome the disadvantages of the water treatment adsorbents used up to now, to improve the adsorption capacity of volatile or non-volatile organic compounds in drinking water or wastewater, and to separate the adsorbed material at high speed, magnetite and specific surface area The surface of the activated carbon or activated carbon fiber is surface-modified and the catalyst of Cu is mixed with magnetite and binder to form spherical powder to improve the adsorption rate of nitrogen and phosphorus as well as water-soluble organic substances as well as adsorbed organic substances. By applying the magnetic force to the ultra-high speed to clean the contaminated water cleanly, and to process the separation of the adsorbed material by the magnetic material of magnetite very quickly, to overcome the disadvantage of the long-term treatment of wastewater treatment by the conventional method, clear water treatment To protect the health and natural environment of the people It can relieve lining.

따라서 본 발명은 마그네타이트 분말, 수산화칼슘 분말과, 활성탄 내지는 활성탄 섬유표면에 구리로 표면개질화된 구상 과립을 제조하여 수용액에 녹아있는 부영양화 물질인 인과 질소의 흡착력을 종래의 방법보다 높게 흡착한 후 자력에 의해 초고속으로 분리할 수 있는 수처리 분말제조방법 및 공정으로 구성되는 것을 특징으로 한다.Therefore, the present invention produces magnetite powder, calcium hydroxide powder and spherical granules surface-modified with copper on the surface of activated carbon or activated carbon fiber to adsorb the phosphorus and nitrogen, which is an eutrophic substance dissolved in aqueous solution, higher than the conventional method. It is characterized by consisting of a water treatment powder production method and a process that can be separated at a high speed by.

상기한 본 발명의 목적은 지금까지 사용하고 있는 수처리방법의 단점을 극복하고 부영양화 물질인 NH4 +, NO3 -및 PO4 -3, 수용성 유기화합물과 환경유해물질의 흡착처리 효율을 높이면서 매우 짧은 시간에 부유물질을 분리할 수 있는 마그네타이트 분말이 함유된 미세 구상 과립에 표면개질화된 흡착재와 자력을 이용한 초고속 수처리 분말 제조방법에 의해 달성한다.The purpose of the present invention overcome the disadvantages of the method for water treatment that use so far, and NH 4 + in eutrophic substance, NO 3 -, and PO 4 -3, while increasing the efficiency of the adsorption process of the water-soluble organic compounds and hazardous substances so It is achieved by ultra-high-speed water treatment powder production method using surface modified adsorbent and magnetic force on fine spherical granules containing magnetite powder which can separate suspended solids in a short time.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

실시예 1(활성탄 표면에 구리 무전해 도금)Example 1 (copper electroless plating on activated carbon surface)

본 발명의 활성탄 분말은 비표면적(BET)이 평균 1,000 ㎡/ g을 가진 국내의 제오카본에서 구입하였으며, 암모니아성 질소 및 인산염의 흡착률을 향상시키기 위해 촉매인 구리(Cu)를 무전해 도금법을 이용하여 활성탄 분말 표면에 0.1, 0.5, 2.0 중량 %를 코팅하였다. 본 발명을 위한 무전해 구리도금은 반응식 1에, 전해도금은 표 7에 준해서 수행했다. 무전해도금인 경우 1주석산 칼륨ㆍ나트륨 구리착염과 EDTA 구리착염이 이용되었고, 환원제로는 포르말린이 이용되었으며, 식 1과 표 7에 나타내었다. 무전해 구리도금은 칼륨ㆍ나트륨 구리착염과 EDTA 구리착염의 농도와 환원제의 농도에 따라 도금량 및 도금시간을 달리할 수 있다.The activated carbon powder of the present invention was purchased from Zeocarbon in Korea having a specific surface area (BET) of 1,000 m 2 / g on average, and electroless plating of copper (Cu) as a catalyst was used to improve the adsorption rate of ammonia nitrogen and phosphate. 0.1, 0.5, 2.0% by weight was coated on the surface of the activated carbon powder. Electroless copper plating for the present invention was carried out in accordance with Scheme 1, electrolytic plating according to Table 7. In the case of electroless plating, monobasic potassium-sodium copper complex salt and EDTA copper complex salt were used, and formalin was used as a reducing agent. Electroless copper plating may vary the plating amount and plating time according to the concentration of potassium / sodium copper complex and EDTA copper complex salts and the concentration of the reducing agent.

[식 1] [Equation 1]

Cu2+-complex(구리착이온) + 2HCHO(포르말린) + 2NaOH →Cu 2+ -complex (copper ions) + 2HCHO (formalin) + 2NaOH →

Cu + 2HCOONa(개미산 나트륨) + H2+ complexCu + 2HCOONa (sodium formate) + H 2 + complex

질산나트륨(1.3708 g/1L)과 염화암모늄(2.9712 g/1L)을 이용하여 질산으로서, 암모니아로서 정확히 1,000 ppm의 농도로 1리터를 만들고, 1/10으로 희석하여 250 ml 삼각플라스크에 정확히 100 ml를 각각 분취하였다. 이곳에 활성탄 표면에 무전해 도금으로 코팅한 활성탄 2 g을 각각 첨가한 후 뚜껑을 닫고, 상하로 힘차게 10회 흔들어 준 다음 방치 후 상층액을 분석하였다. 질산성 질소보다는 암모니아성 질소가 흡착률이 좋았으며, 구리의 도금량이 많을수록 흡착률이 향상됨을 나타냈다. 본 결과는 표 1에 나타냈다.Using sodium nitrate (1.3708 g / 1 L) and ammonium chloride (2.9712 g / 1 L) as nitric acid, make 1 liter at a concentration of exactly 1,000 ppm as ammonia, dilute to 1/10 and exactly 100 ml in a 250 ml Erlenmeyer flask. Were each aliquoted. 2 g of activated carbon coated on the surface of the activated carbon by electroless plating was added thereto, and then the lid was closed and shaken up and down ten times, and the supernatant was analyzed after standing. The adsorption rate of ammonia nitrogen was better than that of nitrate nitrogen, and the higher the plating amount of copper, the better the adsorption rate. The results are shown in Table 1.

실시예 2(활성탄소 섬유 표면에 구리 전해 도금)Example 2 (copper electroplating on activated carbon fiber surface)

활성탄소 섬유는 데구사(외국) 제품으로 비표면적이 평균 1,600 ㎡/ g인 것을 구입하였다. 암모니아성 질소 및 질산성 질소의 흡착률을 향상시키기 위해 촉매인 구리를 활성탄소 섬유인 경우 전해도금으로 구리를 0.5, 2.0, 5.0 중량%로 도금을 하였다. 전해도금을 하기 위한 조건은 표 7에 나타냈다. 전해도금일 경우 황산구리의 량, 전류밀도 및 도금시간에 따라 구리의 코팅량을 달리 할 수 있다. 활성탄소섬유에 Cu를 전해 도금시킨 전자현미경 사진을 사진 1, 2에 나타내었다.Activated carbon fiber was purchased from Degussa (foreign), and the specific surface area was 1,600 m 2 / g. In order to improve the adsorption rate of ammonia nitrogen and nitrate nitrogen, copper, which is a catalyst, was plated at 0.5, 2.0, and 5.0 wt% with electroplating in the case of activated carbon fiber. The conditions for electroplating are shown in Table 7. In the case of electroplating, the coating amount of copper may be varied according to the amount of copper sulfate, current density and plating time. Electron micrographs of Cu electroplated with activated carbon fibers are shown in photographs 1 and 2.

질산나트륨(1.3708 g/1L)과 염화암모늄(2.9712 g/1L)을 이용하여 질산으로서, 암모니아로서 정확히 1,000 ppm의 농도로 1리터를 만들고, 1/10으로 희석하여 250 ml 삼각플라스크에 정확히 100 ml를 각각 분취하였다. 이곳에 활성탄소 표면에 전해 도금으로 코팅한 활성탄소 섬유 2 g을 각각 첨가한 후 뚜껑을 닫고, 상하로 힘차게 10회 흔들어 준 다음 방치 후 상층액을 분석하였다. 실시 예 1과 동일하게 질산성 질소보다는 암모니아성 질소가 흡착률이 좋았으며, 구리의 도금량이 많을수록 흡착률이 향상됨을 나타냈고, 활성탄 보다는 활성탄소 섬유에 구리를 코팅한 결과가 흡착률이 더 높음을 나타냈다. 이것은 활성탄보다는 활성탄소 섬유의 비표면적이 높아 흡착률이 좋은 결과가 나타나는 것을 알 수 있다. 본 결과는 표 2에 나타냈다.Using sodium nitrate (1.3708 g / 1 L) and ammonium chloride (2.9712 g / 1 L) as nitric acid, make 1 liter at a concentration of exactly 1,000 ppm as ammonia, dilute to 1/10 and exactly 100 ml in a 250 ml Erlenmeyer flask. Were each aliquoted. 2 g of activated carbon fibers coated on the surface of the activated carbon by electroplating were added thereto, and then the lid was closed, shaken up and down vigorously 10 times, and the supernatant was analyzed after standing. As in Example 1, the adsorption rate of ammonia nitrogen was better than that of nitrate nitrogen, and the higher the plating amount of copper, the higher the adsorption rate, and the higher the adsorption rate of copper coated on activated carbon fibers than the activated carbon. Indicated. This shows that the specific surface area of activated carbon fibers is higher than that of activated carbon, resulting in good adsorption rate. The results are shown in Table 2.

실시예 3(인산염 제거 실험)Example 3 (Phosphate Removal Experiment)

마그네타이트(Fe3O4)를 40, 65, 90 g과, 수산화칼슘 60, 35, 10 g을 각각 측량하고 이곳에 1액형 폴리우레탄과 에틸아세테이트의 용매가 혼합된 혼합용액(폴리우레탄 1 g 포함)을 넣고 균일하게 혼합한 다음, 0.1, 1.0, 2.0, 5.0 mm의 경사된 회전판을 이용하여 미세 구형 과립을 제조하였다. 제조된 구형 과립을 135 ℃의 오븐에서 30분간 가열 후 서냉시킨 다음 사용하였으며, 이때 사용한 마그네타이트는 평균 1.0 ㎛의 크기를 가진 Merck용 Fe3O4를 구입하여 이용하였다.40, 65, 90 g of magnetite (Fe 3 O 4 ) and 60, 35, 10 g of calcium hydroxide were measured, respectively, and a mixed solution containing a solvent of one-component polyurethane and ethyl acetate (including 1 g of polyurethane). And then mixed uniformly, fine spherical granules were prepared using a tilted rotating plate of 0.1, 1.0, 2.0, 5.0 mm. The prepared spherical granules were heated in an oven at 135 ° C. for 30 minutes and then cooled slowly. The magnetite used was purchased by using Fe 3 O 4 for Merck having an average size of 1.0 μm.

인산수소나트륨(NaH2PO4)을 1.2629 g을 1리터에 용해하여 PO4로서 1,000 ppm이 되도록 제조하고, 1/10로 희석하여 250 ml 삼각플라스크에 정확히 100 ml를 각각 분취하였다. 이곳에 마그네타이트와 수산화칼슘으로 미세과립화 된 것을 2 g 각각 첨가한 후 뚜껑을 닫고, 상하로 힘차게 10회 흔들어 준 다음 방치 후 초자 하부에 영구자석을 접근시켜 고속으로 분리한 후 상층액을 분석하였다. 마그네타이트의 함량이 많을수록 자력에 의한 층분리가 빠르게 나타났으며, 수산화칼슘의 량이 많을수록, 과립의 크기가 미세할수록 인산(PO4 -3)기의 제거율이 높았다. 이는 수산화칼슘과 반응하여 아파타이트가 쉽게 형성된 것으로 설명할 수 있으며, 결과를 표 3에 나타냈다. 질산성 질소, 암모니아성 질소, 인산염의 농도는 메트롬사 이온액체크로마토그라프( Metrohm Ion Liquid Chromatograph; ILC)를 이용하여 흡착률을 확인하였다.Dissolve 1.2629 g of sodium hydrogen phosphate (NaH 2 PO 4 ) in 1 liter to make 1,000 ppm as PO 4 , dilute to 1/10 and aliquot exactly 100 ml into a 250 ml Erlenmeyer flask. After adding 2 g of granulated fine particles of magnetite and calcium hydroxide to each other, the lid was closed, shaken up and down vigorously 10 times, and left to stand at high speed by accessing the permanent magnet to the lower part of the vitreous and analyzed for supernatant. The higher the content of magnetite, the faster the separation of layers by magnetic force, the higher the amount of calcium hydroxide, and the finer the granule size, the higher the removal rate of the phosphoric acid (PO 4 -3 ) group. This can be explained by the easy formation of apatite by reaction with calcium hydroxide, the results are shown in Table 3. The concentrations of nitrate nitrogen, ammonia nitrogen, and phosphate were checked for adsorption rate using Metrohm Ion Liquid Chromatograph (ILC).

실시 예 4.(흡착제 크기, 활성탄의 종류 및 수산화칼슘 첨가량, 활성탄소 첨가량에 따른 암모니아성 질소의 흡착률 실험)Example 4 (Adsorption Rate Experiment of Ammonia Nitrogen According to Adsorbent Size, Type of Activated Carbon, Addition of Calcium Hydroxide and Addition of Activated Carbon)

산업용 수처리 제제의 이용 가능성을 확인하기 위하여 암모니아성 질소, 질산성 질소, 인산염 1,000 ppm의 용액을 1/10으로 희석하여 각각 100 ml로 하였다. 이곳에 흡착제의 구형 평균크기, 활성탄의 종류 및 수산화칼슘 첨가, 활성탄소 첨가량에 따른 암모니아성 질소(표 4), 질산성 질소(표 5), 인산염(표 6)의 흡착률을 확인하였다. 이외의 방법은 실시 예1에서 3까지 유사한 방법에 의해 수행했다. 실험결과 구리로 코팅되지 않는 활성탄이나 활성탄소섬유보다 구리로 코팅된 활성탄이나 활성탄소섬유의 흡착률이 우수하였으며, 입자의 크기가 작을수록, 첨가량이 많을수록 흡착률이 상승하였으며, 이에 대한 결과는 표 4∼6에 나타냈다.In order to confirm the availability of the industrial water treatment formulation, a solution of ammonia nitrogen, nitrate nitrogen, and 1,000 ppm of phosphate was diluted 1/10 to 100 ml each. Here, the adsorption rate of the spherical average size of the adsorbent, the type of activated carbon, the addition of calcium hydroxide, and the amount of activated carbon added was checked for ammonia nitrogen (Table 4), nitrate nitrogen (Table 5), and phosphate (Table 6). Other methods were carried out by similar methods from Examples 1 to 3. As a result of the experiment, the adsorption rate of activated carbon or activated carbon fiber coated with copper was better than that of activated carbon or activated carbon fiber not coated with copper, and the adsorption rate increased as the particle size was smaller and the addition amount was increased. It showed in 4-6.

실시 예 5.(현장테스트)Example 5 (Field Test)

실시 예 3에서 제조된 미세과립을 이용하여 계룡대에 위치한 태영건설(주)의 하수종말처리장에서 현장테스트를 수행하였다. 1.0 톤의 저장탱크에 제조된 미세과립 10 kg를 첨가하고, 메카니칼 회전봉을 이용하여 1분간 회전 혼합을 시켰다. 방치 후 영구자석인 경우 1,000, 2,000, 3,000 가우스에 해당하는 자석을 이용하였으며, 전자석인 경우 3,000, 5,000, 10,000 가우스에 해당하는 전자석을 이용하여 층분리시켰다. 영구자석인 경우 저장탱크에 붙혀 층분리를 시켰으며, 자력이 높을수록 층분리 속도가 증가하였다. 전자석인 경우 회전봉에 장착시켜 필요할 때마다 자력을 걸어주었다. 전자석은 영구자석과 같이 자력이 강할수록 매우 빠른 속도로 수십초 만에 층분리가 되었다. 영구자석인 경우 저장탱크에 부착과 탈착이 용이하였으나, 자력의 힘이 미흡하여 분리하는 시간이 약 4분 소요되어 층분리가 되었다.Field tests were performed at the sewage treatment plant of Taeyoung Construction Co., Ltd. located in Gyeryong University, using the fine granules prepared in Example 3. 10 kg of the granulated granules were added to a 1.0 ton storage tank, and rotation mixing was performed for 1 minute using a mechanical rotating rod. After standing, magnets corresponding to 1,000, 2,000, and 3,000 gauss were used for permanent magnets, and layers were separated using electromagnets corresponding to 3,000, 5,000, and 10,000 gauss for electromagnets. In the case of permanent magnets, they were attached to the storage tank and separated, and the higher the magnetic force, the higher the separation rate. In the case of an electromagnet, it was mounted on a rotating rod and applied magnetic force whenever necessary. Electromagnets, like permanent magnets, were layered in tens of seconds at a very high rate of magnetic force. In the case of permanent magnets, it was easy to attach and detach them to the storage tank, but the separation of the layers took about 4 minutes due to the lack of magnetic force.

지금까지는 물속에 용해되어 있는 환경 유해물질과 부영양화 물질인 질소나 인을 제거하기 위하여 여러 가지 화학적, 물리적 방법을 동원하여 처리를 함에도 불구하고 처리 효율이 미흡하고, 처리시간이 장시간 요구할 뿐만 아니라 이에 필요한 부대설비가 커짐에 따라 경제적 부담도 매우 크게 된다. 따라서 표면개질화된 활성탄 내지는 활성탄소섬유를 이용하여 물에 용해되어 있는 유기물을 흡착시켜 제거하나 물속에 함유된 활성탄 내지는 활성탄소섬유와 처리수를 분리하는데 많은 시간이 필요하다. 이에 따른 수처리비용이 크게 작용되고 있다. 폐수를 환경 기준치 이하의 수질로 만들기 위해서는 수용액에 함유된 매질의 영향에 따라 흡착율이 낮을 뿐만 아니라 화학적, 생물학적 처리를 통한 시간이 많이 소요되고 있다. 특히 물속에 함유된 유기물은 화학적산소요구량(COD)의 증가원인이 되기 때문에 흡착률이 우수한 흡착재를 이용하여 추출을 하여야 한다. 또한 공장 또는 하수종말처리장과 같은 거대한 많은 물을 처리하기 위해서는 지금까지의 방법을 이용할 경우 상당한 크기의 저장고가 필요로 하고, 많은 시간이 필요하기 때문에 인력 및 수처리 비용이 막대하게 소요되고 있어 국가경제에 지장을 초래하고 있다.Until now, although various chemical and physical methods are used to remove environmental harmful substances and eutrophic substances, nitrogen or phosphorus dissolved in water, the treatment efficiency is insufficient and the processing time is required for a long time. As the facilities increase, so does the economic burden. Therefore, the surface-modified activated carbon or activated carbon fibers are used to adsorb and remove organic substances dissolved in water, but much time is required to separate the activated carbon or activated carbon fibers and the treated water contained in the water. As a result, water treatment costs are being greatly affected. In order to make the waste water quality below the environmental standard, the adsorption rate is low and the chemical and biological treatment is time-consuming due to the influence of the medium contained in the aqueous solution. In particular, organic substances in water should be extracted using an adsorbent with good adsorption rate because it can cause an increase in chemical oxygen demand (COD). In addition, in order to treat a large amount of water, such as a plant or a sewage treatment plant, a large amount of storage and a large amount of time are required for the conventional methods. It is causing trouble.

앞에서 설명한 바와 같이 본 발명은 부영양화물질인 질소, 인은 물론 수용액에 함유된 수용성 유기물질을 활성탄 내지는 활성탄소섬유, 소석회, 마그네타이트 분말이 함유되고, 구리촉매로 표면개질화한 것을 미세구형과립으로 제조한 후 자력을 이용한 초고속으로 처리수와 수처리 분말을 쉽게 분리제거할 수 있는 제조방법 및 공정에 관한 것으로, 분말의 표면에 Cu의 표면개질화를 통해 암모니아성 질소, 질산성 질소, 인산염 및 수용성 유해물질의 흡착률을 높이므로서 화학적산소요구량의 감소 및 인체의 치명적인 피해를 줄일수 있으며, 마그네타이트의 자성체를 이용하여 구형과립에 흡착된 유해물질을 매우 짧은 시간에 처리할 수 있고, 처리효과도 크기 때문에 소규모화의 가능성과 인력의 낭비를 줄일 수 있어 보다 깨끗한 환경을 만들며, 최소의 경비로 화학적산소요구량의 저감과 조류의 발생을 줄이는데 효과가 매우 크다.As described above, the present invention contains activated carbon or activated carbon fiber, calcined lime, magnetite powder of water-soluble organic substance contained in aqueous solution of nitrogen, phosphorus as well as eutrophic material, and the surface-modified with copper catalyst is prepared as microspherical granules. The present invention relates to a manufacturing method and a process for easily separating and removing treated water and water treatment powder at high speed using magnetic force, and through surface modification of Cu on the surface of the powder, ammonia nitrogen, nitrate nitrogen, phosphate, and water-soluble harmful substances. By increasing the adsorption rate of substances, it is possible to reduce the chemical oxygen demand and to reduce the fatal damage to the human body. By using magnetic material of magnetite, it is possible to treat harmful substances adsorbed on spherical granules in a very short time. This reduces the possibility of downsizing and waste of manpower, creating a cleaner environment, The cost is very effective in reducing chemical oxygen demand and reducing algae.

Claims (4)

마그네타이트의 자성체가 10 내지는 80 중량% 함유하고, 0.1 내지 5.0 중량%로 활성탄 내지는 활성탄소섬유에 구리가 코팅된 흡착제가 15 내지는 60 중량%가 함유하고, 소석회가 4 내지 29 중량%가 함유하고, 1액형 폴리우레탄이 1.0 %이내 함유하고, 0.1 내지 5.0 mm의 크기를 이루며, 이를 135 ℃ 이하의 온도에서 30분 이내 가열하여 견고한 미세과립을 형성시킬 수 있는 초고속 수처리 미세과립 제조방법.It contains 10 to 80% by weight of magnetic material of magnetite, 15 to 60% by weight of adsorbent coated with activated carbon or activated carbon fiber in 0.1 to 5.0% by weight, and 4 to 29% by weight of slaked lime, A one-component polyurethane contains less than 1.0%, forms a size of 0.1 to 5.0 mm, it is heated at a temperature of 135 ℃ or less within 30 minutes to form a solid microgranules, ultra-fast water treatment microgranules manufacturing method. 청구항 1에서 활성탄 내지는 활성탄소 섬유의 비표면적이 1,000 내지는 1,600 ㎡/g을 가진 것으로, 활성탄인 경우 무전해 도금에 의한 Cu가 0.1 내지는 2.0 중량%가, 활성탄소섬유인 경우 전해도금에 의한 Cu가 0.5 내지 5.0 중량%가 코팅된 초고속 수처리 미세과립 제조방법.In claim 1, the specific surface area of the activated carbon or activated carbon fiber has 1,000 to 1,600 m 2 / g, and in the case of activated carbon, 0.1 to 2.0% by weight of Cu by electroless plating, and Cu by electroplating when activated carbon fiber is 0.5 to 5.0% by weight of the ultrafast water treatment fine granules manufacturing method. 부영양화 물질인 NH4 +, NO3 -, PO4 -3내지는 수용성 유기물질을 흡착한 미세과립을 자력을 가해 흡착된 미세분말을 초고속 분리 시키는 수처리공정.Eutrophication material of NH 4 +, NO 3 - a water treatment process in which, PO 4 -3 naejineun remove the water-soluble fine powder, the fine granules adsorbed organic material by applying magnetic force absorption speed. 청구항 3에서 영구자석인 경우 1,000 내지는 3,000 가우스, 전자석인 경우 3,000 내지는 10,000 가우스의 자력을 가해 흡착된 미세분말을 초고속 분리 시키는수처리공정.The water treatment process of claim 3 in the case of permanent magnets 1,000 to 3,000 gauss, electromagnets to apply a magnetic force of 3,000 to 10,000 gauss to separate the adsorbed fine powder at high speed.
KR1020030039595A 2003-06-18 2003-06-18 Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule KR20040110352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030039595A KR20040110352A (en) 2003-06-18 2003-06-18 Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030039595A KR20040110352A (en) 2003-06-18 2003-06-18 Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule

Publications (1)

Publication Number Publication Date
KR20040110352A true KR20040110352A (en) 2004-12-31

Family

ID=37382757

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030039595A KR20040110352A (en) 2003-06-18 2003-06-18 Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule

Country Status (1)

Country Link
KR (1) KR20040110352A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165695A1 (en) * 2011-05-27 2012-12-06 한국지질자원연구원 Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
CN103613163A (en) * 2013-12-12 2014-03-05 北京师范大学 Floating plate capable of realizing sustained release of nutrient elements and adsorbing petroleum hydrocarbons and preparation method thereof
CN106423045A (en) * 2016-11-23 2017-02-22 兰州理工大学 Preparation method of modified montmorillonite adsorbent for treating zinc-bearing wastewater
CN112661274A (en) * 2020-12-08 2021-04-16 李世杰 Blue algae inhibitor and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165695A1 (en) * 2011-05-27 2012-12-06 한국지질자원연구원 Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
AU2011369593B2 (en) * 2011-05-27 2014-09-25 Korea Institute Of Geoscience And Mineral Resources (Kigam) Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
US9174196B2 (en) 2011-05-27 2015-11-03 Korea Institute Of Geoscience And Mineral Resources (Kigam) Synthesis method for magnetite and birnessite aggregate-form mixture
CN103613163A (en) * 2013-12-12 2014-03-05 北京师范大学 Floating plate capable of realizing sustained release of nutrient elements and adsorbing petroleum hydrocarbons and preparation method thereof
CN106423045A (en) * 2016-11-23 2017-02-22 兰州理工大学 Preparation method of modified montmorillonite adsorbent for treating zinc-bearing wastewater
CN112661274A (en) * 2020-12-08 2021-04-16 李世杰 Blue algae inhibitor and preparation method thereof

Similar Documents

Publication Publication Date Title
Perera et al. Technologies for recovering nutrients from wastewater: a critical review
Kallo Applications of natural zeolites in water and wastewater treatment
US4772307A (en) Process for preparing an agricultural fertilizer from sewage
US20170362108A1 (en) Hybrid activated iron-biological water treatment system and method
Patterson et al. Physical-chemical methods of heavy metals removal
CN114225905A (en) Adsorbing material and preparation method and application thereof
Lichtfouse et al. Technologies to remove selenium from water and wastewater
WO2021054116A1 (en) Phosphorus adsorbent
Gheju Decontamination of hexavalent chromium-polluted waters: Significance of metallic iron technology
CN109368872A (en) A kind of method of Tungsten smelting Sewage advanced treatment
Sailo et al. Efficient use of ferrate (VI) for the remediation of wastewater contaminated with metal complexes
Gaikwad Review and research needs of active treatment of acid mine drainage by ion exchange.
KR20130077739A (en) Disposal method of water comprising organics
Mishra et al. Review on adverse effects of water contaminants like arsenic, fluoride and phosphate and their remediation
KR20040110352A (en) Preparation method of fine spherical granule for water treatment containing magnetite powder and adsorbent of eutrophicating substance and organic matters, and ultra-high speed water treatment process using fine spherical granule
Yong New technology for wastewater treatment
KR101336824B1 (en) Calcium alumino sulfate for Heavy metal treating agent
Boonrattanakij et al. Influence of coexisting EDTA, citrate, and chloride ions on the recovery of copper and cobalt from simulated wastewater using fluidized-bed homogeneous granulation process
KR102230941B1 (en) Method for manufacturing a porous composite for treating contaminated water using waste sludge, a porous composite manufactured therefrom
Viraraghavan et al. Adsorption of mercury from wastewater by peat
Hesnawi et al. Heavy metal removal from aqueous solution using natural libyan zeolite and activated carbon
De Esparza Removal of arsenic from drinking water and soil bioremediation
JPH10277541A (en) Zeolite type water purifying agent
KR20040068831A (en) Water-treating fine-granular powder containing magnetite powder and organic adsorbent and process for water-treating by using thereof
JP5580704B2 (en) Purification method of contaminated water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application