KR20040100668A - Minimum pipe thickness with pressure determining method in boiler building - Google Patents

Minimum pipe thickness with pressure determining method in boiler building Download PDF

Info

Publication number
KR20040100668A
KR20040100668A KR1020030033087A KR20030033087A KR20040100668A KR 20040100668 A KR20040100668 A KR 20040100668A KR 1020030033087 A KR1020030033087 A KR 1020030033087A KR 20030033087 A KR20030033087 A KR 20030033087A KR 20040100668 A KR20040100668 A KR 20040100668A
Authority
KR
South Korea
Prior art keywords
minimum thickness
pipe
calculated
thickness
asme
Prior art date
Application number
KR1020030033087A
Other languages
Korean (ko)
Inventor
김대중
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020030033087A priority Critical patent/KR20040100668A/en
Publication of KR20040100668A publication Critical patent/KR20040100668A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pipeline Systems (AREA)

Abstract

PURPOSE: A method for determining a minimum thickness of a pipe receiving internal pressure by loading an SE(Stress Efficiency) value of each material is provided to enhance design ability of a thermal power plant system and prevent errors due to manual calculation by automatically calculating the minimum thickness of the pipe based on an ASME(American Society of Mechanical Engineers) B31.3 table. CONSTITUTION: The SE value of each material mentioned in the ASME B31.3 table is stored in a storing tool(S10). The minimum thickness according to an inputted temperature/pressure/material is calculated by loading the SE value(S11). The minimum thickness previously stored by a specification of the selected pipe is loaded/compared with the calculated minimum thickness(S12). An application propriety of the calculated minimum thickness is output as a message depending on a comparison result(S14).

Description

화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법{MINIMUM PIPE THICKNESS WITH PRESSURE DETERMINING METHOD IN BOILER BUILDING}MINIMUM PIPE THICKNESS WITH PRESSURE DETERMINING METHOD IN BOILER BUILDING}

본 발명은 화력 설비에 관한 것으로, 특히 ASME B31.3의 테이블에 의거한 각 재질에 대한 기저장된 응력(Stress Efficiency, SE)값을 로딩하여 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산한 다음, 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교하여, 상기 계산된 배관의 최소두께(tnr)가 적용 가능한 지 여부를 메시지로 출력함으로써, ASME B31.3의 테이블에 의거하여 내압을 받는 배관의 최소 배관 두께를 자동으로 계산하는 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법에 관한 것이다.The present invention relates to a thermal power plant, and in particular, by loading the pre-stored stress efficiency (SE) value for each material based on the table of ASME B31.3, the minimum thickness of the pipe according to the input temperature, pressure, material ( t nr ) is calculated, and then the minimum thickness t of the calculated pipe is compared with the calculated minimum thickness t nr of the previously stored pipe according to the selected pipe size. nr ) is a method of determining the minimum thickness of piping under internal pressure in a thermal power plant, which automatically calculates the minimum pipe thickness of piping under internal pressure based on the table of ASME B31.3. will be.

화력 설비 내의 배관 중 그 내부를 흐르는 유체에 의해 유발되는 내압을 받는 배관은, 고온고압의 스팀에 견디기 위하여 적정 두께 이상을 유지하여야 하지만, 배관의 두께가 증가하는 경우 그 만큼 자재가 많이 필요하게 되어 설비 비용이 증가하게 된다.Pipes that are subjected to internal pressure caused by fluid flowing through them in the thermal power plant should be kept at an appropriate thickness to withstand high temperature and high pressure steam, but if the thickness of the pipe increases, much material is required. Facility costs will increase.

따라서, 일반적으로는 배관이 고온고압을 견디기 위한 적정 두께를 선정하여 그 두께보다 어느 정도 마진(margin)을 두고 설계하는데, 이를 위해서는 배관의 최소 두께를 계산할 필요가 있다.Therefore, in general, the pipe is designed to select a suitable thickness to withstand high temperature and high pressure and to have a margin to some extent than that thickness, for which it is necessary to calculate the minimum thickness of the pipe.

그리고, 배관의 최소 두께를 계산하기 위해서는 배관 전용 코드인 ASME B31.3에 기술된 식 및 각종 인자(Factor)를 이용하여야 하며, 이 경우 온도, 압력, 재질 등을 입력값으로 하여 각종 재질에 대한 응력(SE)을 ASME B31.3의 테이블에서 찾아 배관의 최소 두께를 결정한다.In order to calculate the minimum thickness of the pipe, the formula and various factors described in ASME B31.3, a dedicated pipe code, should be used.In this case, temperature, pressure, material, etc. Find the stress (SE) in the table in ASME B31.3 to determine the minimum thickness of the pipe.

그리고, 프로젝트가 변경될 때마다 적용하여야 하는 배관의 재질 및 구경도 변하게 되므로, 작업자는 매 프로젝트마다 각 재질, 온도별로 보간법을 이용하여 응력(SE)을 계산한 다음, 각종 인자를 고려하여 직관부의 최소두께를 결정하여야 한다.In addition, since the material and diameter of the pipe to be applied change as the project is changed, the operator calculates the stress (SE) by interpolation method for each material and temperature in each project, and then considers various factors and The minimum thickness should be determined.

그런데, 상기와 같이 수계산에 의해 테이블을 보면서 배관의 최소두께를 결정하는 경우, 그 결과값에 오류가 발생할 가능성이 있고, 일일이 테이블을 찾아 검색하게 되므로 계산 시간도 오래 소요되는 문제점이 있었다.By the way, when determining the minimum thickness of the pipe while looking at the table by the water calculation as described above, there is a possibility that an error may occur in the result value, and since the table is searched and searched one by one, it takes a long time to calculate.

따라서, 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 제안한 것으로, ASME B31.3의 테이블에 의거한 각 재질에 대한 기저장된 응력(Stress Efficiency, SE)값을 로딩하여 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산한 다음, 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교하여, 상기 계산된 배관의 최소두께(tnr)가 적용 가능한 지 여부를 메시지로 출력함으로써, ASME B31.3의테이블에 의거하여 내압을 받는 배관의 최소 배관 두께를 자동으로 계산하도록 하는 방법을 제공함에 그 목적이 있다.Therefore, the present invention has been proposed to solve the above-mentioned conventional problems, and the temperature, pressure, inputted by loading a pre-stored stress efficiency (SE) value for each material based on the table of ASME B31.3 Calculate the minimum thickness t nr of the pipe according to the material, and then load the minimum thickness t of the pre -stored pipe according to the selected pipe size and compare it with the calculated minimum thickness t nr . To provide a method to automatically calculate the minimum pipe thickness of pipes subjected to internal pressure based on the table of ASME B31.3 by outputting a message indicating whether the calculated minimum thickness t nr is applicable. There is this.

도1은 본 발명 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법의 동작과정을 보인 순서도.1 is a flow chart showing the operation of the method for determining the minimum thickness of the pipe subjected to internal pressure in the thermal power plant of the present invention.

도2는 본 발명 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법을 구현한 장치의 구성을 보인 블록도.Figure 2 is a block diagram showing the configuration of a device that implements a method for determining the minimum thickness of a pipe subjected to internal pressure in the thermal power plant of the present invention.

도3은 본 발명 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법에서, 저장된 ASME B31.3의 테이블을 보인 예시도.Figure 3 is an exemplary view showing a table of stored ASME B31.3 in the method for determining the minimum thickness of the pipe subjected to internal pressure in the thermal power plant of the present invention.

도4는 본 발명 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법에서, 재질 선택 상자를 보인 예시도.Figure 4 is an exemplary view showing a material selection box in the method for determining the minimum thickness of the pipe subjected to internal pressure in the thermal power plant of the present invention.

***도면의 주요 부분에 대한 부호의 설명****** Description of the symbols for the main parts of the drawings ***

20 : 입력 수단 21 : 저장 수단20: input means 21: storage means

22 : 출력 수단 23 : 제어 수단22: output means 23: control means

이와 같은 목적을 달성하기 위한 본 발명은, 화력 설비에서의 내압을 받는 배관의 최소 두께를 계산하기 위한 ASME B31.3의 테이블에 기재된 각 재질에 대한 응력(Stress Efficiency, SE)을 저장 수단에 기저장하는 단계와; 상기 기저장된 재질에 따른 응력(SE)값을 로딩하여, 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산하는 단계와; 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교하는 단계와;상기 비교 결과에 따라, 상기 계산된 배관의 최소두께(tnr)가 적용 가능한 지 여부를 메시지로 출력하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention relates to the storage means for storing the stress (Stress Efficiency, SE) for each material described in the table of ASME B31.3 for calculating the minimum thickness of the pipe subjected to internal pressure in the thermal power plant. Storing; Calculating a minimum thickness t nr of the pipe according to the input temperature, pressure, and material by loading a stress (SE) value according to the pre-stored material; Loading the minimum thickness t of the pre -stored pipe according to the selected pipe size and comparing the calculated minimum thickness t nr with the calculated pipe; and according to the comparison result, the calculated minimum thickness t nr ) is outputted as a message whether or not applicable.

이하, 본 발명에 따른 일실시예를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, an embodiment according to the present invention will be described in detail with reference to the accompanying drawings.

도1은 본 발명 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법의 동작과정을 보인 순서도로서, 이에 도시한 바와 같이, 화력 설비에서의 내압을 받는 배관의 최소 두께를 계산하기 위한 ASME B31.3의 테이블에 기재된 각 재질에 대한 응력(SE)을 저장 수단에 기저장하는 단계(S10)와; 상기 기저장된 재질에 따른 응력(Stress Efficiency,SE)값을 로딩하여, 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산하는 단계(S11)와; 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교하는 단계(S12)와;상기 비교 결과에 따라, 상기 계산된 배관의 최소두께(tnr)가 적용 가능한 지 여부를 메시지로 출력하는 단계(S13∼S15)로 구성한다.Figure 1 is a flow chart showing the operation of the method for determining the minimum thickness of the pipe subjected to internal pressure in the thermal power plant of the present invention, as shown in this, ASME B31 for calculating the minimum thickness of the pipe receiving internal pressure in the thermal power plant. Pre-storing the stress SE for each material described in the table 3 in the storage means (S10); Calculating a minimum thickness t nr of the pipe according to the input temperature, pressure, and material by loading a stress (SE) value according to the pre-stored material (S11); Loading the minimum thickness t of the pre -stored pipe according to the selected pipe size and comparing the calculated minimum thickness t nr to the calculated pipe thickness t nr ; and according to the comparison result, the minimum pipe size is calculated. Steps S13 to S15 output in a message whether or not the thickness t nr is applicable.

그리고, 본 발명을 구현하기 위한 구성은 도2와 같이, 입력 수단(20), 저장 수단(21), 출력 수단(22), 제어 수단(23)으로 구성된다.And, the configuration for implementing the present invention is composed of an input means 20, a storage means 21, an output means 22, a control means 23, as shown in FIG.

즉, 이와 같이 구성된 본 발명의 동작 과정을 설명하면, 사용자는 화력 설비에서의 내압을 받는 배관의 최소 두께를 계산하기 위한 ASME B31.3의 테이블에 기재된 각 재질에 대한 응력(SE)을 저장 수단(21)에 기저장한다(S10).In other words, when describing the operation process of the present invention configured as described above, the user can store the stress (SE) for each material listed in the table of ASME B31.3 for calculating the minimum thickness of the pipe subjected to internal pressure in the thermal power plant Pre-stored in 21 (S10).

여기서, 상기 저장 수단(21)에 저장된 테이블은 도3과 같으며, 코드분류, 재질, 최소 장력(Min Tensile), 최소 수율(Min Yield), 각 온도에 따라 장력을 받는 최대 허용 응력 등의 필드로 구분한다.Here, the table stored in the storage means 21 is shown in Figure 3, the field such as the code classification, material, minimum tension (Min Tensile), minimum yield (Min Yield), the maximum allowable stress subjected to the tension according to each temperature, etc. Separate by.

그리고, 제어 수단(23)은 입력 수단(20)을 통해 온도, 압력, 재질 등의 데이터를 입력받고, 상기 저장 수단(21)에 기저장된 재질에 따른 응력(SE)을 로딩하여, 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산한다(S11).The control means 23 receives data such as temperature, pressure, material, etc. through the input means 20, and loads a stress SE according to a material previously stored in the storage means 21, thereby inputting the temperature. Calculate the minimum thickness of the pipe (t nr ) according to the pressure, material (S11).

여기서, 상기 재질의 경우 도4와 같이 출력된 재질 선택 상자 중 어느 하나의 재질을 선택할 수 있으며, 상기 선택된 온도와 재질에 따라 기저장된 ASME B31.3의 테이블에서 하향 응력(DN_SE)과 상향 응력(UP_SE)을 로딩하여 응력(SE) 보간법에 의하여 최소두께(tnr) 계산식에 적용할 응력(SE)를 계산하게 된다.Herein, in the case of the material, any one material may be selected from the material selection box output as shown in FIG. 4, and the down stress (DN_SE) and the up stress ( UP_SE) is loaded to calculate the stress SE to be applied to the minimum thickness t nr by stress (SE) interpolation.

즉, 상기 계산된 응력(SE)에 따라 배관의 최소두께(tnr)를 계산하기 위한 수학식은 다음과 같다.That is, the equation for calculating the minimum thickness t nr of the pipe according to the calculated stress SE is as follows.

여기서, P는 압력(kg/㎤g), D는 배관의 외경(mm), SE는 응력, Y는 계수(여기서는 0.40으로 가정함)이고, C는 부식을 대비한 여유치(여기서는 3mm로 가정함)이다.Where P is the pressure (kg / cm 3g), D is the outer diameter of the pipe (mm), SE is the stress, Y is the coefficient (assuming 0.40 here), and C is the margin for corrosion (3 mm here). Is).

그 다음, 제어 수단(23)은 저장 수단(21)으로부터 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교한다(S12).Then, the control means 23 loads the minimum thickness t of previously stored pipes according to the size of the pipe selected from the storage means 21 and compares it with the calculated minimum thickness t nr (S12). .

그리고, 상기 비교 결과에 따라, 기저장된 배관의 최소두께(t)가 계산된 배관의 최소두께(tnr)보다 큰 경우 '해당 두께를 적용 가능함으로 나타내는 메시지'를 출력 수단(22)으로 출력하고(S13,S14), 기저장된 배관의 최소두께(t)가 계산된 배관의 최소두께(tnr)보다 작은 경우 '해당 두께를 적용 불가능함으로 나타내는 메시지'를 상기 출력 수단(22)으로 출력한다(S15).When the minimum thickness t of the previously stored pipe is larger than the calculated minimum thickness t nr according to the comparison result, a message indicating that the thickness is applicable is output to the output means 22. (S13, S14), if the minimum thickness t of the previously stored pipe is smaller than the calculated minimum thickness t nr , a message indicating that the thickness is not applicable is outputted to the output means 22 ( S15).

이상에서 설명한 바와 같이, 본 발명은 화력 설비에 있어서, ASME B31.3의 테이블에 의거하여 내압을 받는 배관의 최소 배관 두께를 자동으로 계산함으로써, 화력 설비 시스템의 설계 능력을 향상함과 아울러, 수작업에 의하여 두께 계산 및 계산서를 작성할 시 발생하는 오류를 방지하는 효과가 있다.As described above, in the thermal power plant, the present invention automatically calculates the minimum pipe thickness of the piping subjected to internal pressure based on the table of ASME B31.3, thereby improving the design capability of the thermal power plant system and performing manual work. By this, there is an effect of preventing an error that occurs when calculating the thickness calculation and calculation.

Claims (2)

화력 설비에 있어서, ASME B31.3의 테이블에 의거한 각 재질에 대한 기저장된 응력(Stress Efficiency, SE)값을 로딩하여, 입력된 온도, 압력, 재질에 따라 배관의 최소두께(tnr)를 계산하는 단계와; 선택된 배관의 규격에 따라 기저장된 배관의 최소두께(t)를 로딩하여 상기 계산된 배관의 최소두께(tnr)와 비교하는 단계와;상기 비교 결과에 따라, 상기 계산된 배관의 최소두께(tnr)가 적용 가능한 지 여부를 메시지로 출력하는 단계를 포함하는 것을 특징으로 하는 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법.For thermal power plants, load the pre-stored Stress Efficiency (SE) values for each material based on the table of ASME B31.3 to determine the minimum thickness of the pipe (t nr ) according to the temperature, pressure and material entered. Calculating; Loading the minimum thickness t of the pre -stored pipe according to the selected pipe size and comparing the calculated minimum thickness t nr with the calculated pipe; and according to the comparison result, the calculated minimum thickness t and nr ) outputting a message as to whether or not applicable. 제1항에 있어서, 상기 배관의 최소두께(tnr)는, 다음의 수학식에 의해 결정되는 것을 특징으로 하는 화력 설비에서의 내압을 받는 배관의 최소 두께 결정 방법.The method of claim 1, wherein the minimum thickness (t nr ) of the pipe is determined by the following equation. 여기서, P는 압력(kg/㎤g), D는 배관의 외경(mm), SE는 응력, Y는 0.40의 계수이고, C는 부식을 대비한 여유치(mm)이다.Where P is the pressure (kg / cm 3 g), D is the outer diameter of the pipe (mm), SE is the stress, Y is a coefficient of 0.40, and C is the margin (mm) for corrosion.
KR1020030033087A 2003-05-23 2003-05-23 Minimum pipe thickness with pressure determining method in boiler building KR20040100668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030033087A KR20040100668A (en) 2003-05-23 2003-05-23 Minimum pipe thickness with pressure determining method in boiler building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030033087A KR20040100668A (en) 2003-05-23 2003-05-23 Minimum pipe thickness with pressure determining method in boiler building

Publications (1)

Publication Number Publication Date
KR20040100668A true KR20040100668A (en) 2004-12-02

Family

ID=37378028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030033087A KR20040100668A (en) 2003-05-23 2003-05-23 Minimum pipe thickness with pressure determining method in boiler building

Country Status (1)

Country Link
KR (1) KR20040100668A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838487B1 (en) * 2006-11-16 2008-06-16 현대중공업 주식회사 Dent pad thickness design method for controlling local distortion of pressure vessel during fabrication and Computer readable recording medium storing dent pad thickness design program thereof
WO2018169193A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169190A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169186A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169188A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169182A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169187A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169189A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169192A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169184A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169183A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169191A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169185A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838487B1 (en) * 2006-11-16 2008-06-16 현대중공업 주식회사 Dent pad thickness design method for controlling local distortion of pressure vessel during fabrication and Computer readable recording medium storing dent pad thickness design program thereof
WO2018169193A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169190A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169186A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169188A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169182A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169187A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169189A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169192A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169184A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169183A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169191A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
WO2018169185A1 (en) * 2017-03-13 2018-09-20 엘지전자 주식회사 Air conditioner
KR20180104510A (en) * 2017-03-13 2018-09-21 엘지전자 주식회사 Air conditioner
US10830498B2 (en) 2017-03-13 2020-11-10 Lg Electronics Inc. Air conditioner
US11287146B2 (en) 2017-03-13 2022-03-29 Lg Electronics Inc. Air conditioner
US11293650B2 (en) 2017-03-13 2022-04-05 Lg Electronics Inc. Air conditioner
US11365893B2 (en) 2017-03-13 2022-06-21 Lg Electronics Inc. Air conditioner
US11408691B2 (en) 2017-03-13 2022-08-09 Lg Electronics Inc. Air conditioner
US11413713B2 (en) 2017-03-13 2022-08-16 Lg Electronics Inc. Air conditioner
US11421292B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11421308B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11421293B2 (en) 2017-03-13 2022-08-23 Lg Electronics Inc. Air conditioner
US11447839B2 (en) 2017-03-13 2022-09-20 Lg Electronics Inc. Air conditioner
US11486013B2 (en) 2017-03-13 2022-11-01 Lg Electronics Inc. Air conditioner
US11608539B2 (en) 2017-03-13 2023-03-21 Lg Electronics Inc. Air conditioner

Similar Documents

Publication Publication Date Title
KR20040100668A (en) Minimum pipe thickness with pressure determining method in boiler building
US8090545B2 (en) Method and apparatus for determination of the life consumption of individual components in a fossil fuelled power generating installation, in particular in a gas and steam turbine installation
KR102045239B1 (en) The lowest power consumption operation method of a water pump system consisting of multiple pumps
US10101022B2 (en) Fluid utilization facility management method and fluid utilization facility management system
JP4562132B2 (en) Pipe break position specifying device, program and method
Jung et al. Pitfalls of water distribution model skeletonization for surge analysis
Nogmov et al. Development of a flow-measuring hydropneumatic bench for testing pipeline valves
Jacimovic et al. On Piping Vibration Screening Criteria
Tabassum Optimal design of oxygen production system by pattren search methods
JPH08234833A (en) Abnormal event factor investigating method for plant operation support
Bakman et al. Efficiency control for adjustment of number of working pumps in multi-pump system
KR20200088707A (en) Apparatus for Predicting Maximum Stress on Using Deep Learning in Pipe Design
KR20120030287A (en) Power distribution prediction method for candu
KR20230110398A (en) Multi-variable type waste heat storage and recovery apparatus and method there of
Millar et al. A method for pump manifold performance calculations in hydraulic air compressors
KR20040100614A (en) Method for Designing of Piping in Power Plant
Weyer et al. Overview of Piping Stress Analysis Using Shell Elements
Bassam Ahmed Design and development of enhanced anti surge control by using smith predictor method/Bassam Ahmed Mohammed Al-Khelly
Głuch Selected problems of determining an efficient operation standard in contemporary heat-and-flow diagnostics
Gaiewski A methodology for determining degraded pump performance based on in-service test criteria or data
Malekpour et al. Distortions From a Simplified Approach to Fatigue Analysis in PVC Pipes
Wasnik et al. Common Pitfalls in Selection of Restriction Orifice for Depressurization of Oil and Gas Facilities
Adams et al. Basis of the fatigue capacities, stress intensification factors, and flexibility factors for high density polyethylene pipe in the ASME boiler and pressure vessel code, Section III, Division 1
Sales et al. A Monte Carlo Approach for VIV Fatigue Damage Estimation of Subsea Pipelines Subjected to Design, Installation and Operational Uncertainties
KR20050008970A (en) Method for Selecting Oil Pipe of Power Plant

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination