KR20040099595A - Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor - Google Patents
Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor Download PDFInfo
- Publication number
- KR20040099595A KR20040099595A KR1020030031626A KR20030031626A KR20040099595A KR 20040099595 A KR20040099595 A KR 20040099595A KR 1020030031626 A KR1020030031626 A KR 1020030031626A KR 20030031626 A KR20030031626 A KR 20030031626A KR 20040099595 A KR20040099595 A KR 20040099595A
- Authority
- KR
- South Korea
- Prior art keywords
- batch reactor
- wastewater
- sewage
- phosphorus
- anaerobic
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/18—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages for discharging drops; Droppers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/10—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having frangible closures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D47/00—Closures with filling and discharging, or with discharging, devices
- B65D47/04—Closures with discharging devices other than pumps
- B65D47/06—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages
- B65D47/12—Closures with discharging devices other than pumps with pouring spouts or tubes; with discharge nozzles or passages having removable closures
- B65D47/122—Threaded caps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 회분식 혐기조와 혼성형 연속회분식 반응조를 이용한 하, 폐수 처리방법에 관한 것으로, 보다 상세하게는 회분식 혐기조를 이용하여 질산성 질소(NO3-N)제거하며, 생물학적 인 방출을 진행시켜 질소와 인의 동시 제거에 필요한 조건을 만족하고, 소량의 여재가 충진된 혼성형 연속회분식 반응조를 이용하여 고농도의 MLSS(Mixed Liquer Suspended Solid)와 부착성 미생물을 확보하여 부하변동 및 온도변화에도 질소와 인을 제거할 수 있으며, 동시에 저농도 MLSS가 유지되는 부유성 영역에서 안정적으로 방류수질을 유지할 수 있는 하, 폐수 처리방법에 관한 것이다.The present invention relates to a wastewater treatment method using a batch anaerobic tank and a hybrid continuous batch reactor, and more particularly, to remove nitrogen nitrate (NO 3 -N) using a batch anaerobic tank, and to proceed with biological release. By using a hybrid type batch reactor filled with a small amount of media and satisfying the conditions necessary for simultaneous removal of wine, high concentrations of MLSS (Mixed Liquer Suspended Solid) and adherent microorganisms are secured so that nitrogen and phosphorus can be changed even under load fluctuations and temperature changes. The present invention relates to a wastewater treatment method capable of removing the wastewater and at the same time maintaining the discharged water stably in the floating region in which the low concentration MLSS is maintained.
일반적으로, 하, 폐수로부터 생물학적으로 질소와 인이 제거되는 메카니즘은 많은 차이점이 있는 것으로, 질소 제거의 경우, 우선적으로 호기(Aerobic) 조건에서 질산화 미생물에 의해 암모니아성 질소(NH4-N)를 아질산성 질소(NO2-N)나 질산성 질소(NO3-N)로 산화시키는 질산화 단계를 거친 후, 무산소(Anoxic) 조건에서 유기물을 전자공여체로 하여 산화된 형태의 질소가 환원(탈질)되어 기체형태(N2)로 대기중으로 날아감으로서 질소가 제거된다.In general, there are many differences in the mechanism of biologically removing nitrogen and phosphorus from wastewater. In the case of nitrogen removal, ammonia nitrogen (NH 4 -N) is preferentially removed by nitrifying microorganisms under aerobic conditions. After the nitrification step of oxidizing with nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N), the oxidized form of nitrogen is reduced (denitrification) using an organic substance as an electron donor under anoxic conditions. Nitrogen is removed by flying into the atmosphere in gaseous form (N 2 ).
반면, 인 제거의 경우에는 혐기(Anaerobic) 조건에서 인 제거 미생물이 유기물의 체내축적에 필요한 에너지를 획득하기 위하여 ATP(Adenosine Triphosphate)를 ADP(Adenosine Diphosphate)로 전환시키는데, 이때 인이 방출(P Release)되는 것으로, 혐기 조건 후에 호기 조건에서 인 제거 미생물은 세포내에 축적된 유기물을 산화시켜 얻어진 에너지를 이용하여 체내의 에너지원인 상기 ATP를 형성한다.On the other hand, in the case of phosphorus removal, the phosphorus-removing microorganism converts ATP (Adenosine Triphosphate) to Adenosine Diphosphate (ADP) in order to obtain the energy required for the accumulation of organic matter in anaerobic conditions. In the aerobic condition after the anaerobic condition, the phosphorus-removing microorganism uses the energy obtained by oxidizing the organic matter accumulated in the cells to form the ATP, which is an energy source in the body.
이때, 상기 혐기 조건에서 방출된 인이 세포내로 축적됨에 있어, 방출되는 인보다 많은 양의 인이 축적되는 현상이 발생하는데 이를 과잉 인 섭취(Luxury P Uptake)라 하고, 이러한 과정을 통하여 생성된 인 제거 미생물을 제거하면 하, 폐수에서 인을 제거할 수 있게 된다.At this time, the phosphorus released in the anaerobic condition accumulates in the cell, the amount of phosphorus is accumulated more than the released phosphorus is called Phosphorus Phosphorus (Luxury P Uptake), the phosphorus produced through this process Elimination Microorganisms can be removed to remove phosphorus from wastewater and wastewater.
그리고, 미생물의 특성상 질산화 및 탈질 미생물은 증식속도가 느리기 때문에 일정량의 질소를 제거하기 위해서는 시스템 내에 많은 양의 미생물이 유지되어야 하는 것으로, MLSS를 높게 유지할 경우, 질산화 및 탈질 미생물이 시스템 내에 다량 존재하게 되어 하, 폐수의 짧은 체류 시간에도 질소 제거가 가능하게 된다.In addition, since nitrification and denitrification microorganisms have a slow growth rate, a large amount of microorganisms must be maintained in the system in order to remove a certain amount of nitrogen. When the MLSS is maintained high, nitrification and denitrification microorganisms exist in the system. Thus, nitrogen can be removed even in a short residence time of the wastewater.
그러나, 인 제거 미생물의 경우에는 질산화 및 탈질 미생물보다 증식 속도가 커서 MLSS를 낮게 유지할 수 있을 뿐만 아니라, 많은 양의 인 제거 미생물을 시스템으로부터 제거하는 것이 많은 양의 인을 제거하는 것이기 때문에 상기 MLSS를 낮게 유지하는 것이 더 유리하다고 하겠다.However, in the case of phosphorus-removing microorganisms, the growth rate is higher than that of nitrification and denitrification microorganisms, so that the MLSS can be kept low, and the removal of a large amount of phosphorus-removing microorganisms from the system removes a large amount of phosphorus. Keeping it low is more advantageous.
따라서, 일반적인 하수처리공정의 경우에는 모든 미생물들이 혼합된 상태로 존재하기 때문에 특정 미생물만을 선택적으로 제거하는 것이 불가능하다. 이러한 이유로 인하여, 즉 질소 제거를 위해서는 높은 MLSS 농도 유지가 필요하지만, 인 제거를 위해서는 낮은 MLSS 농도 유지가 필요하므로, 질소와 인 제거를 위한 최적의 운전방법을 설정하기 위해서는 상기 MLSS 농도를 각각 분리하여 성장시키는 것이 최적의 처리방법이라고 할 수 있다.Therefore, in the general sewage treatment process, it is impossible to selectively remove only specific microorganisms because all microorganisms exist in a mixed state. For this reason, it is necessary to maintain a high MLSS concentration for nitrogen removal, but to maintain a low MLSS concentration for phosphorus removal, separate the MLSS concentrations separately to set an optimal operating method for nitrogen and phosphorus removal. Growing is an optimal treatment method.
그런데, 알려져 있는 연속회분식 반응조(SBR; Sequencing Batch Reactor) 공법은 활성슬러지 공법에 비해 기질제거 속도가 빠르고, 혐기와 호기 조건을 쉽게형성시킬 수 있어 유기물 제거와 함께 질산화 및 탈질을 쉽게 도모할 수 있고, 소요부지가 적어 중, 소규모 처리장에 적합한 공정이나, 상기 MLSS 농도를 높게 유지시키기가 어럽고, 국내 하수 성상과 같은 낮은 화학적 산소요구량(COD; Chemical Oxygen Demand)으로 인해 질소와 인을 동시에 효율적으로 제거시킬 수 없으며, 고농도 산업 폐수와 같이 질소와 인의 함량이 높을 경우 처리 효율이 낮은 문제점이 있었다.However, the known Sequencing Batch Reactor (SBR) method has a faster substrate removal rate than the activated sludge method, and can easily form anaerobic and aerobic conditions, thereby easily nitrifying and denitrifying with organic matter removal. It is difficult to keep the MLSS concentration high because it requires little site, and it is suitable for small and medium-sized treatment plants, and because of low chemical oxygen demand (COD) such as domestic sewage, it efficiently and efficiently purges nitrogen and phosphorus simultaneously. It could not be removed, there was a problem of low treatment efficiency when the nitrogen and phosphorus content is high, such as high concentration industrial wastewater.
이에 반하여 여재가 충진된 생물막(Biofilm) 공법은 미생물의 다양성을 확보할 수 있고 온도와 충격부하에 대한 영향이 적으며 슬러지 벌킹(Sludge Bulking) 등이 발생하지 않는 장점이 있으나, 두꺼운 생물막이 형성되기 쉽고 과도한 미생물이 부착되어 처리효율이 떨어지는 등의 문제점이 있었다.On the other hand, the biofilm method filled with media has advantages of securing microbial diversity, less influence on temperature and impact load, and no sludge bulking, but thick biofilms are formed. There was a problem such as easy and excessive microorganisms attached to the treatment efficiency is lowered.
본 발명은 이상과 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 중, 소규모 하수처리시설에서 적용되는 것으로, 질소 및 인의 처리 조건을 가변적, 순차적으로 동시에 효율적으로 처리, 제거할 수 있는 하, 폐수 처리방법을 제공함에 있다.The present invention has been made to solve the above problems, the object of the present invention is to be applied in the small and medium small sewage treatment facilities, it is possible to efficiently and efficiently remove and treat nitrogen and phosphorus treatment conditions simultaneously and sequentially To provide a wastewater treatment method.
이와 같은 목적을 달성하기 위하여, 본 발명은 유입수의 오염부하를 완화시키며 완충역활을 수행함과 동시에, 혐기조건으로 질산성질소를 제거하고, 인 방출을 진행시키는 회분식 혐기조와, 여재충진층이 형성되어 고농도의 MLSS를 유지시키는 부착성영역인 여재충진부 및 저농도의 MLSS를 유지시키는 부유성영역이 간벽이형성된채 공존되는 연속회분식 반응조로 이루어져 있다.In order to achieve the above object, the present invention mitigates the pollutant load of the influent and performs a buffering role, and removes nitrate nitrogen under anaerobic conditions, and forms a batch anaerobic tank for proceeding phosphorus release, and a medium filling layer to form a high concentration. The media filling part, which is an adhesive region for maintaining MLSS, and the floating region for maintaining a low concentration of MLSS, are composed of a continuous batch reactor in which coexisting walls are formed.
도 1은 본 발명의 하, 폐수 처리방법을 실시하기 위하여 나타낸 장치 개략도1 is a schematic view of an apparatus shown for carrying out the wastewater treatment method of the present invention.
도 2는 본 발명의 하, 폐수 처리방법을 실시하는 단계별 운전사항을 나타낸 도면Figure 2 is a view showing the step-by-step operation of the waste water treatment method of the present invention
※ 도면의 주요 부분에 대한 부호의 설명※ Explanation of codes for main parts of drawing
10 : 회분식 혐기조 11 : 여재충진부10: batch anaerobic tank 11: filter filling unit
12 : 여재충진층 13 : 부유성영역12: media filling layer 13: floating region
14 : 간벽 15 : 반응조14: partition wall 15: reactor
이하, 본 발명을 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings of the present invention.
도 1은 본 발명의 하, 폐수 처리방법을 실시하기 위하여 나타낸 장치 개략도이고, 도 2는 본 발명의 하, 폐수 처리방법을 실시하는 공정단계별 운전상태의 사항을 나타낸 도면이다.1 is a schematic view showing the apparatus for carrying out the wastewater treatment method according to the present invention, and FIG. 2 is a view showing the matters of the operation state for each process step for implementing the wastewater treatment method according to the present invention.
도시된 바와 같이, 본 발명은 하, 폐수를 처리함에 있어서, 유입수의 오염부하를 완화시키며 완충역활을 수행함과 동시에, 혐기조건으로 질산성질소를 제거하고, 인방출을 진행시키는 회분식 혐기조(10)와, 여재충진층(12)이 형성되어 고농도의 MLSS를 유지시키는 부착성영역인 여재충진부(11) 및 저농도의 MLSS를 유지시키는 부유성영역(13)에 상호 간벽(14)이 형성된채 공존되는 연속회분식 반응조(15)로 이루어져 질소 및 인의 처리 조건을 가변적, 순차적으로 함께 하도록 되어 있다.As shown, the present invention is a batch anaerobic tank (10) for the treatment of wastewater, to reduce the contamination load of the influent and to perform a buffering role, to remove nitrate nitrogen in anaerobic conditions, and to proceed with phosphorus discharge , The media filling layer 12 is formed to coexist with the intermediary wall 14 being formed in the media filling portion 11, which is an adhesive region for maintaining a high concentration of MLSS, and in the floating region 13 for maintaining a low concentration of MLSS. It consists of a continuous batch reactor 15 so that the treatment conditions of nitrogen and phosphorus are varied and sequentially combined.
이를 공정단계별로 구체적으로 설명하면, 연속회분식 반응조(15)의 부유성영역(13)에 침전된 슬러지중 일부분이 회분식 혐기조(10)로 이송됨과 동시에, 하,폐수의 처리수가 유입되어 질산성질소를 제거하며, 인을 방출시키는 단계(A)와;In detail, the process step, a portion of the sludge precipitated in the floating zone 13 of the continuous batch reactor 15 is transferred to the batch anaerobic tank 10, and at the same time, the treated water of the wastewater, waste water flows into the nitrate nitrogen Removing (A) and releasing phosphorus (A);
상기 회분식 혐기조(10)의 혐기 반응이 끝난 후, 이를 연속회분식 반응조(15)에 여재충진부(11)의 하부로 유입시키어, 이전 처리후 남아 있는 질산성질소를 상기 유입수내의 유기물을 이용하여 무산소 조건으로 탈질, 제거시키는 단계(B)와; 상기 탈질 반응이 끝난 후, 호기 조건으로 남아 있는 유기물을 제거하며, 인 섭취 및 질산화를 유도하는 단계(C)와;After the anaerobic reaction of the batch anaerobic tank 10 is finished, it is introduced into the continuous batch reactor 15 to the lower portion of the filter medium (11), the nitrate nitrogen remaining after the previous treatment by using the organic matter in the influent Denitrifying and removing under conditions (B); After the denitrification reaction, removing organic substances remaining in aerobic conditions and inducing phosphorus intake and nitrification;
상기 호기 반응이 끝난 후, 부유성영역(13)에 존재하는 MLSS를 침전시켜 고액분리를 실시하는 단계(D)와; 상기 침전단계가 완료되면 상징수를 방류하고, 슬러지의 일부는 폐기함과 동시에, 나머지는 다시 상기 회분식 혐기조(10)로 유입시키는 처리공정단계(E)로 일일 3~4회 반복 실시한다.After completion of the aerobic reaction, precipitating MLSS present in the floating region (13) to perform solid-liquid separation; When the sedimentation step is completed, the supernatant is discharged, and a part of the sludge is discarded, and the rest is repeatedly performed three to four times a day as a treatment step (E) which flows into the batch anaerobic tank 10 again.
이때, 여재충진부(11)에서는 고농도의 MLSS가 유지되므로 질산화 및 탈질이 효과적으로 진행될 수 있고, 부유성영역(13)에서는 저농도의 MLSS가 유지되므로 인 제거가 효율적으로 달성될 수 있게 된다.At this time, since the high concentration of MLSS is maintained in the filter medium filling unit 11, nitrification and denitrification can be effectively performed, and in the floating region 13, the low concentration of MLSS is maintained, so that phosphorus removal can be efficiently achieved.
상기 구조로 이루어져 공정단계로 운전되는 본 발명, 즉 회분식 혐기조(10)및 혼성형 연속회분식 반응조(AnHSBR; Anaerobic And Hybridized Sequencing Batch Reactor)(15)와, 기존의 연속회분식 반응조(SBR; Sequencing Batch Reactor) 및 혼성형 연속회분식 반응조(HSBR; Hybridized Sequencing Batdh Reactor)의 동일한 조건에서 처리효율을 대비, 비교하면 다음의 표와 같다.The present invention operated in the process step consisting of the structure, that is, a batch anaerobic tank (10) and hybrid type batch reactor (AnHSBR; Anaerobic And Hybridized Sequencing Batch Reactor) (15), and a conventional continuous batch reactor (SBR; Sequencing Batch Reactor) ) And hybridized sequencing batdh reactor (HSBR) under the same conditions, the treatment efficiency is compared, compared with the following table.
상기 표 3 및 표 4에서 하,폐수처리 실험결과를 확인할 수 있는 바와 같이, 본 발명은 기존의 처리방법보다 처리효율이 높다는 것을 알 수 있다.As can be seen in Table 3 and Table 4, the waste water treatment experiment results, it can be seen that the present invention has a higher treatment efficiency than conventional treatment methods.
이상에서 설명된 바와 같이, 본 발명은 탈질과 인 방출의 다른 조건을 가변, 순차적으로 적용되게 한 것으로, 높은 반응속도를 유지할 수 있는 효과가 있고, 이로 인하여 수처리 체류시간을 짧게 할 수 있으면서도 안정적인 유출량과 수질을 확보할 수 있는 효과가 있다.As described above, the present invention allows the variable conditions of denitrification and phosphorus release to be applied in a variable, sequential manner, and has an effect of maintaining a high reaction rate, thereby allowing a short water treatment residence time and a stable flow rate. It is effective to secure water quality.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0031626A KR100504150B1 (en) | 2003-05-19 | 2003-05-19 | Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0031626A KR100504150B1 (en) | 2003-05-19 | 2003-05-19 | Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040099595A true KR20040099595A (en) | 2004-12-02 |
KR100504150B1 KR100504150B1 (en) | 2005-07-27 |
Family
ID=37377110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0031626A KR100504150B1 (en) | 2003-05-19 | 2003-05-19 | Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100504150B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008055388A1 (en) * | 2006-11-07 | 2008-05-15 | Nanjing University | Method for the treatment of waste water from florfenicol production |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102087622B1 (en) | 2019-03-29 | 2020-04-23 | 주식회사 경우크린텍 | Batch reactor and control method thereof |
-
2003
- 2003-05-19 KR KR10-2003-0031626A patent/KR100504150B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008055388A1 (en) * | 2006-11-07 | 2008-05-15 | Nanjing University | Method for the treatment of waste water from florfenicol production |
US7935256B2 (en) | 2006-11-07 | 2011-05-03 | Nanjing University | Method for the treatment of waste water from florfenicol production |
Also Published As
Publication number | Publication date |
---|---|
KR100504150B1 (en) | 2005-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4796631B2 (en) | Method and system for nitrifying and denitrifying sewage | |
Abeysinghe et al. | Biofilters for water reuse in aquaculture | |
JP2011078938A (en) | Waste water treatment method | |
KR100419827B1 (en) | Biological, pysical and chemical treatment method of waste water from livestock | |
KR100327151B1 (en) | A Process for Treatment of Wastewater Using Intermittently Aerated Membrane Bioreactor | |
KR20130004730A (en) | Membrane bio reactor system comprising sequencing batch reactor and method using the same | |
KR102057374B1 (en) | Sewage treatment system using granule | |
JP4336947B2 (en) | Waste water treatment equipment | |
KR100331898B1 (en) | Advanced Treatment Process of Domestic Wastewater by Biological and Chemical | |
KR20020028410A (en) | Nitrogen and phosphorus removal process from sewage and waste water by 2A/O RBC with internal settler | |
KR100504150B1 (en) | Method for sewage and wastewater treatment using anaerobic batch reactor and hybrid sequencing batch reactor | |
KR20210040632A (en) | Wastewater treatment system using anaerobic ammonium oxidation system in mainstream of mwtp by nitrification reaction of various high concentration waste liquid and microorganism culture reinforcement | |
KR100542431B1 (en) | High concentration organic wastewater treatment system combining biofilm fermentation tank and anaerobic, anaerobic and aerobic tank | |
KR100670231B1 (en) | System for processing waste water using rumination sbr | |
KR100321680B1 (en) | Advance wastewater treatment method by wastewater passage alternation | |
KR100632487B1 (en) | Gradually operated sequencing batch reactor and method thereof | |
Seca et al. | Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater | |
KR100489328B1 (en) | System and method for wastewater treatment using partition type anoxic basin and membrane basin | |
KR100513567B1 (en) | Wastewater Purification Apparatus | |
KR102052163B1 (en) | Wastewater treatment apparatus and method | |
JP2003094096A (en) | Method for treating organic waste, apparatus therefor, and sludge | |
KR100462578B1 (en) | The purification method of an organic waste water with high density | |
KR20020089085A (en) | Apparatus for treating Nitrogen and Phosphorus in wastewater and A Treatment method thereof | |
KR200332092Y1 (en) | System for wastewater treatment using partition type anoxic basin and membrane basin | |
KR950013997A (en) | Biological sewage and wastewater treatment device combined with nitrogen and phosphorus removal and its treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130621 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140523 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150707 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20160719 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20170719 Year of fee payment: 13 |