KR20040095089A - low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor - Google Patents

low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor Download PDF

Info

Publication number
KR20040095089A
KR20040095089A KR1020030028692A KR20030028692A KR20040095089A KR 20040095089 A KR20040095089 A KR 20040095089A KR 1020030028692 A KR1020030028692 A KR 1020030028692A KR 20030028692 A KR20030028692 A KR 20030028692A KR 20040095089 A KR20040095089 A KR 20040095089A
Authority
KR
South Korea
Prior art keywords
copolymer
norbornene
thin film
formula
monomer
Prior art date
Application number
KR1020030028692A
Other languages
Korean (ko)
Other versions
KR100599319B1 (en
Inventor
차국헌
이진규
박주현
Original Assignee
차국헌
이진규
박주현
(주) 씬필름솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차국헌, 이진규, 박주현, (주) 씬필름솔루션 filed Critical 차국헌
Priority to KR1020030028692A priority Critical patent/KR100599319B1/en
Publication of KR20040095089A publication Critical patent/KR20040095089A/en
Application granted granted Critical
Publication of KR100599319B1 publication Critical patent/KR100599319B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers

Abstract

PURPOSE: Provided is a method for manufacturing a nanoporous thin film based on a polynorbornene copolymer having reinforced adhesive property and low dielectric constant suitable for use in advanced multi-chip packages and optical wiring materials. CONSTITUTION: The method for manufacturing a nanoporous thin film comprises the steps of: copolymerizing at least one norbornene monomer with a thermally degradable monomer having a thermal decomposition temperature lower than the glass transition temperature of polynorbornene; coating the copolymer to form a thin film; heat treating the thin film at a temperature lower than the glass transition temperature of polynorbornene and equal to or higher than the thermal decomposition temperature to decompose the thermally degradable monomer, thereby forming nanopores in the thin film.

Description

나노다공성 저유전성 폴리노보넨계 공중합체 박막 및 그 제조방법{low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor}Low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor}

본 발명은 나노기공 형성제(pore generating material)를 함유하는 폴리노보넨계 공중합체를 이용한 나노기공 형성방법에 관한 것이다.The present invention relates to a method for forming nanopores using a polynorbornene-based copolymer containing a nanopore generating material.

최근 정보통신의 발전으로 인해 방대한 데이터의 빠른 처리 속도가 요구되면서 단일칩 형태로부터 다수의 칩을 연결하는 병렬처리 방식으로의 전환이 요구되고 있다. 이를 위해서는 다수의 마이크로칩들을 연결하는 멀티칩 패키지에서의 배선에 사용되는 우수한 물성을 가진 저유전 소재의 개발이 요구되고 있다. 전자시스템의 성능을 좌우하는 정전용량과 신호지연을 감소시키기 위해서는 더욱 낮은 유전상수를 갖는 충진물질의 개발이 요구된다. 또한, 액정디스플레이 박막 트랜지스터의 층간 유전재료등에 사용되는 저유전성 소재는 집적 회로를 보호하는 기존의 단순한 기능을 벗어나 장치의 속도를 증가시키고 에너지 소모를 줄여 제품의 경량화를 유도할 수 있는 핵심 소재이다. 미국 반도체 산업계의 예상에 따르면, 2005년 이전에 개발되어야 하는 멀티칩 패키지용 저유전성 재료는 유전상수 2.0이하, 300℃이상, 열안정성 및 낮은 흡습율 등의 물성을 갖추어야 한다고 한다. 또한, 2005년 이후에는 전기적 배선뿐만 아니라 광학적 배선을 통한 초고속 전자시스템 개발에 필요한 소재에 대한 수요가 예측되며, 이를 위한 유기박막소재는 적절한 굴절율과 높은 광투명도, 낮은 광손실을 가져야한다.Recently, with the development of information and communication, a fast processing speed of massive data is required, and a switch from a single chip type to a parallel processing method connecting a plurality of chips is required. This requires the development of low dielectric materials with excellent properties for wiring in multichip packages connecting multiple microchips. In order to reduce the capacitance and signal delay that influence the performance of the electronic system, the development of a filler having a lower dielectric constant is required. In addition, low dielectric materials used in the interlayer dielectric materials of liquid crystal display thin film transistors are a key material that can lead to weight reduction of products by increasing the speed of devices and reducing energy consumption beyond the existing simple functions of protecting integrated circuits. According to the US semiconductor industry, low-k materials for multi-chip packages that need to be developed before 2005 should have properties such as dielectric constant of 2.0 or less, 300 ° C or higher, thermal stability and low moisture absorption. In addition, demand for materials required for the development of high-speed electronic systems through optical wiring as well as electrical wiring is expected after 2005. For this, organic thin film materials should have appropriate refractive index, high light transparency and low light loss.

기존의 반도체 패키지 및 층간절연재로는 실리콘 산화막(SiO2)이 사용되어 왔으나 유전율이 4.0정도로 높기 때문에 차세대 칩간 패키지 재료로서 한계가 있는 것으로 보여진다.Silicon oxide film (SiO 2 ) has been used as a conventional semiconductor package and interlayer insulating material, but the dielectric constant is high as about 4.0.

이에 차세대 패키지용 저유전성 물질을 개발하기 위한 다양한 시도가 이루어졌으며, 폴리이미드(polyimide), 벤조시클로부텐(benzocyclobutene), 폴리노보넨(polynorbornene)등이 그러한 예이다.Accordingly, various attempts have been made to develop low-k materials for next-generation packages, and polyimide, benzocyclobutene, polynorbornene, and the like are examples.

이중 폴리이미드는 유전율이 2.9 ~ 3.5로 높고 흡습율이 높으며 고분자 구조상의 문제로 인해 전기적, 광학적 이방성이 발생한다는 문제점을 가지고 있으며 Dow에서 개발한 벤조시클로부텐의 경우 유전율이 2.7 정도로 높으며 박막제조 공정이 복잡하고 금속과의 접착력이 떨어진다는 문제점이 있다.The polyimide has high dielectric constants of 2.9 to 3.5, high hygroscopicity and high electrical and optical anisotropy due to polymer structural problems. The benzocyclobutene developed by Dow has a high dielectric constant of about 2.7 and a thin film manufacturing process. There is a problem that the complexity and the adhesion to the metal is poor.

폴리노보넨의 경우 열안정성, 낮은 흡습율 및 전기적, 광학적 등방성등 우수한 물성을 보유하고 있어 차세대 패키지용 저유전성 물질로서 그 응용이 매우 기대되나, 이 역시 박막 제조시, 계면접착력이 떨어지는 문제점이 있다. 최근 각광을 받고 있는, BF Goodrich에서 개발한 폴리노보넨의 경우 극성기인 알콕시기를 함유하는 실리콘화합물을 노보넨에 도입하여 접착력을 극복하였으나, 중합체내 극성기의 도입으로 인하여 유전율이 높아지는(2.7정도) 단점이 있었다.Polynorbornene has excellent properties such as thermal stability, low hygroscopicity and electrical and optical isotropy, so its application is expected as a low dielectric material for next generation packages, but this also has a problem of poor interfacial adhesion in thin film manufacturing. . In the case of polynorbornene developed by BF Goodrich, which has recently been in the spotlight, the silicone compound containing an alkoxy group as a polar group was introduced into the norbornene to overcome adhesion, but the dielectric constant increased due to the introduction of the polar group in the polymer (about 2.7). There was this.

본 발명은 상기한 단점을 극복하기 위해 제조된 것으로서, 폴리노보넨 공중합체를 차세대 멀티칩 패키지 및 반도체의 광학적 배선재료로서의 사용가능하게 하기 위하여, 접착성이 강화되면서도 저유전율을 가지는 개선된 폴리노보넨 공중합체를 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to overcome the above disadvantages, and in order to enable the polynorbornene copolymer to be used as an optical wiring material for next-generation multichip packages and semiconductors, an improved polynovo having improved dielectric properties and low dielectric constant It is an object to provide a nene copolymer.

아울러, 본 발명은 상기한 개선된 폴리노보넨 공중합체의 제조공정을 보다 단순화시킬 수 있는 방법을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a method which can further simplify the manufacturing process of the above-described improved polynorbornene copolymer.

도 1은 본 발명의 일 실시예에 따른 폴리노보넨 공중합체의1H-NMR 스펙트럼.1 is a 1 H-NMR spectrum of the polynorbornene copolymer according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 공단량체의 함유량과 폴리노보넨 공중합체의 열적특성.2 is a thermal characteristic of the polynorbornene copolymer and the content of the comonomer according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 폴리노보넨 블록공중합체의1H-NMR 스펙트럼.3 is a 1 H-NMR spectrum of the polynorbornene block copolymer according to an embodiment of the present invention.

도 4는 본 발명의 실시예에 따른 폴리노보넨 블록공중합체의 소각 산란 실험에 의한 구조분석4 is a structural analysis by incineration scattering experiment of the polynorbornene block copolymer according to an embodiment of the present invention

도 5는 폴리노보넨 공중합체로부터 제조된 다공성 고분자박막의 단면사진5 is a cross-sectional photograph of a porous polymer thin film prepared from a polynorbornene copolymer

상기한 목적을 달성하기 위해 본 발명은 폴리노보넨 공중합체내에 나노기공 형성제를 도입하는 방법과 나노기공형성제를 함유하는 폴리노보넨 공중합체를 제공한다.In order to achieve the above object, the present invention provides a method for introducing a nanopore former into a polynorbornene copolymer and a polynorbornene copolymer containing a nanopore former.

또한, 본 발명은 상기 노보넨계 단량체를 이용한 폴리노보넨 공중합체 중합시 히드록시기가 촉매를 비활성화 시키지 않도록 화학적 방법에 의해 히드록시기를 다른 작용기로 변환시키고 공중합체 합성후 다시 히드록시기로 환원시켜 폴리노보넨 공중합체내에 나노기공 형성제를 도입하는 방법을 제공한다.In addition, the present invention is to convert the hydroxy group to another functional group by a chemical method so that the hydroxy group does not deactivate the catalyst during polymerization of the polynorbornene copolymer using the norbornene-based monomer, and after the synthesis of the copolymer is reduced to a hydroxy group again in the polynorbornene copolymer Provided is a method of introducing nanopore formers.

또한, 본 발명은 상기 노보넨 단량체에 나노기공 형성제를을 화학반응에 의해 도입한후 나노기공 형성제가 도입된 노보넨계 단량체와 노보넨으로 이루어진 공중합체 및 그 제조방법을 더욱 제공한다.In addition, the present invention further provides a copolymer consisting of a norbornene-based monomer and a norbornene in which the nano-pore-forming agent is introduced after the nano-pore-forming agent is introduced into the norbornene monomer by a chemical reaction, and a method of preparing the same.

또한, 본 발명은 노보넨, 노보넨계 단량체 및 나노기공 형성제로 이루어진 공중합체로 이루어진 것을 특징으로 하는 저유전성 절연재료 및 반도체 노광공정용 반사방지막용 소재를 더욱 제공한다.In addition, the present invention further provides a low dielectric insulating material and an antireflection film material for semiconductor exposure process, characterized in that the copolymer consisting of norbornene, norbornene-based monomers and nano-pore forming agent.

또한, 본 발명은 상기 공중합체에서 나노기공 형성제의 비율이 0-70mol%인 것을 특징으로 하는 저유전성 절연재료 및 반도체 노광공정 반사방지막용 재료를 더욱 제공한다.In addition, the present invention further provides a low dielectric insulating material and a semiconductor exposure process anti-reflection film material, characterized in that the ratio of the nano-pore forming agent in the copolymer is 0-70 mol%.

또한, 본 발명은 나노기공 형성제를 함유하는 공중합체를 경화시키거나 또는 경화시키지 않고 나노기공 형성제를 분해시켜 나노기공을 함유하는 재료를 제조하는 방법을 더욱 제공한다.In addition, the present invention further provides a method of preparing a material containing nanopores by decomposing the nanopore formers with or without curing the copolymer containing the nanopore formers.

또한, 본 발명은 상기한 나노기공 형성제를 용매와 혼합하여 기판에 회전코팅하여 소정 두께의 박막을 만들고, 상기 박막을 열처리한 다음, 질소 또는 진공에서 서서히 온도를 나노기공 형성제의 분해온도 또는 그 이상으로 상승시켜 나노기공 형성제를 분해시켜 나노기공을 형성시키는 것을 특징으로 하는 저유전성 절연막 및 반도체 노광공정용 반사방지막의 제조방법 및 이 방법에 의해 제조된 것을 특징으로 하는 저유전성 절연막 및 반도체 노광공정용 반사방지막을 더욱 제공한다.In addition, the present invention by mixing the nano-pore forming agent with a solvent to rotate the coating on a substrate to form a thin film of a predetermined thickness, and heat-treat the thin film, the temperature of the nano-pore forming agent is gradually reduced in nitrogen or vacuum A method of manufacturing a low dielectric insulating film and an antireflection film for a semiconductor exposure process and a low dielectric insulating film and a semiconductor produced by the method, characterized by rising above and decomposing the nanopore forming agent to form nanopores. It further provides an antireflection film for the exposure process.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 나노기공 형성제는 적절한 조건에서 분해에 의해 고분자 절연물질내에 나노기공을 형성할 수 있는 모든 물질을 의미한다. 나노기공이란 절연물질내의 공간을 의미하며 그 공간에는 가스나 공기가 포함되어 있을 수 있으며 진공일 수도 있다. 더욱이, 나노기공은 원형이나 타원형의 모양을 제공한다.Nanopore formers of the present invention refers to any material capable of forming nanopores in a polymer insulating material by decomposition under appropriate conditions. Nanopores refer to spaces in insulating materials, which may contain gases or air and may be vacuum. Moreover, nanopores provide a round or oval shape.

상기한 바와 같이 본 발명은 유전율이 낮은 다공성 절연물질 및 반사방지막용 소재에 관련된 것이다. 본 발명의 다공성 물질은 열적으로 안정한 저유전 물질과 분해에 의해 제거가능한 나노기공 형성제의 조합으로 이루어진다.As described above, the present invention relates to a low dielectric constant porous insulating material and antireflection film material. The porous material of the present invention consists of a combination of a thermally stable low dielectric material and a nanopore former that is removable by decomposition.

본 발명의 다공성 물질은 분해가 가능한 나노기공 형성제를 폴리노보넨 공중합체에 화학적 방법을 이용하여 결합한 다음 수산화나트륨 등을 함유하는 메탄올 수용액에 의해 분해시켜 나노기공을 형성시키는 방법으로 제조된다.The porous material of the present invention is prepared by a method of forming nanopores by decomposing a nanopore forming agent that can be decomposed into a polynorbornene copolymer using a chemical method and then decomposing by an aqueous solution of methanol containing sodium hydroxide.

특히, 본 발명이 제공하는 공중합체는 나노기공 형성제의 분해온도 이상의 온도에서 처리하여 나노기공 형성제를 열분해시켜 나노기공을 만드는 것을 특징으로 한다. 나노기공 형성제의 분해온도는 폴리노보넨 공중합체는 열적으로 안정하면서 나노기공 형성제만 분해시킬 수 있는 온도를 의미한다. 전형적으로, 나노기공 형성제의 분해온도는 450℃를 넘지 않는다. 더 바람직하게는, 나노기공 형성제의분해온도는 250℃에서 450℃ 사이의 온도를 의미한다.In particular, the copolymer provided by the present invention is characterized by thermally decomposing the nanopore former to make nanopores by treating at a temperature above the decomposition temperature of the nanopore former. The decomposition temperature of the nanopore former means a temperature at which the polynorbornene copolymer is thermally stable and can decompose only the nanopore former. Typically, the decomposition temperature of the nanopore formers does not exceed 450 ° C. More preferably, the decomposition temperature of the nanopore former means a temperature between 250 ° C and 450 ° C.

본 발명에서 제공하는 다공성 물질을 위한 열적으로 안정한 저유전성 절연물질은 환형고분자 공중합체이다. 좀 더 바람직하게는, 본 발명의 환형고분자 공중합체는 노보넨계 환형올레핀 공중합체와 디시클로펜타디엔계 환형올레핀 공중합체이다.The thermally stable low dielectric insulating material for the porous material provided in the present invention is a cyclic polymer copolymer. More preferably, the cyclic polymer copolymer of the present invention is a norbornene cyclic olefin copolymer and a dicyclopentadiene cyclic olefin copolymer.

또한, 본 발명에서 제공하는 나노기공 형성제는 에스테르(ester)계 고분자와 에테르(ether)계 고분자 물질이다. 좀 더 바람직하게는, 환형에스테르 고분자와 에테르계 고분자이다. 또한, 본 발명의 나노기공 형성제는 환형에스테르계와 에테르계 단일중합체와 공중합체가 될 수 있다.In addition, the nano-pore forming agent provided in the present invention is an ester (ester) polymer and ether (ether) polymer material. More preferably, it is a cyclic ester polymer and an ether type polymer. In addition, the nanopore former of the present invention may be a copolymer with a cyclic ester-based ether ether homopolymer.

노보넨계 단량체Norbornene-based monomer

본 발명에서 제공하는 히드록시기를 함유하는 노보넨계 단량체의 원료가 되는 단량체는 5-노보넨-2-메탄올(5-norbornene-2-methanol), cis-5-노보넨-endo-2,3-디카르볼실무수물(cis-5-norbornene-endo-2,3-dicarboxylic anhydride), DCPD(dicyclopentadiene)으로서, 이들 재료들은 모두 Aldrich사로부터 구입가능하다. 특히, 본 발명에 사용되는 노보넨계 유도체는 일반적으로 노보넨계 유도체를 제조하는 공정인 고온, 고압 공정이 아닌 간단한 액상반응에 의해 쉽게 제조할 수 있다. 본 발명에 의해 제공되는 노보넨계 유도체의 구조는 다음과 같다.Monomers used as raw materials of the norbornene-based monomer containing a hydroxyl group provided by the present invention are 5-norbornene-2-methanol, cis-5-norbornene-endo-2,3-dica As cibol-5 anhydride (cis-5-norbornene-endo-2,3-dicarboxylic anhydride), DCPD (dicyclopentadiene), these materials are all available from Aldrich. In particular, the norbornene-based derivatives used in the present invention can be easily prepared by a simple liquid phase reaction rather than a high temperature and high pressure process, which is a process for producing norbornene-based derivatives. The structure of the norbornene derivatives provided by the present invention is as follows.

노보넨계 단량체 INorbornene Monomer I

노보넨계 단량체 IINorbornene Monomer II

노보넨계 단량체 IIINorbornene Monomer III

상기 노보넨계 단량체에서 R1,R2는 각각 수소, 탄소수가 1에서 20인 선형 또는 가지달린 알킬기 중에서 선택되며, R'3,R'4는 각각 R'3와 R'4의 탄소가 함께 연결된 환형 링구조를 이루거나 의 구조를 이룬다. R3,R4또한 화학식 4의 구조를 이룬다.In the norbornene-based monomers, R 1 and R 2 are each selected from hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, and R ' 3 and R' 4 are each linked with carbon of R ' 3 and R' 4 . It forms an annular ring structure or a structure of. R 3 and R 4 also form a structure of formula (4).

-(CH2)P-(O)Q-R7 -(CH 2 ) P- (O) Q -R 7

R7은 수소원자, C1~C20인 선형 또는 가지달린 알킬기, C1~C4인 디알킬알루미늄, C1~C4인 트리알킬실란,R 7 is a hydrogen atom, a C 1 -C 20 linear or branched alkyl group, C 1 -C 4 dialkylaluminum, C 1 -C 4 trialkylsilane,

와 이들의 공중합체중에서 선택되며, R은 C1~C10인 선형 또는 가지달린 알킬기이며, a와 b는 0에서 4사이의 정수이고, p는 0에서 10까지의 정수이고, q는 0과 1중에서선택된다.m은 1에서 1,000까지의 정수이다.And a copolymer thereof, R is a linear or branched alkyl group of C 1 to C 10 , a and b are integers from 0 to 4, p is an integer from 0 to 10, q is 0 and M is an integer from 1 to 1,000.

나노기공 형성제Nano Pore Forming Agent

* 본 발명이 제공하는 나노기공 형성제는 노보넨계 환형올레핀 공중합체의 유리전이 온도보다 낮은 250℃와 400℃사이의 온도에서 열분해 되는 모든 물질을 포함한다. 특히, 락타이드(lactide), 글리콜라이드(glycolide), 카프로락톤(caprolactone)와 같은 환형 에스테르와 락틱산(lactic acid), 글리콜산(glycolic acid)와 같은 선형 에스테르의 올리고머, 단일중합체와 이들의 공중합체를 포함한다. 또한, 메틸메타크릴레이트(methyl methacrylate), 히드록시에틸메타크릴레이트(hydroxyethylmethacrylate), 디메틸아미노에틸메타크릴레이트 (dimethylaminoeth-ylmethacrylate), 에틸렌산화물(ethylene oxide)와 프로필렌산화물(propylene oxide) 및 이들을 이용한 올리고머, 단일중합체와 공중합체를 포함한다.The nano-pore formers provided by the present invention include all materials pyrolyzed at temperatures between 250 ° C. and 400 ° C. below the glass transition temperature of the norbornene cyclic olefin copolymer. In particular, oligomers, homopolymers and their copolymers of cyclic esters such as lactide, glycolide, and caprolactone and linear esters such as lactic acid and glycolic acid Include coalescing. In addition, methyl methacrylate (hydroxy methacrylate), hydroxyethyl methacrylate (hydroxyethyl methacrylate), dimethylaminoeth- methacrylate (dimethylaminoeth-ylmethacrylate), ethylene oxide (ethylene oxide) and propylene oxide (propylene oxide) and oligomers using them , Homopolymers and copolymers.

열안정성 저유전 고분자Thermally stable low dielectric polymer

본 발명이 제공하는 열안정성 저유전 고분자 공중합체는 노보넨계 환형올레핀 공중합체와 디시클로펜타디엔계 환형올레핀 공중합체이며 본 발명의 공중합체는 유리전이온도가 조성에 따라 250℃~450℃이며, 노보넨, 디시클로펜타디엔, (bicyclo[2.2.1]hept-2-en-2-yl)alkyltrialkoxysilane 및 상기 노보넨 유도체(화학식 1 내지 3)를 단량체로 하여 합성되는 모든 조성의 공중합체를 의미한다.The thermally stable low dielectric polymer copolymer provided by the present invention is a norbornene cyclic olefin copolymer and a dicyclopentadiene cyclic olefin copolymer, and the copolymer of the present invention has a glass transition temperature of 250 ° C to 450 ° C, Refers to a copolymer of all compositions synthesized using norbornene, dicyclopentadiene, (bicyclo [2.2.1] hept-2-en-2-yl) alkyltrialkoxysilane and the norbornene derivatives (Formulas 1 to 3) as monomers. do.

또한, 본 발명이 제공하는 환형올레핀 공중합체는 후반응에 의해 공중합체에나노기공 형성제를 도입하기 위해 공중합체 중합시 히드록시기와 트리알킬록시시릴(trialkyloxysilyl)기가 함유된 올레핀과 환형올레핀을 사슬이동제로 사용하여 제조된 공중합체를 포함한다. 본 발명이 제공하는 열안정성 저유전 공중합체의 구조는 다음과 같다.In addition, the cyclic olefin copolymer provided by the present invention is a chain transfer of the olefin and cyclic olefin containing a hydroxy group and a trialkyloxysilyl group during the polymerization of the copolymer in order to introduce a nanopore former in the copolymer by post-reaction And copolymers prepared using zero. The structure of the thermally stable low dielectric copolymer provided by the present invention is as follows.

상기 공중합체에서, R8In the copolymer, R 8 is

C1-C10인 선형 또는 가지달린 알킬기,R11(O)qSiR12또는 R11(O)qAlR12중에서 선택되며 R11,R12, R14, R15, R16, R17은 C1~C5인 선형 또는 가지달린 알킬기중에서 선택되며 q는 0과 1중에서 선택된다. 또한, R9와 R10은 메틸, 에틸, 프로필기중에서 선택된다.C 1 -C 10 is a linear or branched alkyl group, R 11 (O) q SiR 12 or R 11 (O) q AlR 12 It is selected from R 11, R 12 , R 14 , R 15 , R 16 , R 17 C 1 ~ C 5 is selected from linear or branched alkyl group and q is selected from 0 and 1. R 9 and R 10 are also selected from methyl, ethyl and propyl groups.

다공성 고분자Porous polymer

본 발명에서 제공하는 다공성 고분자는 상기 화학식 5 - 6의 공중합체를 이용하여 후반응에 의해 상기한 나노기공 형성제를 결합한 블록공중합체를 포함한다.The porous polymer provided in the present invention includes a block copolymer in which the nanopore-forming agent is bonded by a post reaction using the copolymer of Chemical Formulas 5-6.

*상기한 공중합체들을 이용한 다공성 박막 제조공정을 설명하면 다음과 같다.* Description of the porous thin film manufacturing process using the above copolymer is as follows.

미리 표면처리한 Si-웨이퍼에 준비된 농도의 공중합체 용액을 필터(예:0.2μm)로 거르면서 바로 떨어뜨린 후, 스핀-코터의 회전수(rpm)을 변화시켜 원하는 두께의 박막을 만든다. 준비된 박막을 90-200℃ 공기중에서 열처리하여 남아 있는 용매를 날린 후, 질소나 진공에서 서서히 온도를 250-450℃로 상승시켜 나노메타 크기의 나노기공 형성제를 열분해 시킴으로써, 그 자리에 기공을 형성시키는 것이다.The copolymer solution of the concentration prepared on the surface-treated Si-wafer was immediately dropped while filtering with a filter (for example, 0.2 μm), and then the rotation speed (rpm) of the spin-coater was changed to form a thin film having a desired thickness. After heat-treating the prepared thin film in air at 90-200 ° C, the remaining solvent is blown, and then the temperature is gradually raised to 250-450 ° C in nitrogen or vacuum to pyrolyze the nano-meta-type nanopore former, thereby forming pores in place. It is to let.

좀 더 구체적으로, 본 발명의 특징은 회전코팅한 공중합체를 가교화 및 경화를 시키지 않고 나노기공형성제로 사용하는 유기성분을 열분해시켜 나노기공을 함유하는 다공성 소재와 다공성 박막소재를 제조하는 것이다.More specifically, a feature of the present invention is to produce a porous material and a porous thin film material containing nanopores by pyrolysing organic components used as nanopore forming agents without crosslinking and curing the rotationally coated copolymer.

[실시예 1] norbornene계 단량체 I (5-methoxymethyl-bicyclo[2.2.1]hept-2Example 1 norbornene monomer I (5-methoxymethyl-bicyclo [2.2.1] hept-2

-ene)의 합성-ene)

THF 100ml에 수소화나트륨 3.8g을 녹인후 5-norbornene-2-methanol 2.5g을 투입하고 1시간동안 반응시킨 다음 요오드화메탄 20g을 투입하고 24시간동안 반응시켰다. 수율: 3.81g (90%)After dissolving 3.8 g of sodium hydride in 100 ml of THF, 2.5 g of 5-norbornene-2-methanol was added and reacted for 1 hour, followed by adding 20 g of methane iodide and reacting for 24 hours. Yield: 3.81 g (90%)

[실시예 2]Example 2

norbornene계 단량체 II (1,4-dihydro-1,4-methano-naphthalene-5,8-diol)의 합성Synthesis of norbornene monomer II (1,4-dihydro-1,4-methano-naphthalene-5,8-diol)

헥산 100ml의 용매에 녹인 DCPD 10g을 160℃에서 환류시키면서 벤조퀴논 16g을 투입하고 온도를 40℃로 내려 24시간동안 반응시켰다. 상기 반응으로부터 제조된 생성물에 pyridine 10ml와 (AcO)2O 25g을 투입하고 48시간동안 반응시켰으며 얻어진 생성물을 THF에 녹인후 0℃로 냉각시키고 LiAlH47g을 투입하여 24시간동안 반응시켰다. 수율; 20g (80%)16 g of benzoquinone was added while refluxing 10 g of DCPD dissolved in a solvent of 100 ml of hexane at 160 ° C., and the temperature was decreased to 40 ° C. for 24 hours. 10 ml of pyridine and 25 g of (AcO) 2 O were added to the product prepared from the reaction and reacted for 48 hours. The obtained product was dissolved in THF, cooled to 0 ° C., and 7 g of LiAlH 4 was added and reacted for 24 hours. yield; 20 g (80%)

[실시예 3]norbornene계 단량체 III(1,4,4a,5,6,7,8,8a-octahydro-1,4-Example 3 Norbornene Monomer III (1,4,4a, 5,6,7,8,8a-octahydro-1,4-

methano-naphthalene-5-ol)의 합성methano-naphthalene-5-ol)

톨루엔 100ml의 용매에 열분해 시킨 시클로펜타디엔 10g, 2-cyclohexen-1-one 15g과 AlCl30.1g을 녹인후 상온에서 48시간동안 반응시켰다. 상기 반응으로부터 제조된 생성물을 THF에 녹인 후 LiAlH4를 소량 투입하고 24시간동안 반응시켜 단량체 III을 합성하였다. 수율; 20g (79%)10 g of cyclopentadiene, 15 g of 2-cyclohexen-1-one, and 0.1 g of AlCl 3 were dissolved in 100 ml of toluene, and then reacted at room temperature for 48 hours. After dissolving the product prepared in the reaction in THF, a small amount of LiAlH 4 was added and reacted for 24 hours to synthesize monomer III. yield; 20g (79%)

[실시예 4-5] 노보넨계 유도체의 개질Example 4-5 Modification of Norbornene-Based Derivatives

각각 100ml의 이소프로판올에 실시예 2와 3에서 얻어진 노보넨계 유도체를 2.5g씩 녹인후 80℃에서 30분간 교반한 후 KOH 2g을 첨가하여 3시간동안 반응시킨 후 상온으로 냉각시켜 노보넨계 유도체를 개질하였다.After dissolving 2.5 g of the norbornene derivatives obtained in Examples 2 and 3 in 100 ml of isopropanol, the mixture was stirred at 80 ° C. for 30 minutes, and then reacted for 3 hours by adding 2 g of KOH, followed by cooling to room temperature to modify the norbornene derivatives. .

실시예 4Example 4

실시예 5Example 5

[실시예 6-11] 노보넨계 유도체에 나노기공형성제 고분자 사슬의 도입IExample 6-11 Introduction of Nanopore-forming Agent Polymer Chain to Norbornene-Based Derivatives

30ml의 디메틸포름아미드가 들어있는 고압반응기에 실시예 4와 5에서 얻어진 노보넨계 유도체를 1g 투입하여 녹인 후 상온에서 에틸렌옥시드 또는 프로필렌옥시드를 첨가하고 반응기를 봉하여 80℃에서 3시간 반응시켰다. 상온으로 냉각시킨 후 아세트산을 첨가하여 중화시키고 생성되는 고체를 여과하여 세척하였다. 여과된 액을 감압하여 제거하면 흰색 고체가 생성되었다. 이를 컬럼크로마토그래피로 정제하여 원하는 생성물을 얻었다.1 g of the norbornene derivatives obtained in Examples 4 and 5 were dissolved in a high-pressure reactor containing 30 ml of dimethylformamide, ethylene oxide or propylene oxide was added at room temperature, and the reactor was sealed and reacted at 80 ° C. for 3 hours. . After cooling to room temperature, the mixture was neutralized with acetic acid and the resulting solid was filtered and washed. The filtrate was removed under reduced pressure to yield a white solid. This was purified by column chromatography to give the desired product.

실시예Example 노보넨계 유도체Norbornene derivatives 단량체Monomer 수율yield 66 실시예 4Example 4 에틸렌옥시드(EO), (5g)Ethylene oxide (EO), (5 g) 78%78% 77 실시예 4Example 4 프로필렌옥시드(PO), (5g)Propylene Oxide (PO), (5 g) 70%70% 88 실시예 4Example 4 EO+PO, (2g+3g)EO + PO, (2g + 3g) 72%72% 99 실시예 5Example 5 EO, (5g)EO, (5 g) 75%75% 1010 실시예 5Example 5 PO, (5g)PO, (5 g) 82%82% 1111 실시예 5Example 5 EO+PO, (2g+3g)EO + PO, (2g + 3g) 75%75%

[실시예 12-15] 노보넨계 유도체에 나노기공형성제 고분자 사슬의 도입IIExample 12-15 Introduction of Nanopore-forming Agent Polymer Chain to Norbornene-Based Derivative II

100ml의 톨루엔이 들어있는 반응기에 5-norbornene-2-methanol, 실시예2와 3에서 얻어진 노보넨계 단량체를 투입하고 온도를 70℃로 올린 후 lactide, glycolide을투입하고 Sn(Oct)2를 0.05g을 투입한 후 온도를 120℃로 올려 8시간동안 반응하였다. 상온으로 냉각시킨 후 과량의 메탄올에 투입하여 흰색의 고체를 얻었다.5-norbornene-2-methanol, the norbornene-based monomers obtained in Examples 2 and 3, were added to a reactor containing 100 ml of toluene, the temperature was raised to 70 ° C, lactide and glycolide were added, and 0.05 g of Sn (Oct) 2 was added. After the addition of the temperature was raised to 120 ℃ reacted for 8 hours. After cooling to room temperature, an excess of methanol was added to obtain a white solid.

실시예Example 노보넨계 유도체Norbornene derivatives 단량체Monomer 수율yield 1212 5-norbornene-2-methanol5-norbornene-2-methanol D,L-lactide, (5g)D, L-lactide, (5g) 78%78% 1313 실시예 2Example 2 D,L-lactide, (5g)D, L-lactide, (5g) 70%70% 1414 실시예 3Example 3 D,L-lactide, (5g)D, L-lactide, (5g) 72%72% 1515 5-norbornene-2-methanol5-norbornene-2-methanol glycolide, (5g)glycolide, (5 g) 75%75% 1616 실시예 2Example 2 glycolide, (5g)glycolide, (5 g) 82%82% 1515 실시예 3Example 3 glycolide, (5g)glycolide, (5 g) 75%75%

[실시예 16-21] polynorbornene 공중합체를 이용한 거대 개시제의 합성IExample 16-21 Synthesis of Macroinitiator Using Polynorbornene Copolymer

다음의 실시예들은 폴리노보넨 공중합체 합성시 사용되는 공단량체인 노보넨계 단량체와 사슬전파제의 양 및 구조가 공중합체의 분자량에 미치는 영향을 보여준다. 500ml의 반응기에 클로로벤젠 200ml, 노보넨 10g , 노보넨계 단량체, 사슬전파제와 촉매[(η3-allyl) (cycloocta - 1 , 5 - diene) nickel ] tetrakis (3,5 -bis (trifluoromethyl)-phenyl)borate 67mg을 투입하고 상온에서 30분간 반응시킨 후 과량의 메탄올을 투입하여 반응을 종결시켰다. 제조된 공중합체를 산을 함유한 과량의 메탄올로 24시간동안 교반하고 다시 메탄올로 세척한 다음 90℃에서 진공상태로 건조시켰다. 제조된 공중합체들의 결과를 표 3에 나타내었다. 또한 실시예 4로부터 제조된 공중합체의1H-NMR 측정결과를 도 1에 나타내었다. 4-5 ppm사이에서 검출되는 peak로부터 사슬전파제가 공중합체내에 잘 도입되었음을 알 수 있다. 실시예 4-9로부터 얻어진 공중합체들은 lactide, glycolide, carprolactone등과 같은환형에스테르의 개환중합의 개시제로 사용될 수 있으며 실시예 10-16에서 이들의 실시예를 예시하였다.The following examples show the effect of the amount and structure of the norbornene-based monomer and the chain transfer agent used in the synthesis of the polynorbornene copolymer on the molecular weight of the copolymer. In a 500 ml reactor, 200 ml of chlorobenzene, 10 g of norbornene, norbornene-based monomers, chain transfer agent and catalyst [(η 3 -allyl) (cycloocta-1, 5-diene) nickel] tetrakis (3,5 -bis (trifluoromethyl)- The reaction was terminated by adding 67 mg of phenyl) borate and reacting at room temperature for 30 minutes. The prepared copolymer was stirred with excess methanol containing acid for 24 hours, washed with methanol again and dried in vacuo at 90 ° C. The results of the prepared copolymers are shown in Table 3. In addition, 1 H-NMR measurement results of the copolymer prepared in Example 4 is shown in FIG. From the peak detected between 4-5 ppm, it can be seen that the chain transfer agent was well introduced into the copolymer. The copolymers obtained in Examples 4-9 can be used as initiators of ring-opening polymerization of cyclic esters such as lactide, glycolide, carprolactone and the like, and examples of these are illustrated in Examples 10-16.

실시예Example 사슬전파제Chain transfer agent 노보넨계 단량체Norbornene-based monomer 분자량(x103) (Mn/Mw)Molecular Weight (x10 3 ) (Mn / Mw) 1616 -- 실시예 1의 단량체 (18.7mmol)(bicyclo[2.2.1]hept-2-en-2-yl)triethoxysilane (10mmol)Monomer (18.7 mmol) (bicyclo [2.2.1] hept-2-en-2-yl) triethoxysilane (10 mmol) of Example 1 227/312227/312 1717 allyloxytrimethylsilane(1.25mmol)allyloxytrimethylsilane (1.25mmol) 실시예 1의 단량체 (18.7mmol)(bicyclo[2.2.1]hept-2-en-2-yl)methyltriethoxysil ane (10mmol)Monomer (18.7 mmol) (bicyclo [2.2.1] hept-2-en-2-yl) methyltriethoxysil ane (10 mmol) of Example 1 100/145100/145 1818 1-cyclohexenyloxytrimethylsilane(1.25mmol)1-cyclohexenyloxytrimethylsilane (1.25mmol) 실시예 1의 단량체 (18.7mmol)Monomer of Example 1 (18.7 mmol) 117/281117/281 1919 1-cyclohexenyloxytrimethylsilane(1.25mmol)1-cyclohexenyloxytrimethylsilane (1.25mmol) 5-ethoxymethyl-bicyclo[2.2.1]-hept-2-ene (18.7mmol)5-ethoxymethyl-bicyclo [2.2.1] -hept-2-ene (18.7 mmol) 120/275120/275 2020 1-cyclohexenyloxytrimethylsilane(1.25mmol)1-cyclohexenyloxytrimethylsilane (1.25mmol) 5-propoxymethyl-bicyclo[2.2.1]-hept-2-ene (18.7mmol)5-propoxymethyl-bicyclo [2.2.1] -hept-2-ene (18.7mmol) 106/223106/223 2121 1-cyclohexenyloxytrimethylsilane(1.25mmol)1-cyclohexenyloxytrimethylsilane (1.25mmol) 5-octyloxymethyl-bicyclo[2.2.1]hept-2-ene (18.7mmol)5-octyloxymethyl-bicyclo [2.2.1] hept-2-ene (18.7 mmol) 98/18998/189

[실시예 22-23] poly(norbornene-b-lactic acid) 블록공중합체의 합성IExample 22-23 Synthesis of poly (norbornene-b-lactic acid) block copolymer I

실시예 17에서 얻어진 거대개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 톨루엔에 triethylaluminum이 용해된 1M용액 0.01ml를 투입하고 4시간동안 상온에서 반응시켰다. 이 반응물에 D,L-lactide를 각각 2.5g, 6.2g을 투입하고 120℃에서 24시간동안 반응시킨후 산을 함유한 메탄올을 투입하여 반응을 종결시켰다. 제조된 공중합체를 과량의 메탄올로 세척한 후 90℃, 진공에서 건조시켰다. 제조된 공중합체의 열적특성과 공단량체의 함량을 도2에 나타내었다. 도입된 poly(lactic acid)블록의 함량은 질량분율로 각각 13, 45%였다. 질량분율이 13%인 공중합체의1H-NMR 측정결과와 X-선 실험결과를 도 3과 도4에 나타내었다.10 g of the norbornene copolymer obtained in Example 17 was dissolved in 100 ml of toluene, and 0.01 ml of a 1M solution in which triethylaluminum was dissolved in toluene was added and reacted at room temperature for 4 hours. 2.5 g and 6.2 g of D, L-lactide were added to the reaction, and the reaction was completed at 120 ° C. for 24 hours, and then methanol was added to terminate the reaction. The prepared copolymer was washed with excess methanol and then dried at 90 ° C. in vacuo. Thermal properties of the prepared copolymers and the content of comonomers are shown in FIG. 2. The poly (lactic acid) block content was 13 and 45% by mass fraction, respectively. The results of 1 H-NMR measurement and X-ray experiment of the copolymer having a mass fraction of 13% are shown in FIGS. 3 and 4.

[실시예 24-25] poly(norbornene-b-lactic acid) 블록공중합체의 합성IIExample 24-25 Synthesis of Poly (norbornene-b-lactic acid) Block Copolymer II

실시예 17에서 얻어진 거대 개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 D,L-lactide를 각각 10g, 40g을 투입하고 70℃에서 lactide를 녹인 후 Sn(Oct)2를 각각 1g, 4g을 투입하고 120℃로 온도를 올려 4시간동안 반응시켰다. 4시간 후에 산을 함유한 메탄올을 투입하여 반응을 종결시킨 후 과량의 메탄올로 세척하고 90℃, 진공에서 건조하였다. 제조된 공중합체에 도입된 poly(lactic acid)블록의 함량은 각각 8mol%, 35mol%였다.10 g of the norbornene copolymer obtained in Example 17 was dissolved in 100 ml of toluene, 10 g and 40 g of D and L-lactide were added thereto, and lactide was dissolved at 70 ° C., and then Sn (Oct) 2 was 1 g and 4 g, respectively. It was added and the temperature was raised to 120 ℃ to react for 4 hours. After 4 hours, the reaction was terminated by adding methanol containing acid, washed with excess methanol, and dried at 90 ° C. in vacuo. The content of the poly (lactic acid) block introduced into the copolymer was 8 mol% and 35 mol%, respectively.

[실시예 26] poly(norbornene-b-glycolic acid) 블록공중합체의 합성Example 26 Synthesis of Poly (norbornene-b-glycolic acid) Block Copolymer

실시예 17에서 얻어진 거대 개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 glycolide를 2g 투입하고 70℃에서 glycolide를 녹인 후 Sn(Oct)2를 0.02g을 투입하고 120℃로 온도를 올려 4시간동안 반응시켰다. 4시간 후에 산을 함유한 메탄올을 투입하여 반응을 종결시킨 후 과량의 메탄올로 세척하고 90℃, 진공에서 건조하였다. 제조된 공중합체에 도입된 poly(glycolic acid)블록의 함량은 부피분율로 17%였으며 블록공중합체의 수평균 분자량 119,000 (중량평균 분자량/수평균분자량= 1.52)이었다.10 g of the norbornene copolymer obtained in Example 17 was dissolved in 100 ml of toluene, 2 g of glycolide was dissolved, and glycolide was dissolved at 70 ° C., 0.02 g of Sn (Oct) 2 was added, and the temperature was raised to 120 ° C. for 4 hours. Reacted for a while. After 4 hours, the reaction was terminated by adding methanol containing acid, washed with excess methanol, and dried at 90 ° C. in vacuo. The content of the poly (glycolic acid) block introduced into the prepared copolymer was 17% by volume and the number average molecular weight of the block copolymer was 119,000 (weight average molecular weight / number average molecular weight = 1.52).

[실시예 27] poly(norbornene-b-lactic acid-r-glycolic acid) 블록공중합체의 합성Example 27 Synthesis of Poly (norbornene-b-lactic acid-r-glycolic acid) Block Copolymer

실시예 17에서 얻어진 거대 개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 lactide와 glycolide를 각각 2g씩 투입하고 70℃에서 lactide와 glycolide를 녹인 후 Sn(Oct)2를 0.04g을 투입하고 120℃로 온도를 올려 4시간동안 반응시켰다. 4시간 후에 산을 함유한 메탄올을 투입하여 반응을 종결시킨 후 과량의 메탄올로 세척하고 90℃, 진공에서 건조하였다. 제조된 공중합체에 도입된 poly(lactic acid-r-glycolic acid)블록의 함량은 부피분율로 45%였으며 블록공중합체의 수평균 분자량 194,000 (중량평균 분자량/수평균분자량= 1.71)이었다.Example giant initiator obtained from Novo 17 was dissolved norbornene copolymer 10g in 100ml of toluene per each added 2g of lactide and glycolide and lactide and the glycolide was dissolved in 70 ℃ In the 0.04g of Sn (Oct) 2 and 120 ℃ The temperature was raised to 4 hours for reaction. After 4 hours, the reaction was terminated by adding methanol containing acid, washed with excess methanol, and dried at 90 ° C. in vacuo. The content of poly (lactic acid-r-glycolic acid) block introduced in the prepared copolymer was 45% by volume fraction and the number average molecular weight of the block copolymer was 194,000 (weight average molecular weight / number average molecular weight = 1.71).

[실시예 28] poly(norbornene-b-ε-caprolactone) 블록공중합체의 합성Example 28 Synthesis of Poly (norbornene-b-ε-caprolactone) Block Copolymer

실시예 17에서 얻어진 거대 개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 ε-caprolactone을 5g 투입하고 0℃에서 4시간동안 반응시켰다. 4시간 후에 산을 함유한 메탄올을 투입하여 반응을 종결시킨 후 과량의 메탄올로 세척하고 90℃, 진공에서 건조하였다. 제조된 공중합체에 도입된 polycaprolactone블록의 함량은 부피분율로 27%였으며 블록공중합체의 수평균 분자량 137,000 (중량평균 분자량/수평균분자량= 1.65)이었다.10 g of the norbornene copolymer obtained in Example 17 was dissolved in 100 ml of toluene, and 5 g of ε-caprolactone was added and reacted at 0 ° C. for 4 hours. After 4 hours, the reaction was terminated by adding methanol containing acid, washed with excess methanol, and dried at 90 ° C. in vacuo. The content of the polycaprolactone block introduced into the prepared copolymer was 27% by volume and the number average molecular weight of the block copolymer was 137,000 (weight average molecular weight / number average molecular weight = 1.65).

[실시예 29] poly(norbornene-b-ethylene oxide) 블록공중합체의 합성Example 29 Synthesis of Poly (norbornene-b-ethylene oxide) Block Copolymer

각각 100ml의 클로로벤젠에 실시예 17에서 얻어진 노보넨계 공중합체를 2.5g 녹인후 80℃에서 30분간 교반한 후 KOH 1g을 첨가하여 3시간동안 반응시킨 후 상온으로 냉각시켜 노보넨계 공중합체를 개질하였다. 개질한 공중합체를 메탄올에 침전시켜 진공오븐에서 건조한 후 30ml의 클로로벤젠이 들어있는 고압반응기에 투입하여 녹인 후 상온에서 에틸렌옥시드를 첨가하고 반응기를 봉하여 80℃에서 1시간 반응시켰다. 상온으로 냉각시킨 후 아세트산을 첨가하여 중화시키고 메탄올에 침전을 시켜 흰색 고체를 얻었다. 블록공중합체의 수평균 분자량 112,000 (중량평균 분자량/수평균분자량= 1.55)이었다.Each of the norbornene-based copolymer obtained in Example 17 was dissolved in 100 ml of chlorobenzene, stirred at 80 ° C for 30 minutes, and then reacted for 3 hours by adding 1 g of KOH, followed by cooling to room temperature to modify the norbornene-based copolymer. . The modified copolymer was precipitated in methanol, dried in a vacuum oven, poured into a high-pressure reactor containing 30 ml of chlorobenzene, dissolved, ethylene oxide was added at room temperature, and the reactor was sealed and reacted at 80 ° C. for 1 hour. After cooling to room temperature, the mixture was neutralized with acetic acid and precipitated in methanol to obtain a white solid. The number average molecular weight of the block copolymer was 112,000 (weight average molecular weight / number average molecular weight = 1.55).

[실시예 30] 말단에 alkoxyamine이 도입된 polynorbornene 의 합성Example 30 Synthesis of Polynorbornene with Alkoxyamine at the Terminal

500ml의 반응기에 클로로벤젠 200ml, 노보넨 10g , 노보넨계 단량체 (5-methoxymethyl-bicyclo[2.2.1]hept-2-ene)2.5g, 사슬전파제 0.35g과 촉매[(η3-allyl) (cycloocta - 1 , 5 - diene) nickel ] tetrakis (3,5 -bis (trifluoromethyl)-phenyl)borate 95mg을 투입하고 30분간 반응시킨 후 과량의 메In a 500 ml reactor, 200 ml of chlorobenzene, 10 g of norbornene, 2.5 g of norbornene-based monomer (5-methoxymethyl-bicyclo [2.2.1] hept-2-ene), 0.35 g of chain transfer agent and a catalyst [(η 3 -allyl) ( cycloocta-1, 5-diene) nickel] tetrakis (3,5 -bis (trifluoromethyl) -phenyl) borate 95mg was added and reacted for 30 minutes.

탄올을 투입하여 반응을 종결시켰다. 사슬전파제로 라디칼 중합개시제인 1-(4'-oxaTanol was added to terminate the reaction. 1- (4'-oxa, a radical polymerization initiator, as a chain transfer agent

-2'-phenyl-11'-dodeceneoxy)-2,2,6,6-tetramethylpiperidine을 사용하였다. 수평균 분자량은 63,000 (중량평균 분자량 / 수평균 분자량 = 1.43)이었다.-2'-phenyl-11'-dodeceneoxy) -2,2,6,6-tetramethylpiperidine was used. The number average molecular weight was 63,000 (weight average molecular weight / number average molecular weight = 1.43).

[실시예 31] poly(norbornene-b-hydroxyethyl methacrylate) 블록공중합체의 합성IExample 31 Synthesis of Poly (norbornene-b-hydroxyethyl methacrylate) Block Copolymer I

실시예 17에서 얻어진 말단에 alkoxyamine이 도입된 노보넨 공중합체 10g을을 톨루엔 50ml에 녹인후 hydroxyethyl methacrylate 5g을 투입하고 90℃에서 24시간동안 반응시킨 후 과량의 메탄올을 투입하여 반응을 종결시켰다. GPC로 분자량을 측정한 결과 수평균 분자량은 89,000 (중량평균 분자량 / 수평균 분자량 = 1.59)이었으며 poly(hydroxyethyl methacrylate)블록의 부피분율은 27%였다.10 g of the norbornene copolymer introduced with alkoxyamine at the end obtained in Example 17 was dissolved in 50 ml of toluene, 5 g of hydroxyethyl methacrylate was added and reacted at 90 ° C. for 24 hours, and then the reaction was terminated by adding excess methanol. The molecular weight was measured by GPC. The number average molecular weight was 89,000 (weight average molecular weight / number average molecular weight = 1.59), and the volume fraction of poly (hydroxyethyl methacrylate) block was 27%.

[실시예 32] poly(norbornene-b-hydroxyethyl methacrylate) 블록공중합체의 합성IIExample 32 Synthesis of Poly (norbornene-b-hydroxyethyl methacrylate) Block Copolymer II

실시예 17에서 얻어진 거대 개시제인 노보넨 공중합체 10g을 톨루엔 100ml에 녹인후 2-bromo-propionic acid-4-(chlorodimethylsilanyl)-butyl ester 1g과pyridine 15ml, triethylamine 1ml를 투입하고 12시간 반응시킨후 필터링한 용액을 sodium bicarbonate 포화수용액으로 세척하였다. 유기층을 분리하여 magnesium sulfate로 말린후 유리용액만을 분리하여 용매를 제거하여 거대개시제를 합성하였다. 합성된 거대개시제 10g과 Cu(I)Br 0.05g, bipyridine 0.05g, hydroxyethylmethacrylate 10g을 투입하고 온도를 90℃로 올려 6시간동안 반응하여 블록공중합체를 합성하였다. 합성된 블록공중합체의 수평균 분자량 150,000 (중량평균 분자량/수평균분자량= 1.57)이었다.10 g of the norbornene copolymer obtained in Example 17 was dissolved in 100 ml of toluene, 1 g of 2-bromo-propionic acid-4- (chlorodimethylsilanyl) -butyl ester, 15 ml of pyridine, and 1 ml of triethylamine were reacted for 12 hours, followed by filtering. One solution was washed with saturated aqueous sodium bicarbonate solution. The organic layer was separated, dried over magnesium sulfate, and only the glass solution was separated to remove the solvent to synthesize a macroinitiator. 10 g of synthesized macroinitiator, 0.05 g of Cu (I) Br, 0.05 g of bipyridine, and 10 g of hydroxyethylmethacrylate were added, and the temperature was raised to 90 ° C. for 6 hours to synthesize a block copolymer. The number average molecular weight of the synthesized block copolymer was 150,000 (weight average molecular weight / number average molecular weight = 1.57).

[실시예 33-35] poly(norbornene-g-lactic acid) 그라프트공중합체의 합성1Example 33-35 Synthesis of poly (norbornene-g-lactic acid) graft copolymer 1

500ml의 반응기에 톨루엔 100ml, (1,4-dihydro-1,4-methano-naphthalene-100 ml of toluene in 500 ml reactor, (1,4-dihydro-1,4-methano-naphthalene-

5,8-diol) 2g과 톨루엔에 triethylaluminum이 용해된 1M용액 15ml를 투입하고 4시간동안 반응시킨 후 톨루엔 100ml에 녹인 norbornene 9.5g을 용해시킨 용액과 촉매[(η3-allyl) (cycloocta - 1 , 5 - diene) nickel ] tetrakis (3,5 -bis (trifluoromethyl) - phenyl)borate 67mg을 투입하고 30분간 반응시킨 후 과량의 메탄올을 투입하여 반응을 종결시켰다. 제조된 공중합체를 과량의 메탄올로 세척한 후 90℃, 진공에서 건조시켰다. 제조된 공중합체의 수평균 분자량은 65,000 (중량평균 분자량 / 수평균 분자량 = 1.44)이었다. 잘 건조된 공중합체 1g을 각각 톨루엔 200ml에 용해시킨 다음 lactide 각각 10g, 20g, 50g을 투입하고 온도를 120℃로 올린 후 Sn(Oct)2를 각각 0.1g, 0.2g, 0.5g을 투입하고 24시간동안 반응시켜 그라프트 공중합체를 합성하였다. 제조된 그라프트 공중합체의 수평균 분자량은 각각 81,000, 120,000, 141,000이었다.5,8-diol) and 2g of toluene was added to dissolve the triethylaluminum a 1M solution 15ml was dissolved 9.5g norbornene was dissolved in 100ml of toluene was reacted for 4 hours with a catalyst solution [(η 3 -allyl a) (cycloocta - 1 , 5-diene) nickel] tetrakis (3,5-bis (trifluoromethyl)-phenyl) borate 67mg was added and reacted for 30 minutes, and excess methanol was added to terminate the reaction. The prepared copolymer was washed with excess methanol and then dried at 90 ° C. in vacuo. The number average molecular weight of the prepared copolymer was 65,000 (weight average molecular weight / number average molecular weight = 1.44). Dissolve 1 g of the well-coated copolymer in 200 ml of toluene, add 10 g, 20 g, and 50 g of lactide, respectively, and raise the temperature to 120 ° C. Then, add 0.1 g, 0.2 g, and 0.5 g of Sn (Oct) 2 , respectively. The reaction was performed for a time to synthesize a graft copolymer. The number average molecular weights of the prepared graft copolymers were 81,000, 120,000, and 141,000, respectively.

[실시예 36] poly(norbornene-g-lactic acid) 그라프트공중합체의 합성2Example 36 Synthesis of Poly (norbornene-g-lactic acid) Graft Copolymer

500ml 반응기에 5-norbornene-2-methanol 5g과 lactide 200g과 Sn(Oct)22g을 투입하고 120℃에서 환류를 시키면서 24시간동안 반응시켰다. 24시간 후에 산을 함유한 메탄올을 과량 투입하여 반응을 종결시켰으며 과량의 메탄올로 세척하여 말단에 norbornene이 도입된 poly(lactic acid)를 제조하였다. 제조된 말단에 norbornene이 도입된 poly(lactic acid) 30g과 norbornene 2.5g과 촉매[(η3-allyl) (cycloocta - 1 , 5 - diene) nickel ] tetrakis (3,5 -bis (trifluoromethyl) - phenyl)borate 63mg을 톨루엔에 용해시킨 후 18시간동안 반응시켜 poly(norbornene-lactic acid) 그라프트공중합체를 제조하였다. 제조된 그라프트공중합체를 과량의 메탄올로 세척한 후 90℃, 진공에서 건조하였다. 제조된 공중합체중 poly(lactic acid)의 수평균 분자량은 4500이었으며 poly(norbornene-lactic acid)가 그라프트된 norbornene의 함량은 18mol%였다.5 g of 5-norbornene-2-methanol, 200 g of lactide, and 2 g of Sn (Oct) 2 were added to a 500 ml reactor, and reacted for 24 hours while refluxing at 120 ° C. After 24 hours, the reaction was terminated by adding an excessive amount of methanol containing acid, and washed with excess methanol to prepare poly (lactic acid) in which norbornene was introduced at the end. 30g of poly (lactic acid) in which norbornene is introduced and 2.5g of norbornene and catalyst [(η 3 -allyl) (cycloocta-1,5-diene) nickel] tetrakis (3,5-bis (trifluoromethyl) -phenyl ) Borrate 63mg was dissolved in toluene and reacted for 18 hours to prepare a poly (norbornene-lactic acid) graft copolymer. The graft copolymer prepared was washed with excess methanol and then dried at 90 ° C. in vacuo. The number average molecular weight of poly (lactic acid) in the prepared copolymer was 4500, and the content of norbornene grafted with poly (norbornene-lactic acid) was 18 mol%.

[실시예 37] 말단에 노보넨이 도입된 poly(glycolic acid) 거대개시제의 합성Example 37 Synthesis of Poly (glycolic acid) Macroinitiator with Norbornene Introduced

5-norbornene-2-methanol 0.5g을 톨루엔 500ml에 녹인후 glycolide 120g을 투입하고 온도를 80℃로 올려 30분간 교반하였다. 30분후 Sn(Oct)2를 1g을 투입하고 온도를 120℃로 올려 24시간동안 반응시켰다. 24시간후 과량의 메탄올을 투입하여 반응을 종결시켰으며 90℃, 진공에서 24시간동안 건조하였다. 얻어진 고분자의수평균 분자량은 25,000 (중량평균 분자량 / 수평균 분자량 = 1.15)이었다.After dissolving 0.5 g of 5-norbornene-2-methanol in 500 ml of toluene, 120 g of glycolide was added thereto, and the temperature was raised to 80 ° C. and stirred for 30 minutes. After 30 minutes, 1 g of Sn (Oct) 2 was added and the temperature was raised to 120 ° C. for 24 hours. After 24 hours, the reaction was terminated by adding an excess of methanol and dried at 90 ° C. in a vacuum for 24 hours. The number average molecular weight of the obtained polymer was 25,000 (weight average molecular weight / number average molecular weight = 1.15).

[실시예 38] poly(norbornene-glycolic acid) 블록공중합체의 합성Example 38 Synthesis of Poly (norbornene-glycolic acid) Block Copolymer

500ml 반응기에 클로로벤젠 100ml, (1,4-dihydro-1,4-methano-naphthalene-100 ml of chlorobenzene in 500 ml reactor, (1,4-dihydro-1,4-methano-naphthalene-

5,8-diol) 5g과 실시예 23에서 얻어진 poly(glycolic acid) 1g을 투입한 후 [(η3-allyl) (cycloocta - 1 , 5 - diene) nickel ] tetrakis (3,5 -bis (trifluoromethyl)-phenyl)borate 50mg을 투입하고 18시간 동안 반응시킨 후 과량의 메탄올을 투입하여 반응을 종결시켰다. 얻어진 poly(norbornene-glycolic acid) 블록공중합체의 분자량은 34,000 (중량평균 분자량 / 수평균 분자량 = 1.82)이었으며 poly(glycolic acid) 블록의 부피분율은 72%였다.5 g of 8, diol) and 1 g of poly (glycolic acid) obtained in Example 23 were added, followed by [(η 3 -allyl) (cycloocta-1,5-diene) nickel] tetrakis (3,5 -bis (trifluoromethyl 50 mg of) -phenyl) borate was added and reacted for 18 hours. The reaction was terminated by adding an excess of methanol. The molecular weight of the obtained poly (norbornene-glycolic acid) block copolymer was 34,000 (weight average molecular weight / number average molecular weight = 1.82), and the volume fraction of the poly (glycolic acid) block was 72%.

[실시예 39-41] 박막의 전기광학적 특성 분석시험Example 39-41 Electro-optical characterization test of a thin film

본 발명에서 제조된 공중합체를 mesitylene 용매에 20 wt%가 되도록 녹인 용액을 제조한 후 2000 rpm에서 30초 동안 스핀 코팅하여 박막을 제조하였으며 박막의 두께는 Prism Coupler로 측정한 결과 대략 2μm 였다. 250-450℃까지 열처리 또는 수산화나트륨과 같은 염기성 물질을 함유하는 메탄올로 처리하여 제조된 나노기공을 함유하는 공중합체 박막의 전기적 특성을 조사하기 위하여 박막위에 알루미늄 전극을 진공 증착하였다. 알루미늄 전극은 지름 5 mm, 압력이 10-5torr 이하, 증발속도는 0.5 nm/sec 이하의 조건에서 증착하여 100 nm 내외의 균일한 두께의 전극을 얻었다.After preparing a solution in which the copolymer prepared in the present invention was dissolved in 20 wt% in a mesitylene solvent, spin coating was performed at 2000 rpm for 30 seconds to prepare a thin film. An aluminum electrode was vacuum deposited on the thin film to investigate the electrical properties of the nanoporous copolymer thin film prepared by heat treatment up to 250-450 ° C. or by treatment with methanol containing a basic substance such as sodium hydroxide. The aluminum electrode was deposited under a condition of 5 mm in diameter, pressure of 10 −5 torr or less, and evaporation rate of 0.5 nm / sec or less to obtain an electrode having a uniform thickness of about 100 nm.

공중합체의 전기적인 특성조사는 MIS (Metal-Insulator-Semiconductor) 구조로 C-V (Capacitance-Voltage) 곡선의 최대 capacitance값으로부터 유전상수를 계산하였으며 이를 표 2에 개시하였다.In order to investigate the electrical properties of the copolymer, the dielectric constant was calculated from the maximum capacitance value of the C-V (Capacitance-Voltage) curve with a metal-insulator-semiconductor (MIS) structure.

이 결과를 보면 기존의 폴리노보넨 단일중합체의 유전상수가 2.6인것에 비해 첨가되는 나노기공 형성제의 몰비가 증가함에 따라 공중합체의 유전상수와 굴절율이 뚜렷히 감소함을 보여준다.This result shows that the dielectric constant and refractive index of the copolymers are markedly decreased as the molar ratio of the nanopore former is increased compared to that of the conventional polynorbornene homopolymer.

실시예Example 시료sample 박막두께(μm)Thin film thickness (μm) 유전상수, kDielectric constant, k 굴절율(@632nm)Refractive index (@ 632nm) 3939 실시예 17Example 17 1.51.5 2.62.6 1.5081.508 4040 실시예 22Example 22 1.451.45 2.452.45 1.4921.492 4141 실시예 23Example 23 0.80.8 2.512.51 1.4981.498 4242 실시예 24Example 24 1.51.5 2.422.42 1.4911.491 4343 실시예 26Example 26 1.411.41 2.282.28 1.321.32 4444 실시예 27Example 27 0.90.9 2.552.55 1.5001.500 4545 실시예 28Example 28 1.451.45 2.122.12 1.271.27 4646 실시예 29Example 29 1.421.42 2.482.48 1.4831.483 4747 실시예 31Example 31 1.331.33 2.212.21 1.301.30 4848 실시예 32Example 32 1.281.28 2.482.48 1.4921.492 4949 실시예 33Example 33 1.511.51 2.252.25 1.311.31 5050 실시예 34Example 34 1.461.46 2.182.18 1.211.21 5151 실시예 35Example 35 1.481.48 2.022.02 1.131.13

[실시예 52] 나노기공을 함유하는 절연박막 및 반사방지막의 제조Example 52 Preparation of Insulation Thin Film and Anti-Reflection Film Containing Nanopores

상기한 방법에 의해 제조된 공중합체는 스핀 코팅에 의해 박막으로 제조된다. 즉, 미리 표면처리한 Si웨이퍼에 준비된 농도의 공중합체 용액을 필터(예:0.2㎛ 필터)로 거르면서 바로 떨어뜨린 후, 스핀 코터의 회전수(rpm)을 변화시켜 원하는 두께의 박막을 만든다. 준비된 박막을 90-220℃ 공기 중에서 열처리하여 남아 있는 용매를 날린 후, 질소나 진공에서 온도를 250-450℃로 상승시켜 나노기공 형성제를 분해시켜 나노기공을 형성하게 된다. 이 때, 상기 열처리 과정은 반드시 제조된 공중합체의 유리전이온도 이하의 온도에서 이루어져야 하는데 그 이유는 제조된 공중합체의 유리전이온도 이상의 온도에서 열처리를 하게 되면 나노기공형성제가 분해됨과 동시에 남아 있는 폴리노보넨계 공중합체의 사슬이 유동성을 가지게 되므로 형성된 나노기공의 구조가 붕괴되기 때문이다.The copolymer produced by the above method is made into a thin film by spin coating. That is, the copolymer solution of the concentration prepared on the surface-treated Si wafer is immediately dropped while filtering with a filter (for example, 0.2 μm filter), and the rotation speed (rpm) of the spin coater is changed to form a thin film having a desired thickness. After heat-treating the prepared thin film in air at 90-220 ° C., the remaining solvent is blown, and then the temperature is raised to 250-450 ° C. in nitrogen or vacuum to decompose the nano-pore forming agent to form nano-pores. At this time, the heat treatment process must be performed at a temperature below the glass transition temperature of the prepared copolymer, because the heat treatment at a temperature above the glass transition temperature of the prepared copolymer, the nano-pore-forming agent decomposes and remains at the same time This is because the chain of the norbornene-based copolymer has fluidity, so that the structure of the formed nanopores is disrupted.

[실시예 53] 박막의 단면분석Example 53 Cross Section Analysis of a Thin Film

박막의 단면이 FE-SEM을 통해 분석되었으며 실시예 10에 따른 polylactide의 함량이 13 wt%인 공중합체의 단면사진이 도 5에 개시되어있다. 도 5를 이미지 분석한 결과 평균직경이 22nm이고 분산도가 5.6nm인 pore가 생성되었음을 알 수 있었으며 이로부터 다공성 박막이 잘 제조되었음을 알 수 있다.The cross section of the thin film was analyzed by FE-SEM and a cross-sectional photograph of a copolymer having a polylactide content of 13 wt% according to Example 10 is shown in FIG. 5. As a result of analyzing the image of FIG. 5, it could be seen that a pore having an average diameter of 22 nm and a dispersion degree of 5.6 nm was generated, and from this, a porous thin film was well prepared.

이제까지 설명한 바와 같이, 본 발명은 나노기공형성제를 함유하는 폴리노보넨 공중합체 및 이로부터 제조된 절연막은 굴절율의 조절이 용이하고 우수한 열적특성 및 저유전상수를 가짐으로서 차세대 반도체 산업의 멀티칩 패키지용 소재와 반도체 노광공정에 사용되는 반사방지막용 소재에 요구되는 특성을 가지는 장점이 있다. 특히, 고분자 수지를 경화시키지 않고 매트릭스 고분자의 유리전이온도보다 낮은 열분해성 고분자의 열분해 온도를 이용하여 고분자 박막내에 열분해에 의해 나노기공을 도입한 경우는 아직 전 세계적으로 선례가 없으므로 이러한 합성은 향후 멀티칩 패키지용 저유전재료, 칩간의 광학적 배선재료 및 157nm를 이용한 광미세회로가공 공정의 반사방지막 등의 다양한 응용분야의 개척에 전기를 마련할 것으로 생각된다.As described so far, the present invention is a polynorbornene copolymer containing a nano-pore forming agent and an insulating film prepared therefrom are easy to control the refractive index, has excellent thermal properties and low dielectric constant for the multi-chip package of the next-generation semiconductor industry There is an advantage having the characteristics required for the material and the material for the anti-reflection film used in the semiconductor exposure process. Particularly, if nanopores are introduced into the polymer thin film by pyrolysis using the pyrolysis temperature of the pyrolytic polymer which is lower than the glass transition temperature of the matrix polymer, there is no precedent in the world. It is thought that electricity will be provided for the development of various applications such as low dielectric materials for chip packages, optical wiring materials between chips, and anti-reflection films in optical microcircuit processing processes using 157nm.

Claims (5)

1종 이상의 노보넨계 단량체와, 폴리노보넨의 유리전이온도보다 낮은 열분해온도를 가지는 열분해성 단량체를 공중합한 후,After copolymerizing at least one norbornene-based monomer with a pyrolytic monomer having a pyrolysis temperature lower than the glass transition temperature of polynorbornene, 상기 공중합체를 코팅하여 박막을 제조한 후,After coating the copolymer to prepare a thin film, 상기 폴리노보넨의 유리전이온도보다는 낮고 상기 열분해 온도와 같거나 높은 온도로 상기 박막을 열처리하여 상기 열분해성 단량체를 분해시킴으로써 박막내에 나노기공을 형성시키는 것을 특징으로 하는 나노다공성 박막의 제조방법.The method of manufacturing a nanoporous thin film, characterized in that the nanopores are formed in the thin film by decomposing the thermally decomposable monomer by heat-treating the thin film at a temperature lower than the glass transition temperature of the polynorbornene and equal to or higher than the thermal decomposition temperature. 제1항에 있어서, 상기 열처리 단계는 박막을 250 - 400 ℃로 가열함으로써 박막내 노보넨계 환형올레핀을 제외한 성분을 열분해시키는 것을 특징으로 하는 나노다공성 박막의 제조방법.The method of claim 1, wherein the heat treatment comprises thermally decomposing components excluding norbornene-type cyclic olefins in the thin film by heating the thin film to 250 to 400 ° C. 3. 제1항에 있어서, 상기 노보넨계 단량체는 다음 화학식 1 내지 3 중 어느 하나 이상인 것을 특징으로 하는 나노다공성 박막의 제조방법.The method of claim 1, wherein the norbornene-based monomer is any one or more of the following Chemical Formulas 1 to 3. [화학식 1][Formula 1] 상기 화학식 1에서 R1,R2는 각각 수소, 탄소수가 1에서 20인 선형 또는 가지달린 알킬기 중에서 선택되며, R'3,R'4는 각각 R'3와 R'4의 탄소가 함께 연결된 환형 고리구조를 이루어 다음의 화학식 1 또는 2와 같은 같은 구조를 갖는 화합물을 나타낸다.In Formula 1, R 1 and R 2 are each selected from hydrogen, a linear or branched alkyl group having 1 to 20 carbon atoms, and R ' 3 and R' 4 are cyclic groups in which carbons of R ' 3 and R' 4 are linked together, respectively. A compound having the same structure as in the following Chemical Formula 1 or 2 is shown as a ring structure. [화학식 2][Formula 2] [화학식 3][Formula 3] 상기 화학식 1 내지 3에서 R3과 R4는 화학식 4와 같고,R 3 and R 4 in Chemical Formulas 1 to 3 are the same as those of Chemical Formula 4, [화학식 4][Formula 4] -(CH2)P-(O)Q-R7 -(CH 2 ) P- (O) Q -R 7 R7은 수소원자, C1~C20인 선형 또는 가지달린 알킬기, C1~C4인 디알킬알루미늄, C1~C4인 트리알킬실란,R 7 is a hydrogen atom, a C 1 -C 20 linear or branched alkyl group, C 1 -C 4 dialkylaluminum, C 1 -C 4 trialkylsilane, 와 이들의 공중합체중에서 선택되며, And their copolymers, R은 C1~C10인 선형 또는 가지달린 알킬기이며, a와 b는 0에서 4사이의 정수이고, p는 0에서 10까지의 정수이고, q는 0과 1중에서 선택되며, m은 1에서 1,000까지의 정수이다.R is a C 1 to C 10 linear or branched alkyl group, a and b are integers from 0 to 4, p is an integer from 0 to 10, q is selected from 0 and 1, m is 1 It is an integer up to 1,000. 제3항에 있어서, R1,R2은 각각 수소이고 R'3와 R'4가 화학식 4의 구조를 갖는 화학식 1의 물질을 단량체로서 사용하는 것을 특징으로 하는 제조방법.4. A process according to claim 3, wherein R 1 and R 2 are each hydrogen and R ' 3 and R' 4 have the structure of formula 4 as monomer. [화학식 4][Formula 4] -(CH2)P-(O)Q-R7 -(CH 2 ) P- (O) Q -R 7 상기 화학식에서 R7과 R,a,p,q,m의 정의는 상기한 바와 같다.In the formula, R 7 and R, a, p, q, and m are as defined above. 제3항에 있어서, 상기 공중합체는 화학식 1 내지 3 중 어느 하나 이상의 노보넨계 단량체 및/또는 (bicyclo[2.2.1]-hept-2-en-2-yl)알킬트리알콕시실란으로 이루어지고, 상기 공중합체 중 상기 (bicyclo[2.2.1]hept-2-en-2-yl)알킬트리알콕시실란의 함량이 1-50mol%인 것을 특징으로 하는 제조방법.The method of claim 3, wherein the copolymer is composed of norbornene-based monomers of any one or more of formulas 1 to 3 and / or (bicyclo [2.2.1] -hept-2-en-2-yl) alkyltrialkoxysilane, The content of the (bicyclo [2.2.1] hept-2-en-2-yl) alkyltrialkoxysilane in the copolymer is 1-50 mol%. 하기 공중합체에서, R9와 R10은 메틸, 에틸, 프로필기중에서 선택된다.In the following copolymers, R 9 and R 10 are selected from methyl, ethyl and propyl groups. [화학식 5][Formula 5]
KR1020030028692A 2003-05-06 2003-05-06 low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor KR100599319B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030028692A KR100599319B1 (en) 2003-05-06 2003-05-06 low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030028692A KR100599319B1 (en) 2003-05-06 2003-05-06 low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor

Publications (2)

Publication Number Publication Date
KR20040095089A true KR20040095089A (en) 2004-11-12
KR100599319B1 KR100599319B1 (en) 2006-07-14

Family

ID=37374319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030028692A KR100599319B1 (en) 2003-05-06 2003-05-06 low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor

Country Status (1)

Country Link
KR (1) KR100599319B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101675A1 (en) * 2018-09-28 2020-04-02 Teijin Limited Composite of thermally-modified polymer layer and inorganic substrate, composite of polymer member and inorganic substrate, and production methods thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059778B1 (en) * 2004-10-21 2011-08-26 재단법인서울대학교산학협력재단 Low dielectric norbornene-based copolymer with excellent solubility in organic solvents

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463807A (en) * 1990-03-06 1992-02-28 Idemitsu Kosan Co Ltd Norbornene polymer, preparation thereof, film prepared therefrom, and preparation of the film
CA2334026A1 (en) * 1998-06-05 1999-12-09 Paul A. Kohl Porous insulating compounds and method for making same
US6716553B1 (en) * 1999-05-07 2004-04-06 Nitto Denko Corporation Porous films and processes for the production thereof
JP2002241503A (en) * 2000-12-06 2002-08-28 Sumitomo Bakelite Co Ltd Material for insulating film, coating varnish for insulating film and insulating film using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101675A1 (en) * 2018-09-28 2020-04-02 Teijin Limited Composite of thermally-modified polymer layer and inorganic substrate, composite of polymer member and inorganic substrate, and production methods thereof

Also Published As

Publication number Publication date
KR100599319B1 (en) 2006-07-14

Similar Documents

Publication Publication Date Title
EP1245628B1 (en) Composition for preparing substances having nano-pores
WO2013036027A2 (en) Phenol-based self-crosslinking polymer and resist underlayer film composition including same
JP4549832B2 (en) Multi-reactive linear siloxane compound, siloxane-based polymer produced from the compound, and method for producing insulating film using the polymer
US20070073024A1 (en) Insulating-film forming composition, insulation film and preparation process thereof
JP2007238696A (en) Organic insulating material, varnish for insulating film using the same, insulating film, its manufacturing method and semiconductor device
KR20100030843A (en) Norbornene-based polymer having low dielectric constant and low-loss properties, and insulating material, printed circuit board and function element using the same
KR100870225B1 (en) Aromatic fluoropolymer and use thereof
JP2004172592A (en) Constituent for forming porous interlayer dielectric containing saccharide and derivative thereof
US6632748B2 (en) Composition for preparing substances having nano-pores
KR100554157B1 (en) Organosilicate polymer composites having the low dielectric chracteristics
KR100599319B1 (en) low dielectric films of nanoporous norborenen copolymer and manufacturing methods therefor
KR100578737B1 (en) Preparation of star-shaped polymers containing reactive end groups and polymer composite film having low dielectric constant using the same
JP4843870B2 (en) Novel polyarylene ether, process for producing the same and use thereof
JP4211161B2 (en) Diyne-containing (co) polymer, method for producing the same, and cured film
KR101100351B1 (en) Norbornene-based polymer having low dielectric constant and low-loss properties and insulating material using the same
KR101465582B1 (en) Composition for the formation of a protective thin film having high heat resistance and chemical resistance, and method for preparing a protective thin film using same
US7534292B2 (en) Film-forming composition, insulating film obtained from the composition and electronic device having the same
US20060219987A1 (en) Insulating film, process for producing the same and electronic device having the same
KR101059778B1 (en) Low dielectric norbornene-based copolymer with excellent solubility in organic solvents
US8216647B2 (en) Insulating film, process for producing the same and electronic device using the same
KR101992951B1 (en) Copolymer, semiconductor device comprising copolymer, composition comprising copolyemr, and preparation method of copolymer
JP2007211138A (en) Alicyclic polyether, its production method, and its use
KR100579037B1 (en) low-dielectric polysilsesquioxane copolymers, low-dielectric insulating nanoporous films therefrom and preparing methods therefor
Fujiwara et al. Novel high Tg low dielectric constant coil-shaped polymer
KR100965915B1 (en) polyp-XYLYLENE-BASED polymer HAVING LOW DIELECTRIC CONSTANT AND LOW-LOSS PROPERTIE, insulating material, printed circuit board and function element using THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130429

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180705

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190704

Year of fee payment: 14