KR20040070407A - A waste water disposal plant - Google Patents

A waste water disposal plant Download PDF

Info

Publication number
KR20040070407A
KR20040070407A KR1020030006620A KR20030006620A KR20040070407A KR 20040070407 A KR20040070407 A KR 20040070407A KR 1020030006620 A KR1020030006620 A KR 1020030006620A KR 20030006620 A KR20030006620 A KR 20030006620A KR 20040070407 A KR20040070407 A KR 20040070407A
Authority
KR
South Korea
Prior art keywords
tank
denitrification
nitrification
basin
intermittent aeration
Prior art date
Application number
KR1020030006620A
Other languages
Korean (ko)
Other versions
KR100478010B1 (en
Inventor
이상일
류홍덕
민경국
Original Assignee
대한민국(충북대학교총장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(충북대학교총장) filed Critical 대한민국(충북대학교총장)
Priority to KR10-2003-0006620A priority Critical patent/KR100478010B1/en
Publication of KR20040070407A publication Critical patent/KR20040070407A/en
Application granted granted Critical
Publication of KR100478010B1 publication Critical patent/KR100478010B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/305Nitrification and denitrification treatment characterised by the denitrification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/104Granular carriers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/1231Treatments of toxic sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2813Anaerobic digestion processes using anaerobic contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Abstract

PURPOSE: Provided is a system for removing organic as well as nutrition such as nitrogen and phosphorus from wastewater, which is characterized in that denitrification reaction in a first intermittent aeration basin is performed by using organic contained in supernatant returned from a sedimentation basin to reduce nitrate and nitride concentration. CONSTITUTION: The system comprises an anaerobic basin (1) where phosphorus is released from microbes; a sedimentation basin (2) where sediment and supernatant are separated; a first intermittent aeration basin (3) where nitrification and denitrification are alternately carried out; a second nitrification basin (2) and a third nitrification basin (8) for the complete nitrification reaction of wastewater; a denitrification basin (9) where nitrate and nitride from the third nitrification basin are denitrified by using activated sludge supplied from the sedimentation basin; an intermittent aeration basin (10) where organic nitrogen from the denitrification basin is decomposed, ammonia nitrogen from the denitrification basin is nitrified, and residual nitrate and nitride are denitrified; a reaeration basin (11) where nitrogen stripping and nitrification of residual ammonia nitrogen are performed at the same time; and a final clarifier (12) where activated sludge is returned to the anaerobic basin after sedimentation and supernatant is discharged to the outside.

Description

폐수처리방법{A WASTE WATER DISPOSAL PLANT}Wastewater Treatment Method {A WASTE WATER DISPOSAL PLANT}

본 발명은 도시하수, 축산폐수 및 산업폐수 등의 고농도 유기폐수에 함유된 유기물, 질소 및 인을 효과적으로 제거할 수 있는 고농도 유기 폐수를 정화하기위한 폐수처리 방법에 관한 것으로, 더욱 더 구체적으로는 기존에 개발된 DEPHANOX 공정의 변형 시스템으로서 DEPHANOX 공정의 단점을 크게 개선한 공정 것으로, 혐기접촉조, 분리조, 제 1 간헐폭기조, 2 질화반응조, 제 3 질화반응조, 무산소 상태의 탈질 반응조, 간헐폭기조, 재포기조, 침전조 순으로 하고, 상기 침전조에서 상기 혐기 접촉조로 슬러지를 반송시키며, 상기 분리조에서 분리된 슬러지는 상기 탈질 반응조로 유입시키고, 상기 분리조에서 분리된 상징액은 상기 제 1 간헐폭기조로 유입시켜서 연속적으로 운영하는 것이다.The present invention relates to a wastewater treatment method for purifying high concentration organic wastewater which can effectively remove organic matter, nitrogen and phosphorus contained in high concentration organic wastewater such as municipal sewage, livestock wastewater and industrial wastewater, and more specifically, It is a modified system of DEPHANOX process developed in the process, which greatly improves the shortcomings of DEPHANOX process. Re-aeration tank, sedimentation tank in order, the sludge is returned from the sedimentation tank to the anaerobic contact tank, sludge separated from the separation tank flows into the denitrification reactor, supernatant separated from the separation tank flows into the first intermittent aeration tank. To operate continuously.

일반적으로, 폐수에 포함되어 있는 영양염류 자체는 무기성 원소이나, 이들이 하천이나, 연안바다, 호소(호수 및 저수지)등으로 유입되어 조류의 성장을 촉진시켜 부영양화 현상을 발생시킨다.In general, the nutrients contained in the waste water are inorganic elements, but they flow into rivers, coastal seas, lakes (lakes and reservoirs), etc. to promote algae growth and cause eutrophication.

또한, 폐수에 포함되어 있는 영양염류가 연안바다로 유입되었을 때는 적조현상의 원인이 되며, 심하면 수저부에서 부패하고 악취가 발생하여 수질오염을 촉진시키는 원인으로 작용됨에 따라, 이러한 영양염류는 하천이나 호소로 유입되기 전에 제거되어야 할 물질이다.In addition, when the nutrients contained in the wastewater enter the coastal seas, they cause red tide. If the nutrients are severely decayed at the bottom of the water and odors are generated, they promote water pollution. The substance to be removed before entering the appeal.

우리나라의 경우 대부분의 하수처리 및 축산폐수 처리 방법은 활성슬러지법에 의존하고 있는 실정이다. 활성슬러지법에 의한 처리시 대부분의 현탁 고형물질과 유기물은 제거될 수 있으나, 질소나 인과 같은 영양염류 물질의 처리는 20-40%에 불과하다.In Korea, most sewage and livestock wastewater treatment methods rely on activated sludge. Most suspended solids and organics can be removed by treatment with activated sludge, but only 20-40% of nutrients such as nitrogen and phosphorus are treated.

질소, 인과 같은 영양염류 처리를 위한 공정들로는 물리, 화학적인 처리 방법과 생물학적인 처리 방법이 있다.Processes for treating nutrients such as nitrogen and phosphorus include physical and chemical treatments and biological treatments.

우선, 물리적인 처리 방법에 있어서는 암모니아 탈기법, 선택적 흡착 방법을 이용하는 이온교환법, 소석회 및 응집제를 사용하여 인을 침전시키는 방법 및 질소와 인을 동시에 침전시키는 스트로바이트(struvite)형성의 침전법 등이 이용되고 있다. 그러나 이와 같은 방법은 그 처리가 선택적으로 이루어지기는 하지만, 온도에 민감하고 비용이 많이 소요되는 등의 단점이 있다. 또한, 약품비 및 운전상에 요구되는 환경이 특정적이어서 그 운영에 어려움이 있으며, 유출수가 불안정하여 세계적으로도 현장에서 사용을 꺼리고 있다.First of all, the physical treatment methods include ammonia degassing, ion exchange using selective adsorption, precipitation of phosphorus using slaked lime and flocculant, and struvite formation of precipitation of nitrogen and phosphorus simultaneously. It is used. However, this method, although the treatment is made selectively, there are disadvantages such as temperature-sensitive and expensive. In addition, the chemical cost and the environment required for operation is difficult to operate because it is specific, and the runoff is unstable in the world as well.

한편, 생물학적 처리 방법에 있어서는, 질소의 경우 용존상태에 있는 암모니아성 질소와 유기 질소를 호기성 조건에서 질산화균(ie.,Nitrosomonas & Nitrobacter)에 의해 질산화(암모니아를 질산염형태로 변형)시키고, 질산염을 탈질산화균(ie.,Pseudomonas, Paracoccusdenitrifiers)에 의해 무산소 조건에서 산소대신 전자수용체로서 이용하게 하여 질소 기체로 변환하여 대기중으로 방출(탈질산화)시켜 제거하고 있다. 인의 경우 폐수를 교대로 혐기성 조건과 호기성 조건하에 유지시켜 혐기성 조건에서는 인 제거 미생물(ie.,Acinetobacter)로부터 인을 방출시키고, 후속되는 호기성 조건에서는 미생물이 인을 과다 섭취하도록 한 다음, 미생물을 일정량씩 제거시키는 방식으로 폐수중의 인을 제거한다.On the other hand, in the biological treatment method, in the case of nitrogen, ammonia nitrogen and organic nitrogen in the dissolved state are nitrified by nitrifying bacteria (ie, Nitrosomonas & Nitrobacter ) under aerobic conditions, and ammonia is converted into nitrate form. Denitrification bacteria (ie, Pseudomonas, Paracoccus denitrifiers) are used as electron acceptors instead of oxygen under anoxic conditions, which are converted to nitrogen gas and released into the atmosphere (denitrification). For phosphorus, wastewater is alternately maintained under anaerobic and aerobic conditions, releasing phosphorus from phosphorus-removing microorganisms (ie, Acinetobacter ) under anaerobic conditions, and in subsequent aerobic conditions, causing the microorganism to overdose phosphorus, Phosphorus in the wastewater is removed by a gentle removal.

상기 호기성 조건에서 미생물의 인을 과다 섭취하게 되는 정도는 혐기성 조건으로 유입되는 유기물의 양과 종류에 따라 다르며 특히, 순수한 혐기상태의 유지와 유입되는 유기물이 초산염과 같은 유기산염이 많을 경우 순수한 혐기상태에서 인의 방출량이 증진되며, 후속된 호기상태에서 인의 섭취도가 향상되어 처리율이 증진된다.The degree of ingestion of the phosphorus of the microorganism in the aerobic condition depends on the amount and type of organic matter introduced into the anaerobic condition, especially in the case of maintaining the pure anaerobic state and in the case of a large amount of organic acid salts such as acetate in pure anaerobic condition The amount of phosphorus released is enhanced, and the intake of phosphorus is enhanced in subsequent aerobic conditions, thereby increasing the throughput.

따라서, 생물학적 질소 및 인의 제거 공정은 혐기성 - 호기성 - 혐기성 - 호기성 반응조를 적절히 분리 배치하여 각 반응조의 특성에 따라 호기성 반응조에서는 유기물 산화 및 질산화 반응과 미생물이 인을 섭취하도록 유도하고 혐기성 및 무산소 반응조에서는 질산성 질소를 질소가스로 변형시켜 대기중으로 방출시키는 탈질반응과 인의 방출을 유도한다.Therefore, the biological nitrogen and phosphorus removal process is appropriately arranged anaerobic-aerobic-anaerobic-aerobic reactors in accordance with the characteristics of each reactor to induce organic oxidation and nitrification reaction and microorganism intake of phosphorus in the aerobic reactor, and in anaerobic and anoxic reactor Nitrate nitrogen is converted to nitrogen gas to induce denitrification and phosphorus release into the atmosphere.

일반적으로 전술한 바와 같은 영양염류의 처리공정에서는 슬러지의 침전성을 향상시키고 인의 방출을 억제하기 위하여, 침전조 전에 소기성 반응조를 배치시킨다. 이러한 방법의 예로서는, 바너드(Barnard)등에게 수여된 미합중국 특허 제 3,964,988호에 개시되어 있는 바덴포 공정(Bardenpho process), 단일 시스템인 A/O 공정, A2/O 공정등을 들 수 있다.In general, in the process of treating nutrients as described above, in order to improve the sedimentation of the sludge and to suppress the release of phosphorus, a scavenging reaction tank is disposed before the sedimentation tank. Examples of such a method include the Bardenpho process disclosed in US Pat. No. 3,964,988 to Barnard et al., A single system A / O process, A 2 / O process, and the like.

이들 공정은 산소의 유무에 따라 반응조를 분리, 배치하여 폐수가 혐기조건과 호기조건의 반응조를 통과하도록 정상상태(steady-state)로 운영된다. 그러나, 이들 공정에서는 폐수 처리의 효율을 향상시키기 위해 내적 순환량을 폐수 유입량의 4배 가량으로 유지하여야 하기 때문에 동력비가 과다하게 소요되는 결점이 있다. 상기 방법의 또 다른 예로서 DEPHANOX 공정을 들 수 있다. 이 공정에서는, 혐기 접촉조 및 분리조를 이용하여 혐기 접촉조에서 미생물이 유기물을 흡착시키고 인의 방출을 유도하며, 분리조에서 흡착된 유기물과 미생물을 분리하여 후속된 탈질조로 유입시키고 흡착되지 않은 질소 화합물을 별개의 반응조에서 질산화 시켜 후속된 탈질조로 보내 유기물을 흡착한 미생물에 의해 탈질 시킨다. 즉, DEPHANOX 공정은 탈질과 질산화가 별개의 슬러지 및 반응조에서 이루어지며 후속된 제 2 호기성 반응조에서 미생물에 의해 인을 과잉 섭취하도록 하는 공정이다.These processes operate in steady-state so that the wastewater passes through the anaerobic and aerobic reactors by separating and arranging the reactors depending on the presence of oxygen. However, these processes have the drawback of excessive power consumption because the internal circulation must be maintained at about four times the wastewater inflow in order to improve the efficiency of the wastewater treatment. Another example of the method is the DEPHANOX process. In this process, anaerobic contacting tanks and separation tanks are used for the microorganisms to adsorb organic matter and induce the release of phosphorus in the anaerobic contacting tank, the organic matter and microorganisms adsorbed in the separation tank are separated into the subsequent denitrification tank and the nitrogen is not adsorbed. Compounds are nitrified in separate reactors and sent to subsequent denitrification tanks for denitrification by microorganisms that adsorb organic matter. That is, the DEPHANOX process is a process in which denitrification and nitrification are carried out in separate sludges and reactors, and the phosphorus is excessively ingested by microorganisms in a subsequent aerobic reactor.

그러나 DEPHANOX 공정은 내적순환이 없고 질산화 공정 이후 후속되는 처리 과정중 단일 탈질 반응조에서만 탈질이 이루어지기 때문에, 높은 질소 제거효율을 기대할 수 없다.However, since DEPHANOX process has no internal circulation and denitrification is performed only in a single denitrification tank during subsequent treatment after nitrification, high nitrogen removal efficiency cannot be expected.

본 발명의 우리나라의 도시하수 및 산업폐수(독성이 있고 C/N 비가 낮은 폐수)를 포함한 축산폐수 등의 유기물 및 영양염류를 처리하는데 효과적인 처리방법을 제공하는데 있다. 특히 본 발명은 기존 DEPHANOX 공정의 단점을 보완한 것으로서 특히 질소 처리 향상에 주안점을 둔 공정이라 할 수 있다. 기존 DEPHANOX 공정은 질산화 반응조가 완전혼합반응기 역할을 하여 암모니아성 질소의 질산화가 관형흐름반응기에서 보다 불안정 하였으며 탈질조 후속으로 재포기조만이 있어 질산성 질소의 처리가 문제시 되었다. 따라서 이를 보완한 공정을 개발하고자 하였으며,The present invention provides an effective treatment method for treating organic matter and nutrients, such as livestock wastewater including urban sewage and industrial wastewater (toxic and low C / N ratio wastewater) of the present invention. In particular, the present invention as a complement to the disadvantages of the existing DEPHANOX process can be said to be a process focused on improving the nitrogen treatment. In the existing DEPHANOX process, the nitrification tank serves as a complete mixing reactor, so the nitrification of ammonia nitrogen is more unstable in the tubular flow reactor. Therefore, we tried to develop a process that complements this.

이를 위한 구체적 수단으로,As a specific means for this,

첫째, 기존 DEPHANOX 공정의 단일 질산화 반응조를 부피는 같게 하면서 3단으로 분리하여 그 중 첫 번째 반응조를 간헐폭기로 운영하고 두 번째와 세 번째 반응조는 연속폭기로 운영하는데 있다. 이렇게 운영하게 되면 제 1 간헐폭기조에서 무산소 상태시 분리조로부터 유입되는 유기물을 이용하여 폐수의 성상에 따라 수 ∼ 수십 ppm 정도 산소 상태에서 질산화된 질산염의 탈질이 일어나게 된다. 또한 단일 질산화 반응조를 3단으로 분리하여 배치할 경우 관형흐름반응기(PFR)의 장점을 살릴 수 있어 질산화를 더욱더 안정적으로 수행할 수 있다. 또한 두 번째로 탈질 반응조 후단에 간헐폭기 공정을 두어 방류수 중의 질산염 농도를 획기적으로 줄일 수 있다.First, the single nitrification reactor of the existing DEPHANOX process is divided into three stages with the same volume, and the first of them is operated as intermittent aeration and the second and third reactors are operated as continuous aeration. In this way, the denitrification of nitrate nitrate occurs in the oxygen state of several to several tens ppm depending on the characteristics of the waste water by using the organic material flowing from the separation tank in the first oxygen aeration tank in the absence of oxygen. In addition, when the single nitrification reactor is separated into three stages, the advantages of the tubular flow reactor (PFR) can be utilized, and thus nitrification can be performed more stably. Secondly, an intermittent aeration process can be provided at the rear of the denitrification tank to significantly reduce the nitrate concentration in the effluent.

도 1은 본 발명에 따른 폐수처리장치를 도시한 개략도.1 is a schematic view showing a wastewater treatment apparatus according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 혐기접촉조1: anaerobic contact tank

2 : 분리조2: Separation tank

3 : 제 1 간헐폭기조3: first intermittent aeration tank

4 : 고정식 담, 매체4: fixed fence, medium

5 : 수중펌프5: submersible pump

6 : 제 2 질산화 반응조6: second nitrification reactor

7 : 부유성 담, 매체7: floating fence, medium

8 : 제 3 질산화 반응조8: third nitrification reactor

9 : 탈질 반응조9: denitrification reactor

10 : 간헐폭기조10: intermittent aeration tank

11 : 재포기조11: Reaeration

12 : 침전조12: sedimentation tank

본 발명은 기존 DEPHANOX 공정의 단점을 보완하여 보다 완벽한 질소처리를 위해 안출된 생물학적 처리 방법으로서,The present invention is a biological treatment method devised for more complete nitrogen treatment to compensate for the shortcomings of the existing DEPHANOX process,

본 발명은 혐기접촉조(1), 분리조(2), 제 1 간헐폭기조(3), 제 2 질화반응조(6), 제 3 질화반응조(8), 탈질반응조(9), 간헐폭기조(10), 재포기조(11), 침전조(12)로 구성된다.The present invention provides an anaerobic contact tank (1), separation tank (2), first intermittent aeration tank (3), second nitriding reaction tank (6), third nitriding reaction tank (8), denitrification reaction tank (9), intermittent aeration tank (10). ), Re-aeration tank 11, and the settling tank (12).

혐기접촉조(1)는 폐수중 유입되는 유기물을 활성슬러지가 흡착하여 이를 탈질반응조(9)에서 탈질을 하는데 이용되면 또한 인의 방출을 유도하는데 있다.The anaerobic contact tank 1 is used to induce the release of phosphorus when activated sludge is adsorbed to the organic matter introduced into the waste water and used to denitrify it in the denitrification reactor 9.

혐기접촉조(1)의 또 다른 중요한 역할은 독성물질 유입시 독성물질을 흡착하여 후속되는 질산화반응조(3,6,8)에서 질산화박테리아가 독성영향을 받지 않고 질산화 과정을 원활히 수행하는 역할을 한다.Another important role of the anaerobic contact tank (1) is to adsorb the toxic substances in the inflow of toxic substances and to perform the nitrification process without the toxic effect of the nitrification bacteria in the subsequent nitrification reactors (3,6,8). .

분리조(2)는 혐기접촉조에서 넘어온 유기물이 흡착된 슬러지와 상징액을 분리하는 역할을 하며 암모니아가 다량 함유된 상징액은 제 1 간헐폭기조(3)로 이송이 되며 유기물을 흡착한 슬러지는 탈질반응조(9)로 이송되어 탈질 효율을 높이는데 이용된다.Separation tank (2) serves to separate the sludge and the supernatant adsorbed organic matter from the anaerobic contact tank, the supernatant containing a large amount of ammonia is transferred to the first intermittent aeration tank (3), the sludge adsorbed organic matter is denitrification reactor It is transferred to (9) and used to increase the denitrification efficiency.

고정식 담, 매체가 있는 제 1 간헐폭기조(1)에서는 호기시 분리조로부터 유입된 암모니아성 질소의 질산화 및 질산성 질소의 탈질이 일어나게 된다. 또한 무산소 상태에서 분리조(2)에서 유입된 유기물을 이용하여 탈질이 일어나게 되며 폐수 성상에 따라 달라 질 수 있다. 호기/무산소는 1시간/1시간 주기로 해주며 호기시에는 산기관으로부터 질산화가 일어날 수 있는 충분한 산소가 공급이 되며 무산소 상태에서는 산소공급이 중단되고 수중펌프(5)가 작동하여 유체를 순환시켜 주는 역할을 한다. 제 1 간헐폭기조(1)에서의 담, 매체는 이러한 기능이 원활이 수행될수 있도록 하기 위해 부유성 담, 매체보다는 고정식 담, 매체(4)를 이용한다.In the first intermittent aeration tank 1 having a fixed fence and a medium, nitrification of ammonia nitrogen and denitrification of nitrate nitrogen occur from the separation tank at the time of exhalation. In addition, denitrification occurs using the organic matter introduced from the separation tank 2 in an oxygen-free state, and may vary depending on the wastewater properties. The aerobic / oxygen-free cycle is carried out at 1 hour / 1 hour intervals, and during exhalation, sufficient oxygen is supplied to the nitric acid from the acid pipe, and in the anoxic state, the oxygen supply is stopped and the water pump 5 operates to circulate the fluid. Play a role. The walls and media in the first intermittent aeration tank 1 utilize a fixed wall, media 4 rather than a floating wall, media to allow this function to be performed smoothly.

제 2 질산화 반응조(6)와 제 3 질화반응조(8)에서는 부유성 담, 매체(7)를 이용하여 제 1 간헐폭기조(3)로부터 연속적으로 유입되는 잔류 암모니아성 질소의 질산화에 기여하며 분리조(2)로부터 유입되는 대부분의 암모니아성 질소를 제거하게 하는 역할을 한다.In the second nitrification reactor 6 and the third nitriding reactor 8, a flotation tank and a medium 7 contribute to nitrification of residual ammonia nitrogen continuously introduced from the first intermittent aeration tank 3 and separating the tank. It serves to remove most of the ammonia nitrogen flowing in from (2).

기존의 DEPHANOX 공정은 분리조(2)로부터 유입되는 암모니아성 질소가 단일 질화반응조에서 진행되는 반면 본 발명에서는 질화반응조를 3개로 분리, 관형흐름을 유도하여 암모니아성 질소를 더 안정적으로 제거 할수 있다.In the existing DEPHANOX process, the ammonia nitrogen flowing from the separation tank (2) proceeds in a single nitriding reaction tank, while in the present invention, the nitrification reaction tank is separated into three and induces a tubular flow to more stably remove the ammonia nitrogen.

탈질반응조(9)는 제 3 질화반응조(8)로부터 유입되는 질산성 질소의 탈질이 이루어지게 되며 이때 전자공여체는 분리조(2)에서 유입되는 활성슬러지에 흡착된 유기물로부터 제공받는다. 또한 분리조(2)로부터 분해되지 않은 유기질소 및 암모니아성 질소가 탈질반응조(9)로 유입되게 된다.The denitrification tank 9 is subjected to denitrification of the nitrate nitrogen flowing from the third nitriding reactor 8, and the electron donor is provided from the organic material adsorbed to the activated sludge introduced from the separation tank 2. In addition, organic nitrogen and ammonia nitrogen which are not decomposed from the separation tank 2 are introduced into the denitration reaction tank 9.

간헐폭기조(10)에서는 무산소시 탈질반응조(9)로부터 유입되는 잔류 질산성 질소의 탈질이 일어나게 되며 호기시 분리조(2)에서 탈질반응조(9)로 유입된 암모니아성 질소 및 유기질소의 질산화 가 진행되어 기존 DEPHANOX 공정보다 방류수에서의 질산염 농도를 크게 줄이는 역할을 하게 된다.In the intermittent aeration tank 10, denitrification of residual nitrate nitrogen flowing from the denitrification reaction tank 9 during anoxia occurs, and nitrification of ammonia nitrogen and organic nitrogen introduced into the denitrification reaction tank 9 from the separation tank 2 during aerobic flow is performed. This will significantly reduce the nitrate concentration in the effluent than the existing DEPHANOX process.

재포기조(11)는 간헐폭기조(10)로부터 유입되는 탈질 부산물인 질소가스를 대기중으로 방출시키는 역할을 하여 후속되는 침전조(12)에서의 슬러지 침전성을 좋게한다. 또한 잔류 암모니아성 질소의 질산화에 기여하여 전체 공정에서의 암모니아성 질소 제거율 향상에 도움을 준다.The reaeration tank 11 serves to release nitrogen gas, which is a denitrification by-product flowing from the intermittent aeration tank 10, into the atmosphere, thereby improving sludge settling in the subsequent settling tank 12. In addition, it contributes to the nitrification of residual ammonia nitrogen, which helps to improve the ammonia nitrogen removal rate in the whole process.

침전조(12)는 재포기조(11)로부터 유입되는 슬러지와 상징액의 분리에 이용된다. 분리된 슬러지는 혐기접촉조(1)로 반송이 되며 상징액은 방류되게 된다.The settling tank 12 is used to separate the sludge and the supernatant flowing from the reaeration tank 11. The separated sludge is returned to the anaerobic contact tank 1 and the supernatant is discharged.

전술한 바와 같이 본 폐수의 정화공정에 의하면, 부영양화의 주요 원인이 되고 있는 질소와 인의 처리를 극대화 할 수 있다.As described above, according to the wastewater purification process, it is possible to maximize the treatment of nitrogen and phosphorus, which are the main causes of eutrophication.

본 발명의 생물학적 처리 공정은 기존 DEPHANOX 공정의 단점을 보완한 공정으로서 DEPHANOX 공정의 단일 질산화 반응조를 관형흐름으로 변형함과 동시에 분리조(2)다음의 첫 번째 반응조를 간헐폭기로 운영함으로서 방류수중의 질산염 농도를 줄일수 있는 장점을 가지고 있다.The biological treatment process of the present invention compensates for the shortcomings of the existing DEPHANOX process by transforming a single nitrification reactor of the DEPHANOX process into a tubular flow and operating the first reactor following the separation tank 2 as intermittent aeration. It has the advantage of reducing nitrate concentration.

독성이 있는 하, 폐수의 경우 혐기접촉조(1)에서 미생물과 접촉시켜 하, 폐수중의 독성물질을 미생물에 흡착시키고, 분리조(2)에서 미생물을 분리하여 농축된 미생물만을 무산소 상태하의 탈질 반응조(9)로만 이송하기 때문에, 비교적 독성에 취약한 질산화 균에 미치는 영향이 줄어들게 되어 질화반응조에서의 질산화 반응을 무리없이 진행시킬 수 있다.In the case of toxic and waste water, the anaerobic contact tank (1) is brought into contact with microorganisms to adsorb toxic substances in the waste water to microorganisms, and the concentrated microorganisms are separated from the separation tank (2) to denitrate under anoxic state. Since only transfer to the reaction tank (9), the effect on the nitrifying bacteria which are relatively vulnerable to toxicity is reduced, so that the nitrification reaction in the nitriding reaction tank can be carried out without difficulty.

게다가 질화반응조의 경우 기존의 단일 반응조를 3개의 질산화조로 분리함으로서 관형흐름을 유도하여 반응속도가 느린 질산화반응을 효과적으로 진행되게끔 하였으며 담체나 매체를 사용함으로서 성장이 느린 질화균을 농축시킬 수 있어서 질산화 반응에 필요한 시간을 단축시킬 수 있고, 그 결과로서 반응조의 부피를 줄일 수 있다. 이는 국내의 소규모 오, 폐수 뿐만 아니라 축산 및 산업 폐수를 정화하는데 널리 적용 될 수 있다.In addition, in the case of the nitrification reactor, the conventional single reaction tank is separated into three nitrification tanks to induce tubular flow to effectively proceed the nitrification reaction with slow reaction rate, and the nitrification of slow growth can be concentrated by using a carrier or a medium. The time required for the reaction can be shortened, and as a result, the volume of the reactor can be reduced. It can be widely applied to clean domestic small-scale sewage and wastewater as well as livestock and industrial wastewater.

Claims (2)

유입된 폐수중 유기물 및 독성물질을 흡착을 담당하고 인 방출을 유도하는 혐기흡착조(1)와,An anaerobic adsorption tank (1), which is responsible for adsorption of organic substances and toxic substances in the introduced wastewater and induces phosphorus release; 고형물과 용존물로 분리하는 분리조(2)와,A separation tank (2) for separating the solids and the dissolved substances, 분리조(2)와 연결되며 질산화와 탈질을 수행하는 제 1 간헐폭기조(3)와 ,A first intermittent aeration tank 3 connected to the separation tank 2 and performing nitrification and denitrification; 제 1 간헐폭기조(3)와 연결되며 질산화를 좀더 완벽히 수행하는 제 2 질화반응조(6) 및 제 3 질화반응조(8)와,A second nitriding reactor (6) and a third nitriding reactor (8), which are connected to the first intermittent aeration tank (3) and perform nitrification more completely; 제 3 질화반응조(8)와 연결되며 분리조(2)로부터 유입되는 활성슬러지에 흡착된 유기물을 이용하여 제 3 질화반응조(8)로부터 유입되는 질산염의 탈질이 진행되는 탈질반응조(9)와,A denitrification tank (9) connected to the third nitriding reactor (8) and denitrification of the nitrate introduced from the third nitrification reactor (8) using an organic material adsorbed to the activated sludge flowing from the separation tank (2); 탈질반응조(9)와 연결되며 탈질반응조에서 유입되는 유기질소의 분해와 암모니아성 질소의 질산화가 진행되고 잔류 질산염의 탈질이 진행되는 간헐폭기조(10)와,An intermittent aeration tank (10) connected to the denitrification tank (9) and decomposing the organic nitrogen introduced from the denitrification tank and nitrifying the ammonia nitrogen and denitrification of the residual nitrate; 간헐폭기조(10)와 연결되며 탈질 부산물인 질소 가스의 탈기와 잔류 암모니아성 질소의 질산화가 진행되는 재포기조(11)와,A reaeration tank 11 connected to the intermittent aeration tank 10 in which degassing of nitrogen gas as a denitrification by-product and nitrification of residual ammonia nitrogen proceed; 재포기조(11)와 연결되며 재포기조(11)로부터 유입되는 활성슬러지와 상징액을 분리하여 상징액은 방류되며 활성슬러지는 혐기접촉조(1)로 반송되는 침전조(12)로 구성된 것에 있어서,In connection with the re-aeration tank 11 and separating the activated sludge and the supernatant flowing from the re-aeration tank 11, the supernatant is discharged and composed of a settling tank 12 is returned to the anaerobic contact tank (1), 분리조(2)로부터 이어지는 질산화 반응조를 3개로 분리하여 관형흐름을 통해질산화를 더 안정적으로 수행하고, 탈질반응조 다음에 간헐포기조를 설치하는 것을 특징으로 폐수처리방법.Separation of the nitrification reaction tank followed from the separation tank (2) into three to perform nitrification more stably through the tubular flow, and the intermittent aeration tank after the denitrification reaction tank, characterized in that the wastewater treatment method. 제 1 항에 있어서 제 1 간헐폭기조(3)를 간헐폭기로 운영하여 분리조(2)로부터 유입되는 상징액에 함유된 유기물로 탈질 반응을 유도하여 방류수의 질산염의 농도를 감소시키는 것을 특징으로 하는 폐수처리 방법.The wastewater according to claim 1, wherein the first intermittent aeration tank 3 is operated as an intermittent aeration to induce a denitrification reaction with organic substances contained in the supernatant flowing from the separation tank 2 to reduce the concentration of nitrate in the effluent. Treatment method.
KR10-2003-0006620A 2003-02-03 2003-02-03 A waste water disposal plant KR100478010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0006620A KR100478010B1 (en) 2003-02-03 2003-02-03 A waste water disposal plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0006620A KR100478010B1 (en) 2003-02-03 2003-02-03 A waste water disposal plant

Publications (2)

Publication Number Publication Date
KR20040070407A true KR20040070407A (en) 2004-08-09
KR100478010B1 KR100478010B1 (en) 2005-03-28

Family

ID=37358693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0006620A KR100478010B1 (en) 2003-02-03 2003-02-03 A waste water disposal plant

Country Status (1)

Country Link
KR (1) KR100478010B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640940B1 (en) * 2005-03-04 2006-11-06 (주)이엔바이오21 Continual system for processing waste water
KR100643775B1 (en) * 2006-05-12 2006-11-10 대양바이오테크 주식회사 Treatment hybrid process for remove nutrient using floating microorganism
CN104724828A (en) * 2015-03-31 2015-06-24 成都信息工程学院 Synchronous nitrification and denitrification coupled dephosphorization method for domestic sewage with low carbon nitrogen ratio
CN106186613A (en) * 2016-08-31 2016-12-07 柳州市润广科技有限公司 A kind of processing method of activated sludge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100640940B1 (en) * 2005-03-04 2006-11-06 (주)이엔바이오21 Continual system for processing waste water
KR100643775B1 (en) * 2006-05-12 2006-11-10 대양바이오테크 주식회사 Treatment hybrid process for remove nutrient using floating microorganism
CN104724828A (en) * 2015-03-31 2015-06-24 成都信息工程学院 Synchronous nitrification and denitrification coupled dephosphorization method for domestic sewage with low carbon nitrogen ratio
CN104724828B (en) * 2015-03-31 2017-05-03 成都信息工程学院 Synchronous nitrification and denitrification coupled dephosphorization method for domestic sewage with low carbon nitrogen ratio
CN106186613A (en) * 2016-08-31 2016-12-07 柳州市润广科技有限公司 A kind of processing method of activated sludge

Also Published As

Publication number Publication date
KR100478010B1 (en) 2005-03-28

Similar Documents

Publication Publication Date Title
KR100415252B1 (en) Biological Nitrogen Removal from Nitrogen-Rich Wastewaters by Partial Nitrification and Anaerobic Ammonium Oxidation
KR100821659B1 (en) E-mbr system
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
KR100670231B1 (en) System for processing waste water using rumination sbr
KR100240801B1 (en) Method for purifying wastewater
KR100640940B1 (en) Continual system for processing waste water
KR100478010B1 (en) A waste water disposal plant
KR100513567B1 (en) Wastewater Purification Apparatus
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
KR19990065434A (en) Wastewater Purification Method
KR100462578B1 (en) The purification method of an organic waste water with high density
KR20020087799A (en) Method for advanced wastewater treatment using multi-sbr system
KR100901484B1 (en) Wastewater disposal system using internal circulation and rotating disk type nitrification tank
KR100572516B1 (en) Wastewater Treatment Method
KR100397923B1 (en) Rotating Biological Contactors to use BOD, N, P removal technology
KR100321679B1 (en) Advanced wastewater treatment method
KR100321680B1 (en) Advance wastewater treatment method by wastewater passage alternation
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100670211B1 (en) Process packed with float media using biosorption mechanism
KR100453484B1 (en) Method of wasetwater treatment
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
KR100745444B1 (en) Waste water treatment system using eco media(em)
KR20050024524A (en) High intergated Biological Nutrient Removal System
KR100243565B1 (en) Apparatus for purifying wastewater
KR20020089085A (en) Apparatus for treating Nitrogen and Phosphorus in wastewater and A Treatment method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
N231 Notification of change of applicant
FPAY Annual fee payment

Payment date: 20130307

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140306

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160310

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180308

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200205

Year of fee payment: 16