KR20040069016A - Poly Si TFT LCD with High Reflection and Apparatus for Driving the Same - Google Patents

Poly Si TFT LCD with High Reflection and Apparatus for Driving the Same Download PDF

Info

Publication number
KR20040069016A
KR20040069016A KR1020030005420A KR20030005420A KR20040069016A KR 20040069016 A KR20040069016 A KR 20040069016A KR 1020030005420 A KR1020030005420 A KR 1020030005420A KR 20030005420 A KR20030005420 A KR 20030005420A KR 20040069016 A KR20040069016 A KR 20040069016A
Authority
KR
South Korea
Prior art keywords
liquid crystal
crystal display
tft
display device
pixel electrode
Prior art date
Application number
KR1020030005420A
Other languages
Korean (ko)
Other versions
KR100731046B1 (en
Inventor
노봉규
Original Assignee
세심광전자기술(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세심광전자기술(주) filed Critical 세심광전자기술(주)
Priority to KR1020030005420A priority Critical patent/KR100731046B1/en
Publication of KR20040069016A publication Critical patent/KR20040069016A/en
Application granted granted Critical
Publication of KR100731046B1 publication Critical patent/KR100731046B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

PURPOSE: A TFT-LCD(Thin Film Transistor Liquid Crystal Display) having high reflectivity and an apparatus for driving the TFT-LCD are provided to increase reflectivity even when resolution of a fabrication process is low. CONSTITUTION: A TFT-LCD includes a common electrode layer(84), a pixel electrode layer(82), and a liquid crystal layer(83) interposed between the common electrode layer and pixel electrode layer. The TFT-LCD further includes a planarization layer(96) and a reflecting layer(97) formed between the liquid crystal layer and pixel electrode layer. The reflecting layer is formed in a manner that an insulating layer having high refractive index and an insulating layer having low refractive index are alternately formed.

Description

반사율이 높은 박막 다결정 규소 액정표시소자와 그 구동장치 { Poly Si TFT LCD with High Reflection and Apparatus for Driving the Same}High-reflection thin film polycrystalline silicon liquid crystal display and its driving device {Poly Si TFT LCD with High Reflection and Apparatus for Driving the Same}

본 발명은 인접하는 화소전극들 사이의 간격이 크더라도 반사도가 높은 다결정 박막트랜지스터(Thin Film Transistor) 액정표시소자(poly TFT LCD)와 그 구동장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a thin film transistor (poly TFT LCD) having a high reflectivity even with a large distance between adjacent pixel electrodes, and a driving device thereof.

액정투영기(LCD Projector)에 쓰이는 액정표시소자는 화소마다 TFT등과 같은 능동소자를 이용하여 액정층에 전압을 인가함으로써 영상을 표시한다. 이와 같은 액정투영기에 쓰이는 액정표시소자는 빛이 화소전극을 투과하는 투과형과 반사하는반사형으로 나뉜다.A liquid crystal display device used in an LCD projector displays an image by applying a voltage to the liquid crystal layer using an active element such as a TFT for each pixel. The liquid crystal display device used in the liquid crystal projector is classified into a transmission type through which light passes through the pixel electrode and a reflection reflection type.

도1은 TFT 소자를 쓴 액정표시소자의 단위화소의 등가회로도이다. TFT 액정표시소자는 화소마다 TFT부(50)가 부착되어 있다. 주사선(70)의 선택주기 동안에는 신호선(60)에 걸린 전압이 TFT부(15)의 소스-드레인을 거쳐서 액정층의 정전용량(CLC)과 보전축전기(storage capacitor)의 정전용량(CST)에 걸리고, 주사선이 비선택주기 동안에는 소스-드레인 사이의 저항이 커지기 때문에 선택주기 동안에 액정층과 보전축전기에 걸리는 전압이 유지된다.1 is an equivalent circuit diagram of a unit pixel of a liquid crystal display device using a TFT device. In the TFT liquid crystal display device, a TFT section 50 is attached to each pixel. During the selection period of the scan line 70, the voltage applied to the signal line 60 passes through the source-drain of the TFT portion 15 to pass through the capacitance C LC of the liquid crystal layer and the capacitance C ST of the storage capacitor. And the resistance between the source and the drain increases during the non-selection period of the scan line, so that the voltage applied to the liquid crystal layer and the storage capacitor is maintained during the selection period.

도2는 종래의 반사형 TFT 액정표시소자의 단면도로서, 공통전극층, 화소전극층 및 그들 사이에 있는 액정층으로 구성된다. 공통전극층은 유리기판(85)과 그 유리기판(85) 위에 형성된 공통전극(84)및 공통전극(84) 위에 배향막(95)이 형성된다. 화소전극층은, TFT 유리기판(80)에 화소전극(82), TFT부(50),빛차단막(81,85), 절연막(90,91,92,93,94)이 적층되어 형성된다. 화소전극층은 액정층과 인접하는 면에 배향막이(95-1)이 형성되어 있다. 한편, 빛차단막(86)과 화소전극(82) 사이에 형성된 절연막(93)은, 도1에 나타 낸 것과 같이, 보전축전지(storage capacitor; Cst) 역할을 한다. 도3은 TFT부(50)를 상세하게 나타낸 단면도로서, 소스 전극(51), 게이트 전극(52), 드레인 전극(53)과 이들과 연결된 LDD(Lightly Doped Drain)(54,55), LDD(54,55) 사이에 형성된 채널(56) 및 절연막(91,92)으로 구성된다. 이와같은 종래의 액정표시소자에서 화소전극(82)은 빛의 반사율이 높고, 공정성이 좋은 알루미늄(Al)으로 만들고, TFT의 채널(56)은 이동도가 큰 다결정(polycrystal) 규소(Si)로 만든다. 다결정 규소는, 주사선이 비선택 기간 동안에 누설전류(off current)가 크기 때문에 LDD(Lightly Doped Drain) 구조(54, 55)를 추가함으로 누설전류를 줄인다. 액정투영기의 경우에는 TFT 액정표시소자로 입사되는 빛이 매우 밝기 때문에, 빛이 TFT 채널에 조사되면 누설전류가 증가하여 화질이 떨어진다. 따라서 TFT 위아래로 빛차단막(81,86)을 둔다.Fig. 2 is a sectional view of a conventional reflective TFT liquid crystal display device, which is composed of a common electrode layer, a pixel electrode layer and a liquid crystal layer therebetween. The common electrode layer includes a glass substrate 85, a common electrode 84 formed on the glass substrate 85, and an alignment layer 95 formed on the common electrode 84. The pixel electrode layer is formed by laminating pixel electrodes 82, TFT portions 50, light blocking films 81 and 85, and insulating films 90, 91, 92, 93, and 94 on the TFT glass substrate 80. An alignment film 95-1 is formed on the surface of the pixel electrode layer adjacent to the liquid crystal layer. On the other hand, the insulating film 93 formed between the light blocking film 86 and the pixel electrode 82 serves as a storage capacitor (Cst), as shown in FIG. 3 is a cross-sectional view illustrating the TFT unit 50 in detail, and includes a source electrode 51, a gate electrode 52, a drain electrode 53, and lightly doped drains (LDDs) 54 and 55 and LDDs connected thereto. It consists of a channel 56 formed between 54 and 55 and an insulating film 91 and 92. In the conventional liquid crystal display device, the pixel electrode 82 is made of aluminum (Al) having high light reflectivity and good processability, and the channel 56 of the TFT is made of polycrystalline silicon (Si) having high mobility. Make. Polycrystalline silicon reduces the leakage current by adding LDD (Lightly Doped Drain) structures 54 and 55 because the scan line has a large off current during the non-selection period. In the case of the liquid crystal projector, since the light incident on the TFT liquid crystal display is very bright, when light is irradiated onto the TFT channel, the leakage current increases and the image quality is deteriorated. Therefore, light blocking films 81 and 86 are placed above and below the TFT.

이와 같은 액정표시소자가 액정투영기(LCD Projector)에 쓰일 경우에 그 화소는 피치(pitch)는 10∼20㎛로 매우 미세하게 제작되어야하고, 이를 위하여 노광과 식각공정에서 엄격한 공정능력이 필요하다. 따라서 액정투영기에 쓰이는 액정표시소자의 능동소자부 기판은 1㎛ 이하의 높은 해상도가 요구되는 메모리 또는 비메모리의 일반 반도체 공장에서 만든다. 일반 반도체 공정으로는 12˝또는 8˝로 기판의 크기가 제한되어, 대량 생산이 어려워 생산단가가 매우 높다. 반면에 비정질규소막에 레이저를 조사하여 다결정 박막트랜지스터 (poly silicon Thin Film Transistor)를 만드는 공정으로 액정투영기에 쓰이는 액정표시소자를 만드는 경우에는 기판의 크기가 370 ×470mm 등으로 크지만, 제조공정의 해상도가 2∼3㎛ 정도로 표시화면에서 화소전극의 차지비율(fill factor)이 낮아, 빛의 반사율이 떨어진다. 도4는 도2의 동작을 설명하기 위한 단면도로서, TFT부는 생략하였다. 먼저, 화소의 길이가 P이고, 화소전극(82)과 화소전극(82) 사이의 떨어진 거리가 R이라면 화소의 피치는 (P+R)이라고 정의할 수 있다. 화소전극(82)으로 입사되는 빛(L2)는 화소전극(82)에서 반사되어 화면에 나타나지만, 화소전극(82)과 화소전극(82) 사이로 입사되는 빛(L1)은 자체 손실된다. 이와 같은 액정표시소자의 차지비율(fillfactor) F는 아래 식과 같다.When such a liquid crystal display device is used in an LCD projector, the pixel has to be manufactured very finely with a pitch of 10 to 20 μm. For this purpose, strict process capability is required in the exposure and etching processes. Accordingly, the active element substrate of the liquid crystal display device used in the liquid crystal projector is made in a general semiconductor factory of a memory or a non-memory that requires a high resolution of 1 μm or less. In the general semiconductor process, the size of the substrate is limited to 12 kHz or 8 kHz, and mass production is difficult, resulting in very high production costs. On the other hand, the process of making a polysilicon thin film transistor by irradiating an amorphous silicon film with a laser. When making a liquid crystal display device for a liquid crystal projector, the size of the substrate is large, such as 370 x 470mm, The fill factor of the pixel electrode is low on the display screen at a resolution of about 2 to 3 μm, resulting in a low reflectance of light. 4 is a cross-sectional view for explaining the operation of FIG. 2, and the TFT portion is omitted. First, if the length of the pixel is P and the distance between the pixel electrode 82 and the pixel electrode 82 is R, the pitch of the pixel may be defined as (P + R). Light L2 incident on the pixel electrode 82 is reflected on the pixel electrode 82 and appears on the screen, but light L1 incident between the pixel electrode 82 and the pixel electrode 82 is lost. The fill factor F of the liquid crystal display device is as follows.

예를들어, 화소의 피치가 15㎛이고 화소전극 사이의 거리가 3㎛라면 차지비율 F는 64%이다. 화소전극과 화소전극 사이의 거리가 줄어들면 차지비율은 높아지지만 생산 공정에서 단락이 많이 생겨 수율이 떨어지는 문제가 있다. 반대로 수율을 높이기 위하여 화소전극 사이의 거리를 크게하면, 빛의 반사도가 줄어 화면의 밝기가 떨어진다.For example, if the pitch of the pixel is 15 mu m and the distance between the pixel electrodes is 3 mu m, the charge ratio F is 64%. If the distance between the pixel electrode and the pixel electrode is reduced, the charge ratio is increased, but there is a problem that the yield is reduced due to a lot of short circuit in the production process. On the contrary, when the distance between the pixel electrodes is increased to increase the yield, the light reflectivity decreases and the brightness of the screen decreases.

도5는 종래의 액정표시소자의 구동장치의 구성도이다. 액정투영기에 쓰이는 액정표시소자는 화소의 피치가 10∼20㎛로 미세하여, 각각의 주사선과 신호선에 대응되는 전극을 외부 구동 IC에 직접 연결하기 어려우므로, 도5에서와 같이 화소의 표시영역(40)에는 각각의 화소에 TFT를 만들고, 표시영역(40) 밖에 구동회로를 만든다. 주사선 구동부(20)는 순차적으로 선택신호와 비선택신호를 만들어 주사선에 인가하고, 신호선 구동부(30)는 주사선이 선택신호가 인가 될 때, 화소에 신호전압을 걸어준다. 신호선 구동부와 주사선 구동부는 주로 시프트레지스터와 클락회로로 되어 있다.5 is a configuration diagram of a driving apparatus of a conventional liquid crystal display element. The liquid crystal display device used in the liquid crystal projector has a fine pitch of 10 to 20 μm, and thus it is difficult to directly connect the electrodes corresponding to the respective scan lines and the signal lines to the external driving IC. In 40, a TFT is made in each pixel, and a driving circuit is made outside the display area 40. The scan line driver 20 sequentially generates a selection signal and a non-selection signal and applies them to the scan line, and the signal line driver 30 applies a signal voltage to the pixel when the scan line is applied with the selection signal. The signal line driver and scan line driver are mainly composed of a shift register and a clock circuit.

본 발명의 목적은 화소전극 위에 굴절률이 높고 낮은 절연막을 교대로 피막하여, 제조 공정의 해상도가 낮더라도 빛의 반사율이 높은 다결정 규소 액정표시소자와 그 구동장치를 제공하는 데에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a polycrystalline silicon liquid crystal display device having a high reflectance of light and a driving apparatus thereof by alternately coating an insulating film having a high refractive index and a low refractive index on a pixel electrode even when the resolution of the manufacturing process is low.

도1은 TFT 액정표시소자의 단위화소의 등가회로도이다.1 is an equivalent circuit diagram of a unit pixel of a TFT liquid crystal display element.

도2는 종래의 반사형 TFT 액정표시소자의 단면도이다.2 is a cross-sectional view of a conventional reflective TFT liquid crystal display device.

도3은 도2의 TFT부를 상세하게 나타낸 단면도이다.3 is a cross-sectional view showing the TFT portion in FIG. 2 in detail.

도4는 도2의 동작을 설명하기 위한 단면도이다.4 is a cross-sectional view illustrating the operation of FIG. 2.

도5는 종래의 액정표시소자의 구동장치의 구성도이다.5 is a configuration diagram of a driving apparatus of a conventional liquid crystal display element.

도6은 본발명의 반사형 TFT 액정표시소자의 단면도이다.6 is a cross-sectional view of a reflective TFT liquid crystal display device of the present invention.

도7은 본 발명의 빛을 반사하는 다중 반사막의 단면도이다.7 is a sectional view of a multiple reflecting film reflecting light of the present invention.

도8는 본 발명의 반사형 TFT 액정표시소자의 동작을 설명하기 위한 단면도이다.8 is a cross-sectional view for explaining the operation of the reflective TFT liquid crystal display device of the present invention.

도9는 본 발명의 다결정 규소 TFT 액정 표시소자의 등가회로도의 실시예이다.9 is an embodiment of an equivalent circuit diagram of a polycrystalline silicon TFT liquid crystal display device of the present invention.

도10은 본 발명의 다결정 규소 TFT 액정 표시소자의 등가회로도의 다른 실시예이다.Fig. 10 is another embodiment of an equivalent circuit diagram of the polycrystalline silicon TFT liquid crystal display device of the present invention.

도11은 본발명의 주사선 스위칭부 구동 파형이다.Fig. 11 is a drive line switching waveform of the present invention.

도12는 신호선 스위칭부 구동 파형이다.12 is a waveform of driving a signal line switch.

※ 도면의 주요 부분에 대한 부호의 설명※ Explanation of codes for main parts of drawing

10 제어부 20 신호선 구동부 30 주사선 구동부10 Control unit 20 Signal line driver 30 Scan line driver

40 표시 영역 50 박막트랜지스터부 51 소스전극40 Display area 50 Thin film transistor section 51 Source electrode

52 게이트 전극 53 드레인 전극 54,55 LDD52 Gate Electrode 53 Drain Electrode 54,55 LDD

56 채널 60 신호선 70 주사선56 channel 60 signal line 70 scan line

80 TFT 유리기판 81,86 빛 차단막 82 화소전극80 TFT Glass Substrate 81,86 Light Blocker 82 Pixel Electrode

83 액정층 84 공통전극 85 공통전극 유리기판83 Liquid crystal layer 84 Common electrode 85 Common electrode Glass substrate

90,91,92,93,94 절연막 95 배향막 96 평탄화막90,91,92,93,94 insulating film 95 alignment film 96 planarization film

97 반사막 200 신호선 스위칭부 300 주사선 스위칭부97 Reflective film 200 Signal line switch 300 Scan line switch

310 선택기간 인가부 320 비선택기간 인가부310 Approved Period of Selection 320 Approved Period of Non-Selective Period

도6은 본발명의 반사형 TFT 액정표시소자의 단면도로서, 공통전극층, 화소전극층 및 그들 사이에 있는 액정층으로 구성된다. 도6의 구조는 도2의 구조와 동일하지만,액정층과 화소전극층 사이에 평탄화막(96)과 반사막(97)이 추가로 형성되어 있다.Fig. 6 is a sectional view of the reflective TFT liquid crystal display device of the present invention, which is composed of a common electrode layer, a pixel electrode layer, and a liquid crystal layer therebetween. The structure of FIG. 6 is the same as that of FIG. 2, but a planarization film 96 and a reflection film 97 are further formed between the liquid crystal layer and the pixel electrode layer.

도7은 본 발명의 빛을 반사하는 다중 반사막을 상세하게 나타낸 단면도이다. 굴절율이 높은 절연막(H)과 굴절률이 낮은 절연막(L)을 굴절률(n)과 두께의(d) 곱(nd)이 가시광선의 중심 파장의 1/4이 되게하고, 여러 층을 피막한다. 대표적인 경우가 SiO2와 Ti2O5이다. 이러한 반사막을 유전체 거울(dielectric mirror)이라고 부른다.7 is a cross-sectional view showing in detail the multiple reflective film reflecting light of the present invention. The insulating film H having a high refractive index and the insulating film L having a low refractive index are formed so that the product of the refractive index n and the thickness d is 1/4 of the central wavelength of visible light, and various layers are coated. Representative cases are SiO 2 and Ti 2 O 5 . Such a reflective film is called a dielectric mirror.

이와 같이 구성되는 본 발명의 반사형 TFT 액정표시소자의 동작을 설명하면 다음과 같다.The operation of the reflective TFT liquid crystal display device of the present invention configured as described above is as follows.

도8은 본발명의 반사형 TFT 액정표시소자의 동작을 설명하기 위한 단면도이다. 도시된 바와 같이 화소전극(82)으로 입사되는 빛(L2)과 화소전극과 화소전극 사이로 입사되는 빛(L1)은 모두 반사막(97)에서 반사되므로 차지비율(fill factor)은 100%가 된다.8 is a cross-sectional view for explaining the operation of the reflective TFT liquid crystal display device of the present invention. As shown, since the light L2 incident to the pixel electrode 82 and the light L1 incident between the pixel electrode and the pixel electrode are both reflected by the reflective film 97, the fill factor becomes 100%.

도9는 본 발명의 다결정 규소 액정 표시소자의 등가회로도의 일실시예이다. 비정질 규소에 레이저를 조사하여 다결정 TFT를 만드는 경우에도 화면의 모드가VGA 이하인 경우에는 구동주파수가 낮아 도5와 같이 신호선 구동부와 주사선 구동부의 주변회로를 만들 수 있다. 그러나 화면의 모드가 XGA, SXGA인 경우에는 시프트레지스터와 클락발생부를 도5와 같이 신호선 구동부와 주사선 구동부에 만들기가 어렵다. 비정질 규소에 레이저를 조사하여 만든 다결정 TFT의 n 채널은 이동도가 100∼200cm2/Vsec이지만, p 채널의 이동도는 100cm2/Vsec 이하로, 구동 주파수가 한계가 있다. 또한 신호선 구동부와 주사선 구동부를 도8과 같이 내장할 경우에는 그 자체에서의 불량이 생길 수 있고, 또한 추가 공정이 필요하므로 수율이 떨어진다.9 is an embodiment of an equivalent circuit diagram of a polycrystalline silicon liquid crystal display device of the present invention. Even when the amorphous silicon is irradiated with a laser to produce a polycrystalline TFT, when the screen mode is less than VGA, the driving frequency is low, so that peripheral circuits of the signal line driver and the scan line driver can be made as shown in FIG. However, when the screen modes are XGA and SXGA, it is difficult to make the shift register and the clock generator in the signal line driver and the scan line driver as shown in FIG. Although an n-channel TFT made of polysilicon by irradiating laser mobility 100~200cm 2 / Vsec in the amorphous silicon, the mobility of the p-channel has less than 100cm 2 / Vsec, the drive frequency is limited. In addition, when the signal line driver and the scan line driver are incorporated as shown in Fig. 8, a defect may occur in itself, and further processing is required so that the yield is reduced.

따라서 도9에 나타낸 것과 같이, 신호선 스위칭부(200)에 입력되는 신호는 영상신호 V(1), V(2), ...,V(n)과 제어신호 D(1), D(2), ... , D(n)를 입력하고, 주사선 스위칭부(300)는 주사선에 직접 전압이 인가되는 신호 G(1), G(2), ...,G(m)과 제어신호 S(1), S(2), ..., S(m), SL(1), SL(2), ..., SL(m)을 입력한다. 주사선 스위칭부(300)는 선택기간 인가부(310)와 비선택기간 인가부(320)로 구성된다. 도10은 본 발명의 다결정 규소 TFT 액정표시소자의 등가회로도의 다른 실시 예로서, 도9의 선택기간 인가부(310)와 비선택기간 인가부(320)를 표시영역(40)을 중심으로 나눈 것이다. 도9와 도10의 회로상 동작은 동일하다. 도9처럼 선택기간 인가부(310)와 비선택기간 인가부(320)를 분리하면, 신호선 스위칭부의 배선을 표시영역의 중심을 기준으로 좌우동형으로 배치할 수 있으므로, 스위칭부의 배선의 길이를 줄 일 수 있다. 스위칭소자는 모두 n 채널이므로, 제어신호에 높은전압이 걸리면(1이되면) 채널의 저항이 낮아지고, 낮은 전압이 걸리면(0이되면) 채널이 저항이 높은 상태가 된다.Therefore, as shown in FIG. 9, the signal input to the signal line switching unit 200 is a video signal V (1), V (2), ..., V (n) and control signals D (1), D (2). ), ..., D (n), and the scan line switching unit 300 receives signals G (1), G (2), ..., G (m) and a control signal to which voltage is directly applied to the scan line. S (1), S (2), ..., S (m), SL (1), SL (2), ..., SL (m) are input. The scan line switching unit 300 includes a selection period applying unit 310 and a non-selection period applying unit 320. FIG. 10 is an example of an equivalent circuit diagram of the polysilicon TFT liquid crystal display device according to the present invention. The selection period applying unit 310 and the non-selection period applying unit 320 of FIG. 9 are divided by the display area 40. will be. The circuit operations of Figs. 9 and 10 are the same. When the selection period applying unit 310 and the non-selection period applying unit 320 are separated, as shown in FIG. Can be. Since the switching elements are all n channels, when the control signal is subjected to high voltage (1), the resistance of the channel is low, and when the low voltage is applied (0), the channel is high.

주사선이 s개라면 주사선을 m개의 영역으로 나눈다. 그 관계는 아래 식과 같다.If there are s of scan lines, the scan lines are divided into m regions. The relationship is as follows.

m이 정수가 아니면 반올림한다. 2m개의 제어신호(S,SL)와 m개의 인가신호(G)가 필요하다. 수학식 2와 같이 주사선 영역을 나누면 필요한 주사선 구동 전극수는 3m이 되고, 그 수가 최소이다. 신호선이 t개라면 신호선을 n개의 영역으로 나눈다. 그 관계는 아래 식과 같다.If m is not an integer, it is rounded up. 2 m control signals S and SL and m application signals G are required. When the scanning line region is divided as in Equation 2, the number of scanning line driving electrodes required is 3 m, and the number is minimum. If there are t signal lines, the signal lines are divided into n areas. The relationship is as follows.

n이 정수가 아니면 반올림한다. n개의 제어신호(D)와 n개의 영상신호(V)가 필요하다. 수학식 3과 같이 신호선 영역을 나누면 필요한 주사선 구동 전극수는 2n이 되고, 그 수가 최소이다.If n is not an integer, it is rounded up. n control signals D and n video signals V are required. When the signal line region is divided as shown in Equation 3, the number of scanning line driving electrodes required is 2n, and the number is minimum.

UXGA인 경우 신호선은 1600개이고, 주사선은 1200개이므로, 구동 전극수를 최소한으로 줄이는 조건은 수학식 2와 수학식 3으로부터 알 수 있다. 신호선 스위칭부는 영상신호(V)와 제어신호(D)가 각각 40개가 필요하다. 주사선 스위칭부는 제어부(S, SL)이 각각 35개씩 필요하고, 주사선 인가신호(G)도 35개가 필요하다.전체 연결 단자는 185개이다.In the case of UXGA, since there are 1600 signal lines and 1200 scanning lines, the conditions for reducing the number of driving electrodes to a minimum can be known from Equations 2 and 3 below. The signal line switching unit needs 40 image signals V and 40 control signals, respectively. Each of the scanning line switching units requires 35 control units S and SL, and also requires 35 scanning line applying signals G. The total connection terminals are 185.

도11은 본발명의 주사선 구동 파형이다. 주사선의 선택기간 인가부의 영역 1이 선택이 될 경우에, S(1) 신호가 1이 되고, S(1)이 1이 되는 동안에 G1, G2, ... Gm 신호가 각각 주사선(1,2,...m)에 걸린다. S(1)이 1이 되는 동안에 주사선(1,2,...m)에 VH신호가 순차적으로 걸린다. 주사선의 선택기간 인가부(310)의 영역 1이 비선택이 되는 기간에는, 비선택기간 인가부(320)의 영역 1의 SL1 신호가 1이 되어 주사선(1,2,....m)에는 VL전압이 걸린다. 주사선의 선택기간 인가부(310)의 영역 2가 선택이 될 경우에, S2 신호가 1이 되고, S2가 1이 되는 동안에 G1, G2, ... Gm 신호가 각각 주사선(m+1,m+2,...2m)에 걸린다. S2가 1이 되는 동안에 주사선(m+1,m+2,...2m)에 VH신호가 순차적으로 걸린다. 주사선의 선택기간 인가부(310)의 영역 2가 비선택이 되는 기간에는, 비선택기간 인가부(320)의 영역 2의 SL2 신호가 1이 되어 주사선(m+1,m+2,....2m)에는 VL전압이 걸린다.11 is a scanning line drive waveform of the present invention. When the area 1 of the selection period applying unit of the scanning line is selected, the signal S (1) becomes 1, while the signals G1, G2, ... Gm are applied to the scanning lines 1, 2 while S (1) becomes 1, respectively. , ... m). While S (1) becomes 1, the V H signals are sequentially applied to the scan lines 1, 2, ... m. In the period in which region 1 of the selection period applying unit 310 of the scanning line becomes non-selected, the SL1 signal of region 1 of the non-selecting period applying unit 320 becomes 1, and thus the scanning lines (1, 2, ..., m) It takes V L voltage. When area 2 of the selection period applying unit 310 of the scanning line is selected, the signal S2 becomes 1, while the signals G1, G2, ... Gm are respectively applied to the scanning line m + 1, m while S2 becomes 1; +2, ... 2m). While S2 becomes 1, the V H signal is sequentially applied to the scan lines m + 1, m + 2, ... 2m. In the period where region 2 of the selection period applying unit 310 of the scanning line becomes non-selected, the SL2 signal of region 2 of the non-selecting period applying unit 320 becomes 1, and the scanning lines (m + 1, m + 2, ... 2 m) takes the V L voltage.

도12는 신호선 스위칭부의 구동파형이다. 주사선이 선택되는 화소에 신호선의 전압이 걸린다. 신호선의 스위칭부(200)의 제어신호 D(1), D(2), ..., D(n)이 주사선에 VH되는 동안에 순차 주사하여 n개의 영상신호가 동시에 신호선에 걸린다. 주사선의 제어신호 S(r)이 1이 되고 G(p)가 VH이고, 신호선의 제어신호 D(q)가 1이 되면, 영상신호가 인가되는 주사선은 (m ×(r-1) + p)이고, (n ×(q-1))번째와 (n ×q)번째 신호선에 영상신호가 인가된다.12 is a drive waveform of a signal line switching unit. The voltage of the signal line is applied to the pixel where the scan line is selected. The control signals D (1), D (2), ..., D (n) of the signal line switching unit 200 are sequentially scanned while V H is applied to the scan line so that n video signals are simultaneously caught on the signal line. When the control signal S (r) of the scanning line is 1, G (p) is V H , and the control signal D (q) of the signal line is 1, the scanning line to which the video signal is applied is (m × (r-1) + p), and a video signal is applied to the (n x (q-1)) th and (n x q) th signal lines.

본발명의 액정표시소자는 화소전극과 화소전극 사이의 거리가 2㎛ 이상이라도 차지비율이 높고, n채널로된 주사선스위칭부와 신호선 스위칭부만으로 화소가 구동된다. 따라서 액정투영기에 쓰이는 본 발명의 액정표시소자는 비정질 규소에 레이저를 조사하여 다결정을 만드는 공정에서 대량으로 만들 수 있으므로, 생산 단가가 낮고, 화질이 우수하다.In the liquid crystal display device of the present invention, even if the distance between the pixel electrode and the pixel electrode is 2 µm or more, the charge ratio is high, and the pixel is driven only by the scan line switching unit and the signal line switching unit formed of n channels. Therefore, the liquid crystal display device of the present invention used in the liquid crystal projector can be produced in a large amount in the process of making polycrystalline by irradiating the laser to amorphous silicon, the production cost is low, and the image quality is excellent.

Claims (6)

유리기판(85)과 그 유리기판(85) 위에 형성된 공통전극(84) 및 공통전극(84)에 형성된 배향막(95)을 포함히는 공통전극층과, TFT 유리기판에(80) 화소전극(82), TFT부(50), 빛차단막(81,85) 절연막(90,91,92,93,94)이 적층되는 화소전극층과 상기 공통전극층과 화소전극층 사이에 형성된 액정층(83)을 포함하는 액정표시소자에 있어서,The common electrode layer including the glass substrate 85, the common electrode 84 formed on the glass substrate 85, and the alignment layer 95 formed on the common electrode 84, and the pixel electrode 82 on the TFT glass substrate 80. ), A TFT electrode 50, a light blocking film 81, 85, and a pixel electrode layer on which insulating films 90, 91, 92, 93, and 94 are stacked, and a liquid crystal layer 83 formed between the common electrode layer and the pixel electrode layer. In the liquid crystal display device, 박막트랜지스터 기판(80)의 재질이 유리이고, 박막트랜지스터(TFT;Thin Film Transistor)부(50)의 채널이 다결정 규소(poly silicon)이고, 화소전극(82)과 액정층 사이에 굴절률이 다른 절연층으로 된 반사막(97)이 피막되어 있는 것을 특징으로하는 액정표시소자.The material of the thin film transistor substrate 80 is glass, the channel of the thin film transistor (TFT) unit 50 is polysilicon, and the refractive index is different between the pixel electrode 82 and the liquid crystal layer. A liquid crystal display device characterized in that a layered reflective film (97) is coated. 제1항에 있어서 박막트랜지스터부(50)의 채널(56)이 비정질 규소막에 레이저를 조사하여 다결정으로 만든 것을 특징으로하는 액정표시소자.The liquid crystal display device according to claim 1, wherein the channel (56) of the thin film transistor portion (50) is made of polycrystalline by irradiating an amorphous silicon film with a laser. 제1항에 있어서 인접 화소전극 사이의 거리가 2㎛ 이상인 것을 특징으로하는 액정표시소자.The liquid crystal display device according to claim 1, wherein a distance between adjacent pixel electrodes is 2 mu m or more. 유리기판(85)과 그 유리기판(85) 위에 형성된 공통전극(84) 및 공통전극(84)에 형성된 배향막(95)을 포함히는 공통전극층과, TFT 유리기판에(80)화소전극(82), TFT부(50), 빛차단막(81,85) 절연막(90,91,92,93,94)이 적층되는 화소전극층과 상기 공통전극층과 화소전극층 사이에 형성된 액정층(83)과 상기 TFT부(50)의 채널이 다결정 규소(poly silicon)이고, 상기 화소전극(82)과 상기 액정층(83) 사이에 굴절률이 다른 반사막(97)이 복수층을 포함하는 액정표시소자와, 상기 액정표시소자의 주사선에 연결되는 주사선 스위칭부(300)와A common electrode layer including a glass substrate 85, a common electrode 84 formed on the glass substrate 85, and an alignment film 95 formed on the common electrode 84, and a pixel electrode 82 on a TFT glass substrate (80). ), The TFT portion 50, the light blocking films 81, 85, and the pixel electrode layer on which the insulating films 90, 91, 92, 93, and 94 are stacked, and the liquid crystal layer 83 and the TFT formed between the common electrode layer and the pixel electrode layer. A liquid crystal display device comprising a plurality of layers of a reflective film 97 having a refractive index between the pixel electrode 82 and the liquid crystal layer 83, wherein the channel of the portion 50 is polysilicon, and the liquid crystal. A scan line switching unit 300 connected to the scan line of the display device; 상기 액정표시소자의 신호선에 연결되는 신호선 스위칭부(200)를 포함하는 것을 특징으로하는 액정표시소자 구동장치.And a signal line switching unit (200) connected to the signal line of the liquid crystal display device. 제 4항에 있어서, 상기 주사선 스위칭부(300)는 선택기간 인가부(310)와 비선택기간 인가부(320)로 구성된 것을 특징으로하는 박막 다결정 규소 액정표시소자 구동장치.5. The thin film polysilicon liquid crystal display driving device according to claim 4, wherein the scan line switching unit (300) comprises a selection period applying unit (310) and a non-selection period applying unit (320). 제5항에 있어서, 상기 주사선의 비선택기간 인가부(320)와 주사선의 선택기간 인가부(310)는 상기 액정표시소자를 중심으로 나누어져 설치되는 것을 특징으로하는 박막 다결정 규소 액정표시소자 구동장치.6. The thin film polycrystalline silicon liquid crystal display device of claim 5, wherein the non-selection period applying unit 320 of the scan line and the selection period applying unit 310 of the scan line are provided separately from the liquid crystal display device. Device.
KR1020030005420A 2003-01-28 2003-01-28 LCD Apparatus with High Reflection KR100731046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030005420A KR100731046B1 (en) 2003-01-28 2003-01-28 LCD Apparatus with High Reflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030005420A KR100731046B1 (en) 2003-01-28 2003-01-28 LCD Apparatus with High Reflection

Publications (2)

Publication Number Publication Date
KR20040069016A true KR20040069016A (en) 2004-08-04
KR100731046B1 KR100731046B1 (en) 2007-06-22

Family

ID=37357925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030005420A KR100731046B1 (en) 2003-01-28 2003-01-28 LCD Apparatus with High Reflection

Country Status (1)

Country Link
KR (1) KR100731046B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774961B1 (en) * 2006-01-16 2007-11-09 엘지전자 주식회사 Light Emitting Diodes and Method for Manufacturing the same
US9918418B2 (en) 2011-02-18 2018-03-13 Superior Communications, Inc. Protective material applicator device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294956A (en) * 1994-04-26 1995-11-10 Pioneer Electron Corp Photoconductive liquid crystal light valve
KR20000009308A (en) * 1998-07-23 2000-02-15 윤종용 Method for manufacturing tft lcd

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774961B1 (en) * 2006-01-16 2007-11-09 엘지전자 주식회사 Light Emitting Diodes and Method for Manufacturing the same
US9918418B2 (en) 2011-02-18 2018-03-13 Superior Communications, Inc. Protective material applicator device

Also Published As

Publication number Publication date
KR100731046B1 (en) 2007-06-22

Similar Documents

Publication Publication Date Title
KR100517241B1 (en) Electro-optical device and electronic apparatus
US9454049B2 (en) Method of manufacturing of amorphous silicon thin film transistor liquid crystal display device
TWI227348B (en) Transflective liquid crystal device and electronic appliance using the same
KR100630984B1 (en) Transflective Liquid Crystal Display
KR101456902B1 (en) Liquid crystal display apparatus and electronic apparatus
US7888150B2 (en) Display and method of manufacturing the same
US8183570B2 (en) Thin film transistor array panel
US20060033870A1 (en) Reflective liquid crystal display device
JP2000155343A (en) Liquid crystal display device
EP1267198A2 (en) Transflective electro-optical device
JP2003344838A (en) Transflective liquid crystal device and electronic equipment using the same
JP2001343912A (en) Electrooptic device, its production method and electronic apparatus
JP2004004540A (en) Electro-optical device, drive circuit for the same, and electronic apparatus
KR20030061320A (en) Active matrix display device
JP2003222890A (en) Liquid crystal display device
KR100731046B1 (en) LCD Apparatus with High Reflection
US20070296882A1 (en) Thin film transistor array
US20030160244A1 (en) Thin-film semiconductor device, electro-optical device, methods for manufacturing the same, and reticle
JP2003344839A (en) Transflective liquid crystal device and electronic equipment using the same
JP2001343913A (en) Electrooptic device, its production method and electronic apparatus
JP5061945B2 (en) Electro-optical device and electronic apparatus
JPH11231343A (en) Active matrix liquid crystal display device and its driving method
JP5061946B2 (en) Electro-optical device and electronic apparatus
KR20040069014A (en) Active Matrix Liquid Crystal Display with High Cell Gap Tolerance And LCD Projector with the Active Matrix LCD
KR20050104785A (en) Lcd and method for manufacturing lcd

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160530

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180515

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 13