KR20040063606A - Process for preparing Hexafluoropropyleneoxide - Google Patents

Process for preparing Hexafluoropropyleneoxide Download PDF

Info

Publication number
KR20040063606A
KR20040063606A KR1020030001083A KR20030001083A KR20040063606A KR 20040063606 A KR20040063606 A KR 20040063606A KR 1020030001083 A KR1020030001083 A KR 1020030001083A KR 20030001083 A KR20030001083 A KR 20030001083A KR 20040063606 A KR20040063606 A KR 20040063606A
Authority
KR
South Korea
Prior art keywords
phase
reaction
organic phase
fluorine
hexafluoropropylene
Prior art date
Application number
KR1020030001083A
Other languages
Korean (ko)
Other versions
KR100508694B1 (en
Inventor
이수복
박인준
김정훈
임세진
류호진
이광원
김동권
하종욱
소원욱
김철웅
김영운
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2003-0001083A priority Critical patent/KR100508694B1/en
Publication of KR20040063606A publication Critical patent/KR20040063606A/en
Application granted granted Critical
Publication of KR100508694B1 publication Critical patent/KR100508694B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

PURPOSE: A process for preparing hexafluoropropylene oxide is provided, thereby significantly improving conversion rate of hexafluoropropylene oxide by increasing the reaction area in the interface between the organic phase and water-soluble phase, and reducing the temperature increase at an early stage of the reaction to maintain the constant reaction temperature. CONSTITUTION: The process for preparing hexafluoropropylene oxide comprises the steps of: liquid-liquid interface reacting the organic phase containing hexafluoropropylene(HFP) with the water-soluble phase containing an oxidizing agent in the presence of phase transition catalyst and 0.001 to 0.01 mole% of fluorine surfactant of formula (I), CnF2n=1C2H4O(C2H4O)mH, wherein m is mole number of ethylene oxide, 6 and 12; and n is an integer of 4 to 12; and the mole ratio of organic phase and water-soluble phase is 1:2 to 1:7.

Description

헥사플루오로프로필렌옥사이드의 제조방법{Process for preparing Hexafluoropropyleneoxide}Process for preparing Hexafluoropropylene oxide

본 발명은 헥사플루오로프로필렌옥사이드의 제조방법에 관한 것으로, 더욱 상세하게는 헥사플루오로프로필렌(HFP)이 포함된 유기상과 산화제가 포함된 수용액상을 상전이 촉매하에서 액체-액체 계면 반응을 수행함에 있어, 상기 상전이 촉매와 함께 불소계 계면활성제를 첨가하여 유기상과 수용액상의 계면에서의 반응면적을 넓혀 반응성을 향상시킴으로써 기존의 방법에 비해 헥사플루오로프로필렌옥사이드의 전환율을 월등하게 향상시킬 뿐만 아니라 반응초기의 발열반응으로 인한 온도 상승효과를 줄임으로 반응온도를 일정하게 유지시키는 효과를 가진 헥사플루오로프로필렌옥사이드의 제조방법에 관한 것이다.The present invention relates to a method for preparing hexafluoropropylene oxide, and more particularly, to performing a liquid-liquid interfacial reaction in an organic phase containing hexafluoropropylene (HFP) and an aqueous phase containing an oxidizing agent under a phase transfer catalyst. In addition, by adding a fluorine-based surfactant together with the phase transfer catalyst to increase the reaction area at the interface between the organic phase and the aqueous phase to improve the reactivity, the conversion rate of hexafluoropropylene oxide is significantly improved compared to the conventional method, and the exothermic reaction of the initial stage is generated. It relates to a method for producing hexafluoropropylene oxide having the effect of keeping the reaction temperature constant by reducing the temperature synergistic effect due to the reaction.

일반적으로 헥사플루오로프로필렌옥사이드(HFPO)는 불소계 화합물에 대한 화학적 안정성, 열적 내구성, 내마모성 및 투명성을 증가시키는 효과가 있어 불소계 화합물에 다양한 용도로 적용되어 왔다. 다음 표 1에는 헥사플루오로프로필렌옥사이드(HFPO)의 수요분야를 대략적으로 예시한 것으로 예컨데 과불소폴리에스터,불소계 케톤, 과불소 아세톤, 과불소 비닐 에스터, 불소계 윤활유, 전기분해용 이온 교환막으로 사용되는 네피온(듀폰), 불소계 이온 교환막 제조용 불화에테르계 고분자 플레미온(아사히 글래스)의 핵심원료로서 그 응용분야가 광범위하다.In general, hexafluoropropylene oxide (HFPO) has an effect of increasing the chemical stability, thermal durability, wear resistance and transparency to the fluorine-based compound has been applied to a variety of uses in the fluorine-based compound. Table 1 below shows the demand areas of hexafluoropropylene oxide (HFPO), for example, perfluorinated polyester, fluorine-based ketone, perfluorinated acetone, perfluorovinyl ester, fluorine-based lubricant, and electrolytic ion exchange membrane. Nepion (DuPont), a core raw material of fluorinated ether polymer fluoride (Asahi Glass) for the production of fluorine-based ion exchange membranes, has a wide range of applications.

산업명Industry name 수요 분야 (예)Demand field (example) 전기/전자Electrical / electronic 전선, 케이블, 반도체Wires, cables, semiconductors 기계machine 개스킷, 배관재료, 도관, 펌프, 호스, 불소계 윤활소재Gaskets, Piping Materials, Conduits, Pumps, Hoses, Fluorine Lubricants 화학chemistry 공기액화시설, 핵공학, 분석시약Air Liquefaction Facility, Nuclear Engineering, Analytical Reagent 자동차car 연료전지Fuel cell

일반적으로 헥사플루오로프로필렌옥사이드(HFPO)는 유기상과 수용액상의 2상(two phase)의 액체-액체의 계면 반응에 의해 제조되는 바, 상전이 촉매, 활성산소 공급원인 차아염소산염이 포함된 수용액상과 헥사플루오로프로필렌(HFP)이 포함된 유기상을 일정비율로 혼합하게 되면 상전이 촉매에 의해 두 상간의 계면에서 반응이 진행됨으로써 제조된다. 일반적인 헥사플루오로프로필렌옥사이드의 제조방법에서는 헥사플루오로프로필렌이 포함된 유기상이 차아염소산염 수용액에 대한 부피비가 0.9 부피% 정도로 낮게 혼합되어 수중유적(Oil-in-Water)의 형태로 존재하게 되므로, 기체 상태의 헥사플루오로프로필렌이 액체형태로 흡수가 용이하지 않게 된다. 또한, 유기상/수용액상의 비율을 높게 유지할 경우 활성산소의 공급이 줄어들게 되므로 헥사플루오로프로필렌과 활성산소의 반응을 위한 최적의 유기상/수용액상의 비율이 필요하다.In general, hexafluoropropylene oxide (HFPO) is prepared by the interfacial reaction of a liquid-liquid of two phases with an organic phase and an aqueous phase, and is a phase transition catalyst and an aqueous phase containing chlorite, an active oxygen source, and hexa When the organic phase containing fluoropropylene (HFP) is mixed at a predetermined ratio, the reaction is performed at the interface between the two phases by a phase transfer catalyst. In a general method for preparing hexafluoropropylene oxide, the organic phase containing hexafluoropropylene is mixed in a low volume ratio of about 0.9 vol% with respect to an aqueous hypochlorite solution, and thus exists in the form of oil-in-water. Hexafluoropropylene in the state is not easily absorbed in liquid form. In addition, if the ratio of the organic phase / aqueous phase is kept high, the supply of active oxygen is reduced, so an optimal ratio of the organic phase / aqueous phase for the reaction of hexafluoropropylene and the active oxygen is required.

본 발명의 발명자들은 헥사플루오로프로필렌옥사이드(HFPO)의 제조 효율을극대화 할 수 있는 방법을 면밀히 연구 검토하였고, 그 결과 상전이 촉매를 이용하여 유기상과 수용액 상간의 계면에서의 반응을 실시함에 있어, 상전이 촉매와 함께 특정의 불소계 계면활성제를 첨가하여 반응 초기 발열반응을 완화시키는 공정상의 이점과, 헥사플루오로프로필렌과 활성산소와의 반응면적을 넓혀 반응성을 크게 향상시키므로 헥사플루오로프로필렌옥사이드의 제조효율을 현격히 상승시키는 방법을 개발하였다.The inventors of the present invention have studied and studied a method for maximizing the production efficiency of hexafluoropropylene oxide (HFPO), and as a result, the phase transition in the reaction between the organic phase and the aqueous phase phase using a phase transfer catalyst By adding a specific fluorine-based surfactant together with the catalyst, the process benefits to alleviate the exothermic reaction at the beginning of the reaction, and the reaction area between hexafluoropropylene and active oxygen is increased to greatly improve the reactivity, thus improving the production efficiency of hexafluoropropylene oxide. We have developed a method of ascending significantly.

본 발명은 유기상의 헥사플루오로프로필렌(HFP)과 수용액상의 활성산소를두 상간의 계면에서 상전이 촉매에 의해 반응하여 헥사플루오로프로필렌옥사이드(HFPO)를 제조하는 방법에 있어서, 상전이 촉매와 함께 다음 화학식 Ⅰ로 표시되는 불소계 계면활성제를 첨가하여 수행하는 것을 그 특징으로 한다.The present invention relates to a method for preparing hexafluoropropylene oxide (HFPO) by reacting hexafluoropropylene (HFP) in an organic phase with active oxygen in an aqueous solution by a phase transfer catalyst at an interface between two phases. It is characterized by carrying out by adding the fluorine-based surfactant represented by I.

CnF2n+1C2H4O(C2H4O)mHC n F 2n + 1 C 2 H 4 O (C 2 H 4 O) m H

상기 화학식 1에서, m은 에틸렌옥사이드(EO)의 부가몰수로서 6, 12이며, n은 6≒50 %, 8≒35 %을 포함하는 4 ∼ 12 범위의 정수이다.In Chemical Formula 1, m is 6, 12 as the added mole number of ethylene oxide (EO), and n is an integer ranging from 4 to 12 including 6 ≒ 50% and 8 ≒ 35%.

이와 같은 발명을 더욱 상세히 설명하면 다음과 같다.When explaining the invention in more detail as follows.

본 발명은 헥사플루오로프로필렌(HFP)이 포함된 유기상과 산화제가 포함된수용액상 간의 계면에서 반응시켜 헥사플루오로프로필렌옥사이드(HFPO)를 제조하는 기존의 방법을 수행함에 있어, 상기한 계면반응을 상전이 촉매와 함께 상기 화학식 1로 표시되는 불소계 계면활성제를 사용하여 수행한데 기술구성상의 가장 큰 특징이 있다.The present invention is carried out at the interface between the organic phase containing hexafluoropropylene (HFP) and the aqueous phase containing an oxidizing agent to perform a conventional method for producing hexafluoropropylene oxide (HFPO), the above-described interfacial reaction It is carried out using a fluorine-based surfactant represented by the formula (1) together with a phase transfer catalyst, the biggest feature of the technical configuration.

본 발명이 특징적으로 사용하는 상기 화학식 1로 표시되는 불소계 계면활성제는, 계면에서의 반응면적을 넓혀 반응성을 향상시키게 되며, 구조적으로는 계면활성제 자체에 불소가 포함되어 있어 반응물로 사용되는 헥사플루오로플로필렌과의 혼화성이 우수하여 반응을 보다 원활하게 수행할 수 있도록 한다. 또한, 헥사플루오로프로필렌(HFP)과 차아염소산염의 반응은 반응 초기에 발열반응으로 진행되나 계면활성제 첨가시 온도상승효과가 완화되어 반응온도 유지가 용이하다는 공정상의 이점도 있다. 상기한 불소계 계면활성제는 에틸렌옥사이드(EO)를 6몰, 12몰을 부가하여 제조한 것으로, 상전이 촉매와 동일량 사용하였다.The fluorine-based surfactant represented by Chemical Formula 1, which is characteristically used in the present invention, improves the reactivity by increasing the reaction area at the interface, and structurally, hexafluoro is used as a reactant because fluorine is contained in the surfactant itself. It has excellent miscibility with flopylene to make the reaction more smoothly. In addition, the reaction between hexafluoropropylene (HFP) and hypochlorite proceeds as an exothermic reaction at the beginning of the reaction, but there is also a process advantage that the temperature increase effect is eased when the surfactant is added, so that the reaction temperature is easily maintained. The fluorine-based surfactant was prepared by adding 6 mol and 12 mol of ethylene oxide (EO), and was used in the same amount as the phase transfer catalyst.

헥사플루오로플로필렌(HFP)을 녹이는 용매로는 1,2,2-트리클로로-1,1,2-트리플루오로에탄(F-113) 등이 포함되는 불소계 유기용매를 사용한다. 그리고, 산화제로는 활성산소의 공급이 가능한 화합물로서 차아염소산염 등이 포함될 수 있다. 상전이 촉매로는 트리옥틸메틸암모늄 클로라이드(TOMAC) 등이 포함되는 알킬암모늄 할라이드류가 사용되며, 상전이 촉매량은 구체적으로는 차아염소산염의 0.001 ∼ 0.01 mol% 사용한다.A fluorine-based organic solvent containing 1,2,2-trichloro-1,1,2-trifluoroethane (F-113) or the like is used as a solvent for dissolving hexafluoroflopylene (HFP). The oxidizing agent may include hypochlorite as a compound capable of supplying active oxygen. As the phase transfer catalyst, alkylammonium halides containing trioctylmethylammonium chloride (TOMAC) and the like are used, and the amount of the phase transfer catalyst is specifically used in 0.001 to 0.01 mol% of hypochlorite.

본 발명에 따른 계면반응을 수행함에 있어 유기상과 수용액상의 몰비 조절이 중요한 바, 본 발명에서는 [유기상]/[수용액상]의 원료비는 2 ∼ 7 몰비 범위로 조절한다. [유기상]/[수용액상]의 몰비가 2 미만으로 낮게 유지되면 수용액상이 유기상 보다 과량인 경우로서, 워터-인-오일(water-in-oil)의 형태로 존재하게 되므로 기체 상태인 헥사플루오로프로필렌(HFP)이 유기상 중에 용해되기가 용이하지 않은 문제가 있다. 반면에, [유기상]/[수용액상]의 몰비가 7을 초과하여 높게 유지되면 유기상이 수용액상 보다 과량인 경우로서, 활성산소의 공급이 줄어들게 되는 문제가 있다.In carrying out the interfacial reaction according to the present invention, it is important to control the molar ratio of the organic phase and the aqueous phase. If the molar ratio of [organic phase] / [aqueous phase] is kept lower than 2, the aqueous phase is in excess of the organic phase, and is present in the form of water-in-oil, so it is a gaseous hexafluoro. There is a problem that propylene (HFP) is not easily dissolved in the organic phase. On the other hand, if the molar ratio of [organic phase] / [aqueous phase] is kept higher than 7, the organic phase is in excess of the aqueous phase, and there is a problem that the supply of active oxygen is reduced.

특히 본 발명에서는 상기 화학식 1로 표시되는 불소계 계면활성제의 선택 사용으로 반응성의 증가와 반응온도 유지에 유리한 장점이 있다.In particular, the present invention has an advantage of increasing the reactivity and maintaining the reaction temperature by the selective use of the fluorine-based surfactant represented by the formula (1).

본 발명에서의 반응 종료점은 상기 반응조건, 즉 일정 pH와 온도, 시간에 따른 반응압의 추이를 관찰하여 일정한 반응압력 곡선을 얻는 점을 반응 종료점으로 한다.The end point of the reaction in the present invention is the end point of the reaction condition, that is, the point of obtaining a constant reaction pressure curve by observing the change of the reaction pressure with constant pH, temperature, and time.

이상에서 설명한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following examples, but the present invention is not limited to the examples.

실시예 1Example 1

온도와 압력 게이지가 장착된 304 ㎤ 오토클레이브(autoclave)에 1,2,2-트리클로로-1,1,2-트리플루오로에탄(F-113) 100 mL(0.8379 mol), 차아염소산나트륨 수용액 75 mL(0.1877 mol), 트리옥틸메틸암모늄클로라이드(TOMAC) 0.4 g(0.0010 mol), 불소계 계면활성제 0.4 g(0.0003 mol)을 투입하고 반응온도를 0 ℃로 고정시켰다. 반응온도가 고정되면 헥사플루오로프로필렌(HFP) 4.5 g(0.0300 mol)을주입한 후 0 ℃ 에서 2 시간 동안 교반하였다. 반응 후 승온하여 20 ℃에서 생성된 헥사플루오로프로필렌옥사이드(HFPO)를 유기상으로부터 증류하여 드라이아이스로 냉각된 봄베로 응축시켰다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 15.27 %, HFPO 84.73 %로 나타났다.100 mL (0.8379 mol) of 1,2,2-trichloro-1,1,2-trifluoroethane (F-113) in a 304 cm 3 autoclave with temperature and pressure gauge, aqueous sodium hypochlorite 75 mL (0.1877 mol), trioctylmethylammonium chloride (TOMAC) 0.4 g (0.0010 mol) and 0.4 g (0.0003 mol) of fluorine-based surfactant were added thereto, and the reaction temperature was fixed at 0 ° C. When the reaction temperature was fixed, 4.5 g (0.0300 mol) of hexafluoropropylene (HFP) was injected and then stirred at 0 ° C. for 2 hours. After the reaction, the mixture was heated up, and hexafluoropropylene oxide (HFPO) produced at 20 ° C. was distilled from the organic phase and condensed into a bomb cooled with dry ice. Analysis of the product by gas chromatography showed that the product distribution was 15.27% HFP and 84.73% HFPO.

실시예 2Example 2

상기 실시예 1과 동일조성과 동일방법으로 제조하되, 1,2,2-트리클로로-1,1,2-트리플루오로에탄(F-113) 150 mL(1.2569 mol)과 불소계 계면활성제 0.4 g(0.0006 mol)의 사용량만을 바꾸어 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 22.75 %, HFPO 77.25 %로 나타났다.Prepared in the same manner as in Example 1, except that 150 mL (1.2569 mol) of 1,2,2-trichloro-1,1,2-trifluoroethane (F-113) and fluorine-based surfactant 0.4 g Only the amount of (0.0006 mol) was changed. Analysis of the product by gas chromatography showed that the product distribution was 22.75% HFP and 77.25% HFPO.

실시예 3Example 3

상기 실시예 1과 동일조성과 동일방법으로 제조하되, 불소계 계면활성제 0.4 g(0.0006 mol)의 사용량만을 바꾸어 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 29.78 %, HFPO 70.22 %로 나타났다.It was prepared in the same manner as in Example 1, except that 0.4 g (0.0006 mol) of the fluorine-based surfactant was changed. Gas chromatography analysis showed that the product distribution was 29.78% HFP and 70.22% HFPO.

실시예 4Example 4

상기 실시예 1과 동일조성과 동일방법으로 제조하되, 1,2,2-트리클로로-1,1,2-트리플루오로에탄(F-113) 150 mL(1.2569 mol)의 사용량만을 바꾸어 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 47.5 %, HFPO 52.5 %로 나타났다.Prepared in the same manner as in Example 1, except that the amount of 1,2,2-trichloro-1,1,2-trifluoroethane (F-113) 150 mL (1.2569 mol) was changed. . Analysis of the product by gas chromatography showed that the product distribution was 47.5% HFP and 52.5% HFPO.

실시예 5Example 5

상기 실시예 1과 동일조성과 동일방법으로 제조하되, 1,2,2-트리클로로-1,1,2-트리플루오로에탄(F-113) 90 mL(0.7541 mol), 차아염소산나트륨 수용액 150 mL(0.3753 mol), 트리옥틸메틸암모늄클로라이드(TOMAC) 0.8 g(0.0020 mol), 불소계계면활성제 0.8 g(0.0013 mol)의 사용량만을 바꾸어 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 53.8 %, HFPO 46.2 %로 나타났다.Prepared in the same manner as in Example 1, except that 1,2,2-trichloro-1,1,2-trifluoroethane (F-113) 90 mL (0.7541 mol) and aqueous sodium hypochlorite solution 150 This was done by changing only the amount of mL (0.3753 mol), 0.8 g (0.0020 mol) of trioctylmethylammonium chloride (TOMAC) and 0.8 g (0.0013 mol) of fluorosurfactant. As a result of gas chromatography analysis, the product distribution was 53.8% HFP and 46.2% HFPO.

실시예 6Example 6

상기 실시예 5와 동일조성과 동일방법으로 제조하되, 불소계 계면활성제 20 mol 0.8 g(0.0007 mol)의 사용량만을 바꾸어 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 76.8 %, HFPO 23.2 %로 나타났다.It was prepared in the same manner as in Example 5, except that only 20 mol 0.8 g (0.0007 mol) of fluorine-based surfactant was changed. Analysis of the product by gas chromatography showed that the product distribution was 76.8% HFP and 23.2% HFPO.

비교예 1Comparative Example 1

상기 실시예 1과 동일조성과 동일방법으로 제조하되, 불소계 계면활성제를 첨가하지 않고 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 20.98 %, HFPO 79.02 %로 나타났다.It was prepared in the same manner as in Example 1, but in the same manner, but without adding a fluorine-based surfactant. Analysis of the product by gas chromatography showed that the product distribution was HFP 20.98% and HFPO 79.02%.

비교예 2Comparative Example 2

상기 실시예 2과 동일조성과 동일방법으로 제조하되, 불소계 계면활성제를 첨가하지 않고 실시하였다. 가스크로마토그래피로 분석한 결과 생성물 분포는 HFP 94.9 %, HFPO 5.1 %로 나타났다.It was prepared in the same manner as in Example 2, but in the same manner, without adding a fluorine-based surfactant. Analysis of the product by gas chromatography showed that the product distribution was 94.9% HFP and 5.1% HFPO.

본 발명에 따라 상기 화학식 1의 불소계 계면활성제를 첨가한 실시예 1과 2는, 불소계 계면활성제를 첨가하지 않은 비교예 1과 2에 비교하여 HFPO로의 전환율이 월등하게 높았음을 확인할 수 있다.Examples 1 and 2 to which the fluorine-based surfactant of Formula 1 was added according to the present invention can be seen that the conversion to HFPO was significantly higher than that of Comparative Examples 1 and 2 to which the fluorine-based surfactant was not added.

본 발명은 헥사플루오로프로필렌이 포함된 유기상과 산화제가 포함된 수용액상을 계면 반응시킬 때, 상전이 촉매와 함께 특정 불소계 계면활성제를 일정량 첨가 사용하여 줌으로써 헥사플루오로프로필렌옥사이드의 생산효율을 극대화시키는 효과가 있다.In the present invention, when an organic phase containing hexafluoropropylene and an aqueous phase containing an oxidant are interfacially reacted, an effect of maximizing the production efficiency of hexafluoropropylene oxide by using a certain amount of a specific fluorine-based surfactant together with a phase transfer catalyst is used. There is.

Claims (3)

헥사플루오로프로필렌(HFP)가 포함된 유기상과 산화제가 포함된 수용액상을 상전이 촉매 존재하에서 액체-액체 계면 반응시켜 헥사플루오로프로필렌옥사이드(HFPO)를 제조하는 방법에 있어서,In the method for producing hexafluoropropylene oxide (HFPO) by liquid-liquid interfacial reaction of an organic phase containing hexafluoropropylene (HFP) and an aqueous phase containing an oxidizing agent in the presence of a phase transfer catalyst, 상기 계면 반응은 상전이 촉매와 함께 다음 화학식 Ⅰ로 표시되는 불소계 계면활성제 존재하에서 수행하는 것을 특징으로 하는 헥사플루오로프로필렌옥사이드의 제조방법 :The interfacial reaction is carried out in the presence of a fluorine-based surfactant represented by the following formula (I) with a phase transfer catalyst: [화학식 1][Formula 1] CnF2n+1C2H4O(C2H4O)mHC n F 2n + 1 C 2 H 4 O (C 2 H 4 O) m H 상기 화학식 1에서, m은 에틸렌옥사이드(EO)의 부가몰수로서 6, 12이며, n은 6≒50 %, 8≒35 %을 포함하는 4 ∼ 12 범위의 정수이다.In Chemical Formula 1, m is 6, 12 as the added mole number of ethylene oxide (EO), and n is an integer ranging from 4 to 12 including 6 ≒ 50% and 8 ≒ 35%. 제 1 항에 있어서, 상기 불소계 계면활성제는 산화제가 포함된 수용액상의 0.001 ∼ 0.01 몰% 사용하는 것을 특징으로 하는 헥사플루오로프로필렌옥사이드의 제조방법.The method for producing hexafluoropropylene oxide according to claim 1, wherein the fluorine-based surfactant is used in an amount of 0.001 to 0.01 mol% in an aqueous solution containing an oxidizing agent. 제 1 항에 있어서, 상기 계면반응에 사용된 [유기상]/[수용액상]의 몰비가 2 ∼ 7 범위인 것을 특징으로 하는 헥사플루오로프로필렌옥사이드의 제조방법.The method for producing hexafluoropropylene oxide according to claim 1, wherein the molar ratio of [organic phase] / [aqueous phase] used in the interfacial reaction is in the range of 2 to 7.
KR10-2003-0001083A 2003-01-08 2003-01-08 Process for preparing Hexafluoropropyleneoxide KR100508694B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0001083A KR100508694B1 (en) 2003-01-08 2003-01-08 Process for preparing Hexafluoropropyleneoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0001083A KR100508694B1 (en) 2003-01-08 2003-01-08 Process for preparing Hexafluoropropyleneoxide

Publications (2)

Publication Number Publication Date
KR20040063606A true KR20040063606A (en) 2004-07-14
KR100508694B1 KR100508694B1 (en) 2005-08-17

Family

ID=37354496

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0001083A KR100508694B1 (en) 2003-01-08 2003-01-08 Process for preparing Hexafluoropropyleneoxide

Country Status (1)

Country Link
KR (1) KR100508694B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105802747B (en) * 2016-04-15 2018-11-09 林淑录 The cleaning agent of cleaning after a kind of solar-energy photo-voltaic cell silicon wafer wool making

Also Published As

Publication number Publication date
KR100508694B1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
KR100458612B1 (en) Method for producing perfluoropolyethers
CN101696178B (en) Method for preparing fluoro olefin
KR100245845B1 (en) Fluoroalkylethoxylate Compositions Having Enhanced Water Solubility
CN101528719A (en) Process for production of hexafluoropropylene oxide
KR100508694B1 (en) Process for preparing Hexafluoropropyleneoxide
KR102446846B1 (en) Fluoride alkyl glycerin derivatives, preparation method therefor and use thereof
KR102592427B1 (en) Method for producing fluorinated copolymer containing perfluoro sulfonyl fluoride group and copolymer prepared therefrom
CN114436788B (en) Synthetic method for continuously preparing perfluorinated hexanone
CN102381929B (en) Method for initiating continuous production of short-chain perfluoroalkyl iodide by using fluorine gas
KR102351563B1 (en) Fluoride alkyl glycerin derivatives and its surfactant use
KR102351564B1 (en) Preparation method hybrid-fluorinated non-ionic surfactant
CN101367778B (en) Industrialized manufacturing technique for hexafluoropropylene oxide
CN112759537A (en) Novel synthesis method of fluorosulfonate surfactant
CN113831303A (en) Method for preparing hexafluoropropylene oxide by epoxidation of hexafluoropropylene
KR101125167B1 (en) Process for preparing fluorohalogenethers
CN1777579A (en) Method for producing perfluoroalkanesulfonyl fluoride
CN105753661A (en) Polyether-type hydrofluoroether and preparation method thereof
CN112028747A (en) Co-production process of hexafluoroisopropyl methyl ether and pentafluoropropionic acid
JP5621296B2 (en) Method for producing 3-halo-pentafluoropropylene oxide
EP1457484A1 (en) Process for preparing (per)fluorohalogenethers
CN114773239B (en) Perfluoro (4-methyl-3, 6-dioxa-7-octene) sulfonyl fluoride and preparation method thereof
KR102644317B1 (en) Method for Producing PFOA-free Fluorous Telomeric Compounds
CN104557788A (en) Preparation method of hexafluoropropylene oxide
CN101696167B (en) Method for preparing fluoroalkyl vinyl ether
Zhu et al. Synthesis of a Novel Perfluorinated Vinyl Ether Containing Sulfonimide and Phosphonic Acid Functionalities

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100621

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee