KR20040057559A - A deposition method of coating film with fine-crystalline diamond to cutting tool - Google Patents

A deposition method of coating film with fine-crystalline diamond to cutting tool Download PDF

Info

Publication number
KR20040057559A
KR20040057559A KR1020020084320A KR20020084320A KR20040057559A KR 20040057559 A KR20040057559 A KR 20040057559A KR 1020020084320 A KR1020020084320 A KR 1020020084320A KR 20020084320 A KR20020084320 A KR 20020084320A KR 20040057559 A KR20040057559 A KR 20040057559A
Authority
KR
South Korea
Prior art keywords
base material
plasma
film
matrix
diamond
Prior art date
Application number
KR1020020084320A
Other languages
Korean (ko)
Other versions
KR100484263B1 (en
Inventor
홍성필
김형권
김경배
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR10-2002-0084320A priority Critical patent/KR100484263B1/en
Publication of KR20040057559A publication Critical patent/KR20040057559A/en
Application granted granted Critical
Publication of KR100484263B1 publication Critical patent/KR100484263B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE: A method for forming a film having fine crystalline diamond characteristics on the matrix by methane-hydrogen based microwave plasma by setting the matrix to be treated on a substrate holder geometrically designed using an insert used as cutting tool as a matrix is provided. CONSTITUTION: The method comprises a step of positioning a matrix(200) on a substrate holder(100) on which groove(110) is formed; and a step of generating methane-hydrogen based microwave plasma(300), and constantly maintaining a distance between the matrix and the plasma so that a film having fine crystalline diamond characteristics is formed on the matrix, wherein the matrix is exposed to a position that is 2 to 3 mm above the surface of the substrate holder, and the distance between the surface of the matrix and the plasma is 2 to 10 mm, wherein the matrix is a WC based hard metal insert comprising 3 to 10 wt.% of Co and 10 wt.% or less of other carbide, wherein the matrix is a WC based hard metal having an average particle size of 0.5 to 6 μm, wherein the plasma is generated by coaxial or cavity type microwave power supply and other microwave power supply, and a plasma source used is a mixed gas of methane and hydrogen or a mixed gas of methane, hydrogen and carbon, and wherein the film formed has crystal grain size of 5 to 500 nm, thickness of 0.5 to 15 μm, surface roughness Ra of 5 to 40 nm and hardness of 80 to 120 GPa.

Description

절삭공구에서 미세결정다이아몬드 특성을 가진 코팅막의 형성방법 {A deposition method of coating film with fine-crystalline diamond to cutting tool}A deposition method of coating film with fine-crystalline diamond to cutting tool

본 발명은 미세결정다이아몬드 코팅 절삭공구의 제조방법에 관한 것으로서, 보다 상세하게는 인서트, 특히 밀링용 인서트의 다이아몬드 특성막의 형성방법에 관한 것이다.The present invention relates to a method for producing a microcrystalline diamond coated cutting tool, and more particularly, to a method for forming a diamond characteristic film of an insert, in particular a milling insert.

다이아몬드(diamond)는 지구상에서 존재하는 물질중에서 가장 경도가 높은 물질중의 하나이다. 오늘날 기상합성법에 의해 인공적으로 만들어진 다이아몬드 절삭공구는 기계가공이 힘든 난삭재, 알루미늄-실리콘합금 혹은 마그네슘합금 및 흑연재료 등을 가공하는데 있어 최상의 공구로서 사용되고 있다. 일반적으로, 다이아몬드 코팅막의 제조방법은 탄화수소를 포함한 혼합가스분위기에서 각종 전원(직류, 교류, 고주파, 마이크로파)에 의하여 플라즈마나 열에너지로 변환시킨 몇가지의 화학기상증착법(chemical vapor deposition, CVD)에 의하여 코팅되고 있으며, 제조법으로서는 열필라멘트법(hot filament), 연소법(combustion flame), 직류방전 플라즈마법(d.c. glow discharge plasma), 아크방전 플라즈마 젯법(arc glow dischargeplasma jet), 마이크로파 플라즈마법(microwave plasma) 등이 있다. 이 중에서 초경합금 절삭공구로의 적용은 대부분이 열필라멘트법에 의한 코팅이 주류를 이루고 있으며, 제조된 다이아몬드막은 약 5∼15㎛의 조대한 결정크기로 구성되는 다결정다이아몬드(polycrystalline diamond)이며, 모재표면으로부터 기둥모양의 주상정구조(columnar structure)로 석출되어 표면이 대단히 거칠다. 이러한 조대한 결정크기로 구성된/제조된 초경합금 다이아몬드 절삭공구는 가공시에 피삭재의 표면조도를 저하시켜 가공 정밀도를 저하시킨다. 또한, 마이크로결정다이아몬드(microcrystalline diamond)의 마찰계수(μ, >0.6)가 높기 때문에 절삭시 다이아몬드 입자와 입자사이에서 피삭재의 미세한 잔류물에 의한 용착현상으로 공구의 수명을 떨어뜨리는 원인이 된다. 이를 해결하기 위해서는 마이크로결정다이아몬드막의 표면을 미세하게 평활하게 연마하지 않으면 안된다. 그러나, 초경합금 절삭공구는 3차원적인 복잡형상구조를 가지고 있어서 인선부위에 대한 연마는 대단히 어려우며, 연마비용이 많이 소요되는 등 단점이 있다. 또한, 다른 방법으로서 다이아몬드 절삭공구의 제조방법으로 인서트에 소결한 다이아몬드를 브레이징하여 사용되고 있지만, 형상이 복잡한 드릴 및 엔드밀에 대해서는 제조방법의 문제점과 제조비용이 높은 점등의 난점이 산재해 있다.Diamond is one of the hardest materials in the world. Today, the diamond cutting tools artificially produced by the gas phase synthesis method are used as the best tools for machining difficult-to-machine, aluminum-silicon alloys, magnesium alloys and graphite materials. In general, a diamond coating film is manufactured by chemical vapor deposition (CVD) which is converted into plasma or thermal energy by various power sources (direct current, alternating current, high frequency, microwave) in a mixed gas atmosphere including hydrocarbons. Hot filament method, combustion flame, dc glow discharge plasma, arc glow discharge plasma jet, microwave plasma method, etc. have. Among them, the cemented carbide cutting tool is mainly applied by thermal filament coating, and the diamond film is made of polycrystalline diamond composed of coarse crystal size of about 5 to 15 µm. It is precipitated into columnar columnar structure from the surface and is very rough. The cemented carbide diamond cutting tool composed / manufactured by such coarse crystal size lowers the surface roughness of the workpiece during processing, thereby lowering the machining precision. In addition, since the coefficient of friction (μ,> 0.6) of the microcrystalline diamond is high, welding of the fine particles of the workpiece between the diamond particles and the particles during cutting causes a decrease in the life of the tool. To solve this problem, the surface of the microcrystalline diamond film must be finely and smoothly polished. However, since the cemented carbide cutting tool has a three-dimensional complex shape, it is very difficult to polish the cutting edge, and the polishing cost is high. In addition, as another method, a diamond sintered insert is used for brazing a diamond cutting tool. However, a drill and an end mill having a complicated shape are scattered with problems of manufacturing method and difficulty of lighting having high manufacturing cost.

상기의 문제점인 기상증착법으로 제조된 마이크로결정다이아몬드막의 표면조도를 해결하기 위하여 지금까지 몇가지 방법에 의하여 미세결정다이아몬드막 코팅에 대한 기초연구가 일부 논문 및 특허로서 발표되었다. 발표된 논문 및 특허를 보면, 대부분이 Si웨이퍼에 약 15∼50nm의 미세결정다이아몬드를 제작한 예이다. 제조방법으로서는 대부분이 마이크로파 플라즈마화학기상증착법(Microwave Plasma CVD)을 이용하여, 메탄-수소혼합가스에서 고농도의 메탄가스 농도를 사용하는 방법, 아르곤 혹은 C60-수소-메탄을 이용하는 방법, 모재에 직류 바이어스전압을 인가하는 방법 등이 있다. 그 외의 다른 방법인 열필라멘트법에서는, 수소-메탄의 혼합가스를 이용하여 높은 가스압(약 200Torr)에서 기판온도를 감소(1250℃ => 1020℃)하는 것에 의하여 약 8∼16nm의 미세한 결정크기의 다이아몬드가 석출되었다는 보고가 있다. 그러나, 실제적으로 초경합금인 절삭공구에 응용한 예는 아직 보고된 바 없으며, 제조된 미세결정다이아몬드막 절삭공구의 평가방법도 보고되지 않았다. 그 이유로서는, 미세결정다이아몬드막의 합성조건이 매우 혹독하여 장시간 증착시 결정입자의 성장으로 인한 조대화에 따른 미세결정다이아몬드에 대한 정확한 합성메카니즘이 아직 규명되지 않은 것을 들 수 있다.In order to solve the surface roughness of the microcrystalline diamond film produced by the vapor deposition method, which is the above problem, the basic research on the microcrystalline diamond film coating has been published as some papers and patents by several methods. According to published papers and patents, most of them are examples of fabricating microcrystalline diamonds of about 15 to 50 nm in Si wafers. Most of the manufacturing methods include microwave plasma chemical vapor deposition (Microwave Plasma CVD), using a high concentration of methane gas in the methane-hydrogen mixture gas, a method using argon or C60-hydrogen-methane, direct current bias on the base metal. And a method of applying a voltage. In another method, the thermal filament method, by using a mixed gas of hydrogen-methane, the substrate temperature is reduced (1250 ° C. => 1020 ° C.) at a high gas pressure (about 200 Torr) to obtain a fine crystal size of about 8 to 16 nm. It is reported that diamonds have been deposited. However, no practical application has been reported for cutting tools, which are cemented carbide, and no evaluation method has been reported for the prepared microcrystalline diamond film cutting tools. The reason for this is that the synthesis conditions of the microcrystalline diamond film are very severe and the precise synthesis mechanism for the microcrystalline diamond due to coarsening due to the growth of the crystal grains during long time deposition has not yet been identified.

위에서 설명한 바와 같이, 종래의 Si웨이퍼에서 마이크로파 플라즈마화학기상증착법 혹은 열필라멘트법을 이용하여 미세결정다이아몬드막의 제조방법은, 100Torr이상의 높은 가스압의 메탄-수소-아르곤가스를 포함한 혼합가스분위기에서 마이크로파전원에 의한 플라즈마를 발생시켜 이온화를 억제하면서 가스를 여기화시켜 모재에 미세결정다이아몬드막을 합성하였다. 그 결과, 2차원적인 평탄한 모재에서는 일부 성장가능하지만, 3차원적인 복잡형상을 가지는 초경합금 절삭공구에 적용하는데 있어서는 결정입자의 크기/막두께의 균일성 혹은 밀착력이 문제이다. 또한, 막의 물성평가에서도 미세결정다이아몬드를 정확하게 규명 혹은 평가하는데 있어 많은 비용과 시간이 소요되는 어려움이 있다.As described above, the method for producing a microcrystalline diamond film using a microwave plasma chemical vapor deposition method or a hot filament method on a conventional Si wafer is applied to a microwave power source in a mixed gas atmosphere containing a high gas pressure methane-hydrogen-argon gas of 100 Torr or more. A plasma was generated to excite the gas while suppressing ionization to synthesize a microcrystalline diamond film on the base material. As a result, it is possible to partially grow on a two-dimensional flat base material, but in the case of applying to a cemented carbide cutting tool having a three-dimensional complex shape, the uniformity or adhesion of crystal grain size / film thickness is a problem. In addition, even in the physical property evaluation of the film, it is difficult to take a large cost and time to accurately identify or evaluate the microcrystalline diamond.

상기에서 설명한 바와 같이, 절삭시의 경우 피삭재의 표면조도 개선과 함께 고속절삭을 위해서는 초경합금 절삭공구위에 직접 미세결정다이아몬드를 제조함으로서 다이아몬드의 입자크기를 가능한 한 미세하게 조절 혹은 기계적인 외부 힘을 가하지 않는 범위에서 다이아몬드막의 표면을 평탄/평활하게 조절할 필요가 있다. 이를 위하여 절삭공구로서 사용되는 초경합금은 텅스텐카바이드(WC)와 코발트(Co)의 혼합물로 이루어져 있으며, 다이아몬드를 코팅하는데 있어 WC입자와 입자사이에 존재하는 바인더상인 Co에 의하여 비다이아몬드상인 흑연성분이 석출되어 초경합금과 박막의 밀착력을 저하시킨다.As described above, in the case of cutting, in order to improve the surface roughness of the workpiece and to produce a high-speed cutting, by producing microcrystalline diamond directly on the cemented carbide cutting tool, the particle size of the diamond is not finely adjusted or mechanical external force is applied. In the range, it is necessary to adjust the surface of the diamond film smoothly / smoothly. The cemented carbide used as a cutting tool is composed of a mixture of tungsten carbide (WC) and cobalt (Co), and in the coating of diamond, graphite component, which is a non-diamond phase, is precipitated by Co, a binder phase present between the WC particles and the particles. This reduces the adhesion between the cemented carbide and the thin film.

다이아몬드 코팅된 절삭공구와 관련하여 대한민국 공개특허 제 2000-34774호가 공개되어 있으나 상기 공개특허에서는 드릴, 엔드밀 또는 리머와 같은 길다란 회전절삭공구에 다이아몬드를 코팅하는 방법을 개시하고 있을 뿐이다.Korean Patent Laid-Open Publication No. 2000-34774 discloses a diamond-coated cutting tool, but the patent discloses a method of coating diamond on a long rotary cutting tool such as a drill, an end mill or a reamer.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 절삭가공시 문제되는 피삭재의 면조도 개선 및 고속절삭 성능을 향상시키기 위한 절삭공구로 사용되는 3차원 복합형상의 초경합금 모재 특히, 인서트를 모재로 하여 기하학적으로 설계되어진 기판홀더에 처리하고자 하는 모재를 셋팅시켜 메탄-수소계 마이크로파 플라즈마에 의한 미세결정다이아몬드 특성막을 형성시키기 위한 방법을 제공하는데 있다.The present invention is to solve the above problems, an object of the present invention is to insert a three-dimensional composite cemented carbide substrate, particularly inserts used as a cutting tool for improving the surface roughness and high-speed cutting performance of the workpiece that is a problem during cutting The present invention provides a method for forming a microcrystalline diamond characteristic film by methane-hydrogen-based microwave plasma by setting a base material to be treated in a geometrically designed substrate holder.

이렇게 본 발명에 의해 형성된 막을 Visible(514.5nm)와 UV(ultraviolet, 244nm) 라만(Raman)분광법과 나노인텐터(nanoindentor)에 의한 특성평가 결과, 코팅막은 다이아몬드라는 것이 확인되었다.Thus, the film formed by the present invention was characterized by Visible (514.5 nm) and UV (ultraviolet, 244 nm) Raman spectroscopy and nanoindentor, and the coating film was diamond.

도 1a는 상면에서 본 초경모재의 배치 방법Figure 1a is a placement method of cemented carbide base material seen from the top

도 1b는 종래의 초경모재 셋팅방법 정면도Figure 1b is a front view of a conventional cemented carbide setting method

도 1c는 본 발명의 초경모재 셋팅방법 정면도Figure 1c is a front view of the cemented carbide setting method of the present invention

도 2a는 종래의 셋팅방법에서 메탄-수소계 플라즈마로 형성된 다이아몬드 특성막의 표면사진Figure 2a is a surface photograph of the diamond characteristic film formed of methane-hydrogen plasma in the conventional setting method

도 2b는 종래의 셋팅방법에서 메탄-수소-아르곤계 플라즈마로 형성된 다이아몬드 특성막의 표면사진Figure 2b is a surface photograph of the diamond characteristic film formed of methane-hydrogen-argon-based plasma in a conventional setting method

도 2c는 본 발명의 셋팅방법에서 메탄-수소계 플라즈마로 형성된 다이아몬드 특성막의 표면사진Figure 2c is a surface photograph of the diamond characteristic film formed of methane-hydrogen plasma in the setting method of the present invention

도 3a는 본 발명으로 형성된 다이아몬드 특성막의 AFM에 의한 표면 형상사진Figure 3a is a photograph of the surface shape by AFM of the diamond feature film formed by the present invention

도 3b는 본 발명으로 형성된 다이아몬드 특성막의 AFM에 의한 표면 조도사진Figure 3b is a surface roughness photograph by the AFM of the diamond feature film formed by the present invention

도 4는 본 발명에 따른 미세결정다이아몬드 특성막의 나노인텐터(nanoindentor)에 의한 미소경도 분포그래프Figure 4 is a microhardness distribution graph of the nano-indenter (nanoindentor) of the microcrystalline diamond characteristic film according to the present invention

도 5는 본 발명에 따른 미세결정다이아몬드 특성막의 Visible(514.5nm)과UV(244nm) 라만(Raman) 분광에 의한 분석결과 그래프5 is a graph of analysis results by Visible (514.5 nm) and UV (244 nm) Raman spectroscopy of the microcrystalline diamond characteristic film according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 기판홀더 200 : 모재100: substrate holder 200: the base material

300 : 플라즈마300: plasma

상기와 같은 본 발명의 목적을 달성하기 위하여 본 발명은, 모재 특히, 3차원 형상을 가지는 초경합금 인서트를 삽입할 수 있게 적당한 홈이 형성된 기판홀더에 모재를 위치시킨 다음, 메탄-수소계 마이크로파 플라즈마를 발생시켜 증착한 미세결정다이아몬드 특성의 코팅막을 모재에 형성시키는 방법을 제공한다. 여기서 플라즈마원으로는 메탄-수소계 혼합가스를 사용하고 그 함량은 10%메탄-90%수소로 함이 좋다.In order to achieve the object of the present invention as described above, the present invention, after placing the base material in a substrate holder formed with a suitable groove for inserting the base material, in particular, cemented carbide insert having a three-dimensional shape, and then the methane-hydrogen microwave plasma Provided is a method of forming a coating film having generated and deposited microcrystalline diamond characteristics on a base material. Here, the methane-hydrogen mixed gas is used as the plasma source, and the content thereof may be 10% methane-90% hydrogen.

상기에서 모재는 기판홀더 표면으로부터 약 2~3mm 상부로 노출시키는 것이 바람직하고, 모재의 표면과 플라즈마와의 거리는 약 2~10mm로 하여 모재표면과 플라즈마와의 접하는 부분이 근접/균일하게 유지시킴이 바람직하다.In the above, the base material is preferably exposed to the upper surface of the substrate holder about 2 ~ 3mm, the distance between the surface of the base material and the plasma is about 2 ~ 10mm to keep the base surface and the contact portion of the plasma close / uniform. desirable.

또한, 상기 모재는 특히 초경합금 인서트로서 그 조성은 3~10wt% Co와 10wt%이하의 타탄화물을 포함하는 WC계 초경합금 인서트를 사용함이 바람직하며, 상기 모재의 평균입자크기는 0.5~6㎛의 WC계 초경합금을 사용함이 좋다.In addition, the base material is a cemented carbide insert, in particular, its composition is preferably used WC-based cemented carbide inserts containing 3 ~ 10wt% Co and less than 10wt% tar carbide, the average particle size of the base material is 0.5 ~ 6㎛ WC It is recommended to use cemented carbide.

또한, 상기 플라즈마원의 발생방식을 동축(Coaxial)형 또는 캐비티(Cavity)형 마이크로파 전원과 그 외 마이크로파전원에 의한 합성방법이 바람직하며, 사용되는 플라즈마원으로는 메탄-수소의 혼합가스 또는 그 외 탄소를 포함하는 혼합가스를 사용함이 바람직하다.In addition, the generation method of the plasma source is preferably a coaxial or cavity-type microwave power source and a synthesis method using other microwave power sources. The plasma source used is a mixed gas of methane-hydrogen or the like. It is preferable to use a mixed gas containing carbon.

또한, 코팅된 막의 결정입자크기는 5~500nm, 두께 0.5~15㎛, 표면조도는 Ra=5∼40nm, 경도 80~120GPa가 되도록 함이 바람직하다.In addition, the crystal grain size of the coated film is preferably 5 to 500nm, 0.5 to 15㎛ thickness, surface roughness is Ra = 5 to 40nm, hardness 80 ~ 120GPa.

또한, 상기 Visible 라만분광에서는 약 1140과 1480cm-1에서 C-H의 sp2결합구조, 1333cm-1에서 다이아몬드의 sp3결합구조, 및 1355과 1540cm-1에서 디스오더(disorder)와 흑연(G band)의 sp2결합구조를 가지며, 특히, UV(ultraviolet) 라만분광에서는 약 1333cm-1부근에서의 sp3결합구조를 가지는 다이아몬드의 약간 예리한 피크와 약 1580cm-1주변에서 sp2결합구조를 가지는 흑연의 브로드한 피크가 얻어지게 함이 바람직하다.In addition, the Visible Raman spectroscopy is approximately 1140 and the diamond in the CH bond of the sp 2 structure, 1333cm -1 1480cm -1 in the sp 3 bonding structure, and at 1355 and 1540cm -1 display order (disorder) and graphite (G band) a it has an sp 2 bond structure, in particular, UV (ultraviolet) Raman spectroscopy of the graphite having an sp 2 bond structure in the slightly sharp peak of about 1580cm -1 and the periphery of the diamond having an sp 3 bond structure in the vicinity of about 1333cm -1 It is desirable to obtain a broad peak.

이하에서는 바람직한 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments.

본 발명은 종래의 미세결정다이아몬드 특성막의 형성방법과는 달리 기판홀더(100)에서 모재를 셋팅하여 플라즈마를 발생시키되, 홀더(100)상에 형성된 홈(110)에 모재를 삽입하여 발생되는 플라즈마와 기판과의 거리를 가장 근접(5~10mm)하게 하여 플라즈마 형상을 안정하게 유지한 후 메탄-수소혼합가스에 의하여 천연 다이아몬드의 경도에 가까운 약 90~110GPa의 미세결정다이아몬드 특성막을 형성시켰으며, 결과물로 얻어진 코팅막에 대하여 상기 Visible(514.5nm)와 UV(244nm) 라만분광법과 나노인텐터를 이용하여 특성을 평가한 결과 천연 다이아몬드에 가까운 경도를 나타내었다.Unlike the conventional method of forming a microcrystalline diamond characteristic film, the present invention generates plasma by setting a base material in the substrate holder 100, and inserts the base material into the groove 110 formed on the holder 100. After maintaining the plasma shape stably by bringing the distance to the substrate (5 ~ 10mm) closest to each other, a 90-110 GPa microcrystalline diamond characteristic film close to the hardness of natural diamond was formed by the methane-hydrogen mixed gas. The coating film obtained by using the Visible (514.5nm) and UV (244nm) Raman spectroscopy and nanointensifiers were evaluated for the characteristics showed a hardness close to natural diamond.

본 발명은 종래와는 달리 코팅되는 모재(200)를 가능한 한 기판홀더의 높이와 동일선상에 오도록 셋팅함으로서 종래의 모재에 대한 불균일한 온도분포가 해결되고, 특히 절삭공구용 인서트에 있어서 인선부에 플라즈마가 집중하게 됨으로서모재인 인서트의 중앙부위와 약 50℃이상의 온도차이로 인하여 결정입자가 조대하게 성장되거나 막의 성장속도가 빠르게 진행되어 박리현상을 초래하였던 종래의 문제점을 해결하였다.According to the present invention, the non-uniform temperature distribution of the conventional base material is solved by setting the base material 200 to be coated on the same line as the height of the substrate holder. By concentrating the plasma, the conventional problem that the crystal grains grow coarse or the film grows rapidly due to the temperature difference of about 50 ° C. with the central portion of the insert, which is the base metal, solves the conventional problem.

비교 실시예 1Comparative Example 1

본 실시예는 종래의 방법으로 기판홀더(100)에 16*8*5(두께)mm3의 3차원 복잡형상을 가지는 초경합금(WC-6%Co)으로 이루어진 모재(APKT1604PDFR-MA)(200)를 도 1b와 같이 기판홀더(100)에 셋팅한 다음, 가스압 20∼40Torr의 메탄-수소의 혼합가스분위기에서 모재온도 750∼850℃, 10시간 코팅하였다. 그 결과, 얻어진 막의 결정입자의 크기는 약 2∼5㎛정도이며, XRD분석결과 다이아몬드(111), (200), (311)면의 피크가 검출되었으며, Visible Raman분광분석결과 약 1333cm-1에서 다이아몬드의 비교적 양호한 결정성을 보여주는 예리한 피크가 얻어졌다. 하지만, 얻어진 막의 두께를 보면, 상면에서는 비교적 균일하게 얻어지지만, 측면에서는 인선 및 상면에 비해 얇게 코팅되며, 결정입자의 크기도 상이하다. 이것은 외관상 플라즈마와 모재의 상면부가 접하는 부분에서 플라즈마의 분포가 인선부에 집중되며, 그 결과, 모재의 온도분포가 다르기 때문에 다이아몬드의 핵생성 및 성장속도가 상이하다.This embodiment is a substrate (100) of a cemented carbide (WC-6% Co) having a three-dimensional complex shape of 16 * 8 * 5 (thickness) mm 3 in the substrate holder 100 by a conventional method (APKT1604PDFR-MA) 200 1B was set in the substrate holder 100 and then coated with a base material temperature of 750-850 ° C. for 10 hours in a methane-hydrogen mixed gas atmosphere with a gas pressure of 20-40 Torr. As a result, the size of the crystal grains of the obtained film was about 2 ~ 5㎛, XRD analysis showed peaks of diamond (111), (200), (311) plane, Visible Raman spectroscopic analysis of about 1333cm -1 Sharp peaks were obtained showing relatively good crystallinity of the diamond. However, when looking at the thickness of the obtained film, it is obtained relatively uniformly on the upper surface, but is thinly coated on the side surface than the cutting edge and the upper surface, and the size of crystal grains is also different. This is because the distribution of the plasma is concentrated at the edge portion at the portion where the plasma and the upper surface of the base contact each other. As a result, the nucleation and growth rate of the diamond are different because the temperature distribution of the base is different.

비교 실시예2Comparative Example 2

본 실시예는 종래의 방법으로 기판홀더(100)에 16*8*5(두께)mm3의 3차원 복잡형상을 가지는 초경합금(WC-6%Co)으로 이루어진 모재(APKT1604PDFR-MA)(200)를도 1b와 같이 기판홀더(100)에 셋팅한 다음, 가스압 20∼40Torr의 메탄-수소-아르곤의 혼합가스분위기에서 모재온도 750∼850℃, 10시간 코팅하였다. 그 결과, 얻어진 막의 결정입자의 크기는 약 2∼4㎛정도이며, 초기에는 약 500∼700nm의 결정크기를 가지는 막으로서 성장하지만, 어느 정도 성장한 후 막이 아닌 아일랜드(island) 형상으로 성장되었다. XRD분석결과 다이아몬드(111), (220), (311)면의 피크가 검출되었으며, Visible(514.5nm) Raman분광분석결과 약 1333cm-1에서 다이아몬드의 sp3구조와 1580cm-1에서 흑연의 sp2구조의 약한 브로드한 피크를 관찰할 수 있었다. 이 방법은 아르곤가스의 도입에 의하여 가스압 20∼50Torr사이에서는 플라즈마의 조절이 대단히 어려우며, 매우 불안하다. 또한, 성장된 다이아몬드막의 표면은 아르곤 이온에 의하여 스퍼터된 흔적이 관찰된 것으로 보아 결정입자의 손상을 가져오고 있다.This embodiment is a substrate (100) of a cemented carbide (WC-6% Co) having a three-dimensional complex shape of 16 * 8 * 5 (thickness) mm 3 in the substrate holder 100 by a conventional method (APKT1604PDFR-MA) 200 1b was set in the substrate holder 100 and then coated in a mixed gas atmosphere of methane-hydrogen-argon with a gas pressure of 20 to 40 Torr for 10 hours at a substrate temperature of 750 to 850 ° C. As a result, the size of the crystal grains of the obtained film was about 2 to 4 µm and initially grown as a film having a crystal size of about 500 to 700 nm, but after some growth, it was grown to an island shape instead of the film. XRD analysis result of diamond 111, 220, 311 was the peak of the surface-detecting, Visible (514.5nm) of the graphite in the Raman spectroscopy results sp 3 structure and 1580cm -1 of diamond at about 1333cm -1 sp 2 Weak broad peaks in the structure could be observed. This method is very difficult to control the plasma between the gas pressure of 20 to 50 Torr by the introduction of argon gas, which is very unstable. In addition, the surface of the grown diamond film was observed to be sputtered by argon ions, resulting in damage to the crystal grains.

실시예 3Example 3

본 발명의 실시예에서는, 기판홀더(100)에 16*8*5(두께)mm3의 3차원 복잡형상을 가지는 초경합금(WC-6%Co)인 모재(APKT1604PDFR-MA)(200)의 셋팅방법을 비교 실시예 1과 2와는 상이하게 하였다. 즉, 플라즈마(300)와 모재(200)와의 접하는 면을 가능한 한 평탄하게 하였다. 도 1c의 정면에서 보는 바와 같이, 모재(200)의 하단부(약 3mm)가 들어갈 수 있는 깊이만큼의 홈(110)을 만들어 기판홀더(100)의 표면에서 모재(200)의 상면이 약 2mm정도만 노출 혹은 올라오게 하였다. 이렇게 함으로서 모재(200)와 플라즈마(300)가 접할 경우 플라즈마(300)의 형상분포를 균일하게 조절할 수 있으며, 이로 인하여 플라즈마(300)에 의한 모재(200)표면에서의 온도차를 줄일 수 있어, 가능한 한 상면부와 인선부, 측면부에서 다이아몬드의 입자성장이 균일하게 진행된다. 그 결과, 모재(200)에서 온도분포의 차이를 최대한 줄여서 다이아몬드의 핵생성 및 성장을 균일하게 조절하는 것이다.In the embodiment of the present invention, setting of the base material (APKT1604PDFR-MA) 200 which is a cemented carbide (WC-6% Co) having a three-dimensional complex shape of 16 * 8 * 5 (thickness) mm 3 in the substrate holder 100. The method was made different from Comparative Examples 1 and 2. That is, the surface which contact | connects the plasma 300 and the base material 200 was made as flat as possible. As seen from the front of FIG. 1C, the groove 110 is formed to have a depth enough to enter the lower end (about 3 mm) of the base material 200 so that only the top surface of the base material 200 is about 2 mm from the surface of the substrate holder 100. Exposed or raised. By doing so, when the base material 200 and the plasma 300 are in contact with each other, the shape distribution of the plasma 300 can be uniformly adjusted, thereby reducing the temperature difference on the surface of the base material 200 by the plasma 300, which is possible. Particle growth of diamond proceeds uniformly at one top, edge and side. As a result, the nucleation and growth of diamond are uniformly controlled by reducing the difference in temperature distribution in the base material 200 as much as possible.

실시예의 실험조건Experimental Conditions of Examples

가스압 20∼40Torr, 메탄-수소의 혼합가스, 코팅시간 10시간, 모재온도 750∼850℃, 마이크로파출력 1∼2kW, 모재의 상면부와 플라즈마와의 거리 5∼10mmGas pressure 20 to 40 Torr, mixed gas of methane-hydrogen, coating time 10 hours, substrate temperature 750 to 850 ° C, microwave power 1 to 2 kW, distance between upper surface of substrate and plasma 5 to 10 mm

물성평가 결과Property evaluation result

평가 1Rating 1

실시예 3에서, 얻어진 막의 입자크기는 5∼25nm이며, 표면조도는 Ra=20∼40nm, XRD분석결과 다이아몬드(111), (220), (311)의 다결정의 미세한 다이아몬드가 얻어졌으며, 밀착력 테스트 결과 60kg의 하중으로 압흔하였을 때 박리가 일어나지 않았다. 또한, 도 4에서 나타낸 바와 같이, 나노인텐터에 의한 미소경도 측정결과(3회측정) 약 90-110GPa로서 매우 높은 경도를 보였다.In Example 3, the obtained film had a particle size of 5 to 25 nm, a surface roughness of Ra = 20 to 40 nm, and XRD analysis showed that polycrystalline fine diamonds of diamonds 111, 220, and 311 were obtained. As a result, no peeling occurred when indented under a load of 60 kg. In addition, as shown in Figure 4, the microhardness measurement results (three measurements) by the nano-intensors showed a very high hardness of about 90-110GPa.

평가 2Evaluation 2

실시예 3에서, 라만분광법에 의한 결과, 얻어진 막의 Visible(514.5nm)과 UV(244nm) Raman분광결과, 도 5에서 나타낸 바와 같이, Visible Raman분광에서는 약 1140과 1480cm-1부근에서 C-H의 stretching vibration mode인 sp2구조의 Raman shift가 있었으며, 1333cm-1에서 다이아몬드의 sp3결합구조, 약 1355과 1540cm-1에서소위 disorder(D band)와 흑연(G band)으로 불리우는 sp2결합구조를 나타낸다. 더욱이, sp3카본 결합구조에 더욱 민감한 UV Raman분광에서는 약 1333cm-1부근에서 다이아몬드의 약간 예리한 피크와 약 1580cm-1주변에서 흑연의 브로드한 피크가 관찰되었다. 여기에서, 1580cm-1부근에서의 흑연피크는 막을 구성하고 있는 매우 많은 결정입자와 입자사이의 계면에서 존재하는 sp2카본에 의한 것이다.In Example 3, the Visible (514.5 nm) and UV (244 nm) Raman spectroscopy of the obtained film as a result of Raman spectroscopy, as shown in FIG. 5, stretching vibration of CH around 1140 and 1480 cm -1 in Visible Raman spectroscopy. mode which was the Raman shift of the sp 2 structure, indicates a sp 3 bonding structure, about 1355 and sp 2 bond structure called at 1540cm -1 in the so-called disorder (D band) and graphite (G band) of the diamond at 1333cm -1. Furthermore, the sp 3 more sensitive UV Raman spectroscopy of carbon bonded structure a broad peak at about 1580cm -1 and slightly sharp peak of diamond at about 1333cm -1 around the vicinity of graphite were observed. Here, the graphite peak around 1580 cm -1 is caused by sp 2 carbon present at the interface between the many crystal grains and the particles constituting the film.

상기에서 설명한 바와 같이, 초경합금인 모재의 상면부가 가능한 한 기판홀더와 동일 선상에 근접하게 위치하도록 설계함으로써, 모재의 상면부와 플라즈마가 가장 근접하게 균일하게 접하도록 조절되어 약 90∼110GPa의 매우 높은 경도와 약 5∼25nm의 결정크기를 가지는 미세결정다이아몬드 특성을 가지는 막을 초경합금위에 형성하는 것이 가능하다.As described above, by designing the upper surface of the cemented carbide base material as closely as possible to the substrate holder as possible, the upper surface portion of the base material and the plasma is adjusted so as to be in close contact with the most uniformly, very high of about 90 to 110 GPa. It is possible to form a film on the cemented carbide with a fine crystal diamond characteristic having a hardness and a crystal size of about 5 to 25 nm.

따라서 종래의 문제점이었던 모재의 불균일한 온도분포가 해결되어, 결정입자가 조대하게 성장되거나 막의 성장속도가 빠르게 진행됨에 따른 막의 박리현상 등을 방지할 수 있다.Therefore, the nonuniform temperature distribution of the base material, which has been a conventional problem, is solved, and thus it is possible to prevent the peeling phenomenon of the film due to the coarse grain growth or the rapid growth of the film.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당기술분야의 숙련된 당업자는 실용신안등록청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위내에서 본 발명에 대하여 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to a preferred embodiment of the present invention, those skilled in the art various modifications and changes to the present invention without departing from the spirit and scope of the invention described in the utility model registration claims I can understand that you can.

Claims (7)

미세결정다이아몬드 특성막을 모재에 형성시키는 방법에 있어서, 모재를 홈이 형성된 기판 홀더에 위치시킨 다음, 메탄-수소계 마이크로파 플라즈마를 발생시켜 모재와 플라즈마와의 거리를 일정하게 유지하는 것에 의해 증착함을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.In the method of forming a microcrystalline diamond characteristic film on a base material, the base material is placed in a grooved substrate holder, followed by deposition by generating a methane-hydrogen microwave plasma to maintain a constant distance between the base material and the plasma. A method of forming a microcrystalline diamond characteristic film on a base material. 제 1항에 있어서, 상기 모재는 기판홀더 표면으로부터 2∼3mm 상부로 노출되며, 모재의 표면과 플라즈마와의 거리는 2∼10mm임을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.The method of claim 1, wherein the base material is exposed to the top of the substrate holder 2 to 3mm, and the distance between the surface of the base material and the plasma is 2 to 10mm. 제 2항에 있어서, 상기 모재는 초경합금 인서트로서 그 조성은 3∼10wt%Co와 10wt%이하의 타탄화물을 포함하는 WC계 초경합금 인서트임을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.The method of claim 2, wherein the base material is a cemented carbide insert, the composition is a WC-based cemented carbide insert containing 3 to 10wt% Co and less than 10wt% tar carbide. 제 3항에 있어서, 상기 모재의 평균입자크기는 0.5∼6㎛의 WC계 초경합금임을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.4. The method of claim 3, wherein the average particle size of the base material is a WC-based cemented carbide of 0.5 to 6 [mu] m. 제 1항에 있어서, 상기 플라즈마원의 발생은 동축(Coaxial)형 또는 캐비티(Cavity)형 마이크로파 전원과 그 외 마이크로파전원에 의한 합성방법이고,사용되는 플라즈마원으로는 메탄-수소의 혼합가스 또는 그 외 탄소를 포함하는 혼합가스임을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.The method of claim 1, wherein the generation of the plasma source is a synthesizing method using a coaxial or cavity type microwave power source and other microwave power sources, and a plasma source to be used is a mixed gas of methane-hydrogen or its A method of forming a microcrystalline diamond characteristic film on a base material, characterized in that the mixed gas containing an external carbon. 제 1항에 있어서, 형성되는 막의 결정입자 크기는 5∼500㎚, 두께는 0.5∼15㎛, 표면조도는 Ra=5∼40nm, 경도 80∼120GPa임을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.The microcrystalline diamond characteristic film of claim 1, wherein the film is formed with a crystal grain size of 5 to 500 nm, a thickness of 0.5 to 15 μm, a surface roughness of Ra = 5 to 40 nm, and a hardness of 80 to 120 GPa. How to let. 제 6항에 있어서, 상기 막은 Visible 라만분광에서 약 1140과 1480㎝-1에서 C-H의 sp2결합구조, 1333㎝-1에서 다이어몬드의 sp3결합구조, 및 1355과 1540㎝-1에서 디스오더(disorder)(D band)와 흑연(G band)의 sp2결합구조를 가지며, UV(ultraviolet) 라만분광에서 약 1333cm-1부근에서의 sp3결합구조를 가지는 다이아몬드의 약간 예리한 피크와 약 1580cm-1주변에서 sp2결합구조를 가지는 흑연의 브로드한 피크가 얻어짐을 특징으로 하는 미세결정다이아몬드 특성막을 모재에 형성시키는 방법.7. The method of claim 6 wherein the film Visible Raman CH in about 1140 and 1480㎝ -1 spectral sp 2 bond structure, the diamond sp 3 bonding structure in 1333㎝ -1, and 1355 in display order and 1540㎝ -1 (disorder) (D band) and graphite (G band) of sp 2 bond structure has a, UV (ultraviolet) slightly sharp peak of diamond having an sp 3 bond structure in the vicinity of about 1333cm -1 in Raman spectroscopy and about 1580cm - A method of forming a microcrystalline diamond characteristic film on a base material, characterized in that a broad peak of graphite having a sp 2 bonding structure is obtained around 1 .
KR10-2002-0084320A 2002-12-26 2002-12-26 A deposition method of coating film with fine-crystalline diamond to cutting tool KR100484263B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0084320A KR100484263B1 (en) 2002-12-26 2002-12-26 A deposition method of coating film with fine-crystalline diamond to cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0084320A KR100484263B1 (en) 2002-12-26 2002-12-26 A deposition method of coating film with fine-crystalline diamond to cutting tool

Publications (2)

Publication Number Publication Date
KR20040057559A true KR20040057559A (en) 2004-07-02
KR100484263B1 KR100484263B1 (en) 2005-04-20

Family

ID=37350126

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0084320A KR100484263B1 (en) 2002-12-26 2002-12-26 A deposition method of coating film with fine-crystalline diamond to cutting tool

Country Status (1)

Country Link
KR (1) KR100484263B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683574B1 (en) * 2004-10-19 2007-02-16 한국과학기술연구원 Diamond shell with a geometrical figure and method for?fabrication thereof
KR100958833B1 (en) * 2007-12-26 2010-05-24 한국과학기술연구원 Diamond-like carbon coating method for enhancing wear resistance and interfacial toughness in aqueous environment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683574B1 (en) * 2004-10-19 2007-02-16 한국과학기술연구원 Diamond shell with a geometrical figure and method for?fabrication thereof
KR100958833B1 (en) * 2007-12-26 2010-05-24 한국과학기술연구원 Diamond-like carbon coating method for enhancing wear resistance and interfacial toughness in aqueous environment

Also Published As

Publication number Publication date
KR100484263B1 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
RU2111846C1 (en) Diamond-plated tool and method of its manufacture
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US6063149A (en) Graded grain size diamond layer
US5851658A (en) Diamond coated article and process for producing thereof
KR101065572B1 (en) Diamond film coated tool and process for producing the same
JPH01153228A (en) Vapor phase composite method for producing diamond tool
US5173089A (en) Method for producing the polycrystalline diamond tool
CN111482622B (en) Coated cutting tool and preparation method thereof
CN104703734A (en) Hard film coating tool and method for manufacturing said tool
CN108396309A (en) A kind of cubic boron nitride coated cutting tool and preparation method thereof
US20210016364A1 (en) Ultra-fine nanocrystalline diamond precision cutting tool and manufacturing method therefor
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
EP1165860A1 (en) Diamond-coated tool and process for producing thereof
Meng et al. Application of CVD nanocrystalline diamond films to cemented carbide drills
KR100484263B1 (en) A deposition method of coating film with fine-crystalline diamond to cutting tool
US7192483B2 (en) Method for diamond coating substrates
KR20080097696A (en) Cutting tools of coated multilayer diamond
Lavrinenko CVD Diamonds in Diamond Tools: Features and Properties, Peculiarities of Processing, and Application in Modern Diamond Tools
US5567522A (en) Diamond cutting tool and method of manufacturing the same
EP0603422B1 (en) Wear component and method of making same
CN113403602A (en) PCBN cutter with nano-diamond film coating on surface and preparation method thereof
JPS62107068A (en) Diamond coated cutting tool
JPH1158106A (en) Diamond-coated cutting tool and its manufacture
KR100576318B1 (en) A improvement method of surface roughness of diamond coating film to cutting tool
JP2591865B2 (en) Polycrystalline diamond tool and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee