KR20040052739A - Process of preparing a dispersed solution of photocatalyst - Google Patents

Process of preparing a dispersed solution of photocatalyst Download PDF

Info

Publication number
KR20040052739A
KR20040052739A KR1020040030600A KR20040030600A KR20040052739A KR 20040052739 A KR20040052739 A KR 20040052739A KR 1020040030600 A KR1020040030600 A KR 1020040030600A KR 20040030600 A KR20040030600 A KR 20040030600A KR 20040052739 A KR20040052739 A KR 20040052739A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
transition metal
titanium
colloidal silica
dispersion
Prior art date
Application number
KR1020040030600A
Other languages
Korean (ko)
Other versions
KR100453446B1 (en
Inventor
김태진
이화석
양형호
김대종
최정길
Original Assignee
김태진
최정길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김태진, 최정길 filed Critical 김태진
Priority to KR10-2004-0030600A priority Critical patent/KR100453446B1/en
Publication of KR20040052739A publication Critical patent/KR20040052739A/en
Application granted granted Critical
Publication of KR100453446B1 publication Critical patent/KR100453446B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: Provided is a method for preparing a photocatalyst dispersion, which combines a transition metal and a colloidal silica on the surface of ultra-fine titanium dioxide particles. CONSTITUTION: The method comprises steps of (a) after mixing water and acid in a molar ratio o 1 : 0.01-0.1, adding 0.01-0.1 mol of titanium alkoxide thereto and stirring at a temperature of 60-80 deg.C for 6-8 hours to prepare an anatase titanium dioxide dispersion having a particle size of 1-10 nanometer; (b) after respectively dissolving Na4EDTA and a transition metal compound in a molar ratio of 1 : 0.1-0.75 in water, mixing them with each other and stirring at a temperature of 40-60 deg.C for 1-10 hours to prepare a transition metal EDTA salt substituted by 1-3 transition metals instead of Na and (c) reacting the surface of the titanium oxide of the anatase titanium dioxide dispersion with the negatively charged colloidal silica having a surface area of 200-1,000 m¬2/g at a temperature of 30-60 deg.C for 1-2 hours to prepare a photocatalyst dispersion where the transition metal and the colloidal silica are combined to the surface of the titanium dioxide particles.

Description

광촉매분산액의 제조방법{Process of preparing a dispersed solution of photocatalyst}Process of preparing a dispersed solution of photocatalyst

본 발명은 초미세 이산화티타늄 입자표면에 전이금속과 콜로이달실리카(Colloidal Silica)를 결합시킨 광촉매분산액 및 제조방법에 관한 것이다.The present invention relates to a photocatalyst dispersion in which a transition metal and colloidal silica are bonded to a surface of ultrafine titanium dioxide particles, and to a manufacturing method thereof.

본 발명은 나노(Nano)크기의 초미세 이산화티타늄 입자표면에 은(Ag), 백금(Pt), 팔라듐(Pd), 주석(Sn), 구리(Cu), 철(Fe) 등의 전이금속과 콜로이달실리카(Colloidal Silica)를 결합시킨 광촉매분산액의 제조방법에 관한 것이다.The present invention relates to a transition metal such as silver (Ag), platinum (Pt), palladium (Pd), tin (Sn), copper (Cu), iron (Fe), and the like on a nano-size ultrafine titanium dioxide particle surface. It relates to a method for producing a photocatalyst dispersion in which colloidal silica is bound.

본 발명에서 제시한 방법에 따라 제조된 광촉매는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카를 EDTA(Ethylene diamine tetra acetic acid)화합물과 정전기적 상호작용을 이용하여 결합시킨 것으로써, 빛이 없는 조건에서도 전이금속에 의한 살균기능과 표면적이 넓은 콜로이달실리카에 의한 오염물질 흡착기능이 추가되어 기존의 광촉매의 단점을 극복할 수 있다.The photocatalyst prepared according to the present invention combines a transition metal and colloidal silica on the surface of titanium dioxide particles by using an electrostatic interaction with an ethylene diamine tetra acetic acid (EDTA) compound. In addition, it is possible to overcome the disadvantages of the conventional photocatalyst by adding the sterilization function by the transition metal and the adsorption of contaminants by the colloidal silica having a large surface area.

또한 특별한 처리 없이 전이금속EDTA염과 콜로이달실리카를 양전하를 띄는 이산화티타늄 입자표면과 결합시킴으로써 분산액의pH를 중성으로 조절하여도 입자끼리 응집하는 현상이 일어나지 않게 안정화시킬 수 있어 광촉매분산액을 폭넓게 이용할 수 있다는 장점이 있다.In addition, by combining transition metal EDTA salt and colloidal silica with positively charged titanium dioxide particle surface without special treatment, it is possible to stabilize the pH of the dispersion to prevent aggregation of particles even when neutral, so that photocatalytic dispersion can be widely used. There is an advantage.

광촉매는 반도체 물질로서 밴드갭(band gap) 이상의 빛을 흡수하면 표면에 전자(e-)와 정공(h+)이 생성되며, 이렇게 생성된 전자와 전공이 우리 주위에 풍부하게 존재하는 물과 산소를 산화활성이 매우 큰 수산화라디칼(OH·)이나 활성산소(O2 -)로 전환시키고, 이들이 유해한 유기물로서 포름알데히드, 휘발성유기화합물, 악취원인물질, 오염물질, 환경호르몬 등이나 세균의 세포벽을 산화시켜 분해 제거하는 기능을 갖는다. 특히 일반 살균제는 세균이 죽을 때 내놓는 독소(엔도톡신)를 제거할 수는 없지만, 광촉매는 독소까지도 완전히 분해하는 성질을 가지고 있다.Photocatalyst electron (e -) to the surface absorbs light over the band gap (band gap) as a semiconductor material and holes (h +) are generated, and, thus generated electrons and studied the abundant around us water and oxygen to Is converted into hydroxyl radical (OH ·) or active oxygen (O 2 ) with very high oxidative activity, and these are harmful organic substances such as formaldehyde, volatile organic compounds, odor causing substances, pollutants, environmental hormones, etc. It has a function of oxidizing and decomposing and removing. In particular, general fungicides cannot remove toxins (endotoxins) that bacteria give off, but photocatalysts have the property of completely degrading even toxins.

광촉매 작용을 나타내는 물질에는 이산화티타늄(TiO2), 산화아연(ZnO), 이산화주석(SnO2), 산화니켈(NiO), 산화철(Fe2O3) 등 여러 가지 금속산화물과 복합산화물이 있으나, 이중에서 이산화티타늄이 광촉매활성이 높고, 내산/내알칼리성이 좋고, 인체에 무해하며, 저렴하여 가장 많이 사용되고 있으며, 이산화티타늄은 결정형태에 따라 아나타아제(Anatase), 루틸(Rutile), 브루카이트(Brookite)로 구분하는데, 아나타아제와 루틸형 모두 광촉매로 사용할 수 있지만, 아나타아제가 루틸에 비해 광촉매 활성이 더 높은 것으로 알려져 있다. 또한 백금(Pt), 로듐(Rh), 주석(Sn), 니켈(Ni), 구리(Cu) 등 전이금속이나 이들의 산화물을 이산화티타늄에 첨가하여 전자와 정공이 재결합하여 활성이 없어지는 시간을 지연시켜 광촉매의 활성을 높일 수 있다. 또한 광촉매 입자크기가 수십 나노미터(nm) 이하로 작아야 양자크기효과(Quantum size effect)에 의해 광촉매 활성이 높아지며, 투명도와 분산성이 좋아진다.There are various metal oxides and composite oxides such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), tin dioxide (SnO 2 ), nickel oxide (NiO), and iron oxide (Fe 2 O 3 ). Among them, titanium dioxide has high photocatalytic activity, good acid / alkali resistance, harmless to human body, and is inexpensive, and is most commonly used. Titanium dioxide is anatase, rutile, and brookite depending on the crystal form. The anatase and rutile types can be used as photocatalysts, but anatase is known to have higher photocatalytic activity than rutile. In addition, transition metals such as platinum (Pt), rhodium (Rh), tin (Sn), nickel (Ni), and copper (Cu) or oxides thereof are added to titanium dioxide to reactivate the electrons and holes, thereby reducing the activity. By delaying, the activity of the photocatalyst can be increased. In addition, the photocatalytic particle size is smaller than several tens of nanometers (nm) or less to increase the photocatalytic activity due to the quantum size effect, and improve transparency and dispersibility.

광촉매의 기능이 점차 알려지면서 활성과 성능을 높여 제조하는 방법이 다양하게 연구되었으며, 다수의 특허로 출원되었다. 이산화티타늄 광촉매를 제조하는 방법은 사염화티타늄(TiCl4)이나 티타늄알콕사이드(Ti(OCnH2n+1)4)와 같은 티타늄화합물을 고온으로 유지되는 용기에 산소와 함께 분사 또는 증발시켜 산화처리하여 미세 분말을 만드는 기상법과 액상에서 티타늄화합물을 60 ~ 80 ℃ 온도에서 가수분해 및 해교(Peptization)시켜 나노크기의 이산화티타늄 입자가 분산된 용액을 제조하는 액상 졸-겔법 두 가지로 크게 나눌 수 있다.As the functions of photocatalysts are gradually known, various methods for manufacturing them by increasing their activity and performance have been studied, and many patents have been filed. The method for producing a titanium dioxide photocatalyst is to oxidize a titanium compound such as titanium tetrachloride (TiCl 4 ) or titanium alkoxide (Ti (OC n H 2n + 1 ) 4 ) by spraying or evaporating with oxygen in a container maintained at high temperature to oxidize the same. It can be divided into two methods, a gas phase method of making a fine powder and a liquid sol-gel method of preparing a solution in which nano-sized titanium dioxide particles are dispersed by hydrolyzing and peptizing a titanium compound at a temperature of 60 to 80 ° C.

광촉매는 상황에 따라 분말형태, 기재에 코팅, 광촉매 코팅제 형태로 제조하여 사용할 수 있는데, 분말자체로 사용하는 방법은 광촉매분말을 수거하는데 어려움이 있어 거의 사용되지 않으며, 주로 세라믹필터, 유리섬유, 유리구슬과 같은 무기질인 지지체에 광촉매를 코팅하여 사용하고 있으며, 5∼30 nm 크기의 광촉매 입자를 물이나 알콜과 같은 분산액에 섞은 광촉매코팅제는 건물의 내/외벽이나 다양한 대상물질에 코팅하여 사용하고 있다.The photocatalyst can be manufactured and used in the form of a powder, a coating on a substrate, or a photocatalyst coating, depending on the situation.However, the photocatalyst is hardly used because it is difficult to collect the photocatalyst powder. The photocatalyst is coated on inorganic support such as beads, and the photocatalyst coating agent is mixed with 5-30 nm photocatalyst particles in dispersion such as water or alcohol. .

광촉매코팅제의 구성물질 중에서 광촉매 자체의 활성이나 분산액의 선택이 매우 중요하지만, 광촉매코팅제를 대상물질에 코팅하여 접착력을 높이기 위해서는 별도의 바인더의 사용도 필수적이다. 바인더는 일상생활에서 흔히 사용하는 접착력이 좋은 유기계바인더와 물유리나 실란, 시멘트와 같은 무기계바인더가 있다. 유기계바인더는 광촉매 작용으로 인해 분해가 진행되므로 사용에 제약을 받아 물유리나 실란 등의 무기계바인더가 주로 사용되고 있으며, 플루오르수지는 광촉매에 대해 비교적 안정하지만, 접착력이 비교적 낮고, 고가이며, 시멘트는 코팅제와 혼합하면 응고되어 사용할 수 없다는 단점이 있다.Although the activity of the photocatalyst itself or the selection of the dispersion solution is very important among the constituents of the photocatalyst coating agent, the use of a separate binder is also essential to increase the adhesion by coating the photocatalyst coating agent on the target material. Binders are organic binders, which are commonly used in daily life, and inorganic binders such as water glass, silane, and cement. As organic binders are decomposed due to photocatalytic action, inorganic binders such as water glass and silane are mainly used, and fluororesins are relatively stable to photocatalysts, but adhesives are relatively low and expensive, and cement is coated with a coating agent. If mixed, there is a disadvantage that it can not be solidified.

이산화티타늄 광촉매는 특정 파장대(약 380 nm)의 빛에 의해서만 활성화되므로 빛이 존재하지 않은 밤이나 지하실과 같은 조건에서는 사용의 제약이 심하다. 최근 은이나 구리와 같은 전이금속이 강한 살균력을 나타내는 것이 과학적으로 입증되어 공기정화기, 세탁기 등 다양한 제품에 적용되고 있으며, 특히 은은 오래전부터 반지와 같은 장신구 등에 많이 사용되고 있어 인간에게는 아주 친밀한 금속이고, 다른 전이금속에 비해 뛰어난 살균력을 갖는다.Titanium dioxide photocatalysts are only activated by light in a specific wavelength band (about 380 nm), so their use is severe in conditions such as nights and basements where there is no light. Recently, transition metals such as silver and copper have been scientifically proven to show strong sterilizing power, and have been applied to various products such as air purifiers and washing machines. Especially silver has been used in jewelry such as rings for a long time. Excellent sterilizing power compared to transition metals.

은을 생활속에서 효율적으로 사용하기 위해 나노크기의 입자로 만드는 기술들이 많이 연구, 개발되고 있다. 은 나노입자를 만드는 방법은 순도가 높은 금속은봉을 물속에서 고전압 인가를 통해 전기분해하여 은이온(Ag+)을 만드는 전기분해법과 질산은이나 은아세테이트와 같은 은화합물을 물에 녹여 수용액 상태로 만들고 약 70 ℃ 온도에서 메탄올이나 에탄올 등의 알콜로 환원시키는 알콜환원법으로 나눌 수 있다. 그러나 상기 두 가지 방법 모두 초기에는 나노크기의 입자가 형성되지만, 일정시간이 지나면 은입자끼리 응집하여 큰 입자로 성장하여 가라앉는 등의 문제점이 있다. 이런 문제점을 극복하기 위해 여러 가지 계면활성제나 PVP (Polyvinylpyrrolidone)이나 PVA (Polyvinylalcohol)와 같은 친수성고분자를 이용하여 응집을 방지하고 있다.In order to use silver efficiently in life, many techniques for making nano-sized particles have been researched and developed. The method of making silver nanoparticles is an electrolysis method to make silver ions (Ag + ) by electrolyzing high-purity metallic silver rods under high voltage in water, and dissolving silver compounds such as silver nitrate or silver acetate into water to make an aqueous solution. It can be divided into alcohol reduction method which reduces to alcohol, such as methanol and ethanol, at 70 degreeC temperature. However, in both methods, nano-sized particles are initially formed, but after a certain time, silver particles aggregate and grow into large particles, and so on. To overcome this problem, various surfactants or hydrophilic polymers such as polyvinylpyrrolidone (PVP) or polyvinylalcohol (PVA) are used to prevent aggregation.

빛이 없는 조건에서는 활성을 보이지 않는 광촉매의 단점을 극복하고자하는 시도는 다양한 방법으로 제시되고 있지만, 광촉매 표면에 흡착능이 높은 물질을 첨가함으로써 빛이 없는 조건에서는 오염물질을 흡착하여 저장하였다가 빛이 있는 조건에서 저장된 오염물질을 분해하여 제거하는 방법이 유용할 것이다.Attempts to overcome the shortcomings of photocatalysts that do not show activity in the absence of light have been proposed in various ways. However, by adding substances with high adsorption capacity to the surface of the photocatalyst, in the absence of light, contaminants are adsorbed and stored, Under certain conditions, it would be useful to decompose and remove stored contaminants.

EDTA는 4개의 카르복실기가 있어 물에 용해되었을 때 4의 음하전을 갖는 음이온 킬레이트(Chelate)화합물이며, 카르복실기에는 일반적으로 수소, 나트륨, 칼슘, 철 등의 원자가 결합되어 있는 상태이다. 이 화합물은 독성이 없다고 알려져 있어, 음식물의 변질을 지연하기 위해 식품에 소량으로 사용되며, Na4EDTA는 물속에 포함되어 비누의 역할을 방해하는 Ca2+, Mg2+, Fe3+이온을 제거하기 위해 세제 등에도 첨가되고 있으며, 납과 같은 중금속 중독치료 및 수혈용 혈액에 소량 첨가하여 혈액을 응고시키는 역할을 하는 칼슘이온을 제거하기 위한 목적으로 다양하게 사용하고 있다.EDTA is an anion chelate compound having four carboxyl groups and having a negative charge of four when dissolved in water, and atoms such as hydrogen, sodium, calcium and iron are generally bonded to the carboxyl group. The compound is known to be non-toxic and is used in small amounts in foods to retard food deterioration. Na 4 EDTA contains Ca 2+ , Mg 2+ , and Fe 3+ ions in water, which interfere with the role of soap. It is added to detergents to remove, and is used in various purposes for removing calcium ions that serve to coagulate blood by adding a small amount to the heavy metal poisoning treatment such as lead and blood for transfusion.

본 발명은 티타늄알콕사이드를 60 ~ 80 ℃ 온도에서 물과 산으로 가수분해 및 해교시켜 제조한 이산화티타늄 입자표면은 산성인 조건에서는 양(+)전하로 강하게 대전되어 있어 나노입자로 안정하게 존재하지만,pH를 중성으로 조절하면 전하를 잃어 안정화되기 위해 큰 입자로 응집하는 현상이 발생하는데, 음이온인 전이금속EDTA염과 표면이 음전하를 띄는 콜로이달실리카를 이산화티타늄 입자와 반응시켜pH를 중성으로 조절하여도 응집되는 현상을 막고, 동시에 광촉매 자제의 활성과 살균능력을 높이며, 빛이 없는 조건에서 살균 및 오염물질을 흡착하였다가 빛이 있는 환경에서 흡착된 오염물질을 제거하는 기능을 추가시키고, 상온에서 코팅하여 건조한 피막이 우수한 접착력을 갖는 광촉매분산액을 제조하는데 목적이 있다.According to the present invention, the titanium dioxide particle surface prepared by hydrolyzing and peptizing titanium alkoxide with water and acid at a temperature of 60 to 80 ° C. is strongly charged with positive charge under acidic conditions, and thus it is stably present as nanoparticles. When the pH is adjusted to neutral, agglomeration of large particles occurs in order to lose charge and stabilize.The pH is adjusted to neutral by reacting the transition metal EDTA salt, an anion, and colloidal silica, which has a negative charge on the surface, with titanium dioxide particles. It also prevents agglomeration and at the same time increases the activity and sterilization ability of photocatalyst control, adds the function of absorbing sterilization and pollutants in the absence of light and removing the adsorbed pollutants in the light environment. The purpose is to prepare a photocatalyst dispersion liquid having excellent adhesion by coating and drying the coating.

도 1은 본 발명에 따라 제조된 광촉매분산액의 투과전자현미경사진이다.1 is a transmission electron micrograph of the photocatalyst dispersion prepared according to the present invention.

도 2는 본 발명에 따라 제조된 광촉매분산액의 X-선회절패턴이다.2 is an X-ray diffraction pattern of the photocatalyst dispersion prepared according to the present invention.

도 3은 본 발명에 따라 제조된 광촉매분산액의 항균시험사진이다.Figure 3 is an antimicrobial test photograph of the photocatalyst dispersion prepared according to the present invention.

도 4는 본 발명에 따라 제조된 광촉매분산액으로 코팅한 유리구슬의 메틸렌블루분해사진이다.Figure 4 is a methylene blue decomposition photo of glass beads coated with a photocatalyst dispersion prepared according to the present invention.

본 발명은 물과 산을 몰비로 1 : 0.01 ~ 0.1 비율범위에서 섞고 여기에 티타늄알콕사이드 0.01 ~ 0.1몰을 추가하여 60 ~ 80 ℃ 온도에서 6 ~ 8 시간 교반하여 상기 티타늄알콕사이드를 물과 산으로 가수분해 및 해교반응시켜 입자 크기가 1~10 nm인 아나타아제형 이산화티타늄 분산액을 제조하는 단계; Na4EDTA과 전이금속화합물의 몰비를 1 : 0.1 ~ 0.75 비율로 각각 물에 녹인 후, 서로 혼합하여 40 ~60 ℃ 온도범위에서 1~10시간 교반시켜 Na원자 대신 전이금속이 1~3개 치환된 전이금속EDTA염을 제조하는 단계; 상기 아나타아제형 이산화티타늄 분산액의 이산화티타늄표면에 상기 전이금속EDTA염이 용해된 분산액과 표면적이 200~1,000 m2/g이고 표면이 음으로 대전된 콜로이달실리카를 30 ~ 60 ℃에서 1 ~ 2시간 교반하여 반응시켜 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액을 제조하는 단계로 이루어진 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법에 관한 것이다.In the present invention, water and acid are mixed in a molar ratio of 1: 0.01 to 0.1, and 0.01 to 0.1 mole of titanium alkoxide is added thereto, followed by stirring for 6 to 8 hours at a temperature of 60 to 80 ° C. Dissolving and peptizing to prepare an anatase titanium dioxide dispersion having a particle size of 1 to 10 nm; The molar ratio of Na 4 EDTA and the transition metal compound was dissolved in water at a ratio of 1: 0.1 to 0.75, respectively, and then mixed with each other and stirred for 1 to 10 hours at a temperature range of 40 to 60 ° C. to substitute 1 to 3 transition metals instead of Na atoms. Preparing a transition metal EDTA salt; A dispersion in which the transition metal EDTA salt is dissolved on the titanium dioxide surface of the anatase-type titanium dioxide dispersion and a colloidal silica having a surface area of 200 to 1,000 m 2 / g and a negatively charged surface at 1 to 2 at 30 to 60 ° C A method of producing a photocatalyst dispersion comprising a transition metal and a colloidal silica coupled to a titanium dioxide particle surface, comprising the steps of preparing a photocatalyst dispersion comprising a transition metal and colloidal silica on the titanium dioxide particle surface by reacting with stirring for a time. It is about.

본 발명에서 물은 탈이온수이고, 산은 질산(HNO3), 염산(HCl), 황산(H2SO4) 또는 아세트산(CH3COOH)이고, 티타늄알콕사이드는 티타늄프로폭사이드(Titanium propoxide), 티타늄이소프로폭사이드(Titanium isopropoxide) 또는 티타늄부톡사이드(Titanium buthoxide)이다. 본 발명에서 전이금속은 은, 구리, 백금, 팔라듐, 로듐, 루테늄, 주석, 철, 코발트 또는 몰리브덴이다. 본 발명에서 이산화티타늄에 대한 EDTA의 양은 중량비로 40 ~ 60중량%이다. 본 발명에서 은 또는 구리는 이산화티타늄에 대한 중량비로 10중량%이고, 백금, 팔라듐, 로듐, 루테늄, 주석, 철, 코발트 또는 몰리브덴은 1~2 중량%이다. 본 발명에서 콜로이달실리카는 첨가량이 이산화티타늄에 대한 중량비로 50 ~ 150중량%이다. 본 발명에서 이산화티타늄 광촉매분산액은pH가 6 ~ 8이다.In the present invention, water is deionized water, acid is nitric acid (HNO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) or acetic acid (CH 3 COOH), titanium alkoxide is titanium propoxide, titanium Isopropoxide or titanium buthoxide. In the present invention, the transition metal is silver, copper, platinum, palladium, rhodium, ruthenium, tin, iron, cobalt or molybdenum. In the present invention, the amount of EDTA to titanium dioxide is 40 to 60% by weight. In the present invention, silver or copper is 10% by weight based on the weight ratio of titanium dioxide, and platinum, palladium, rhodium, ruthenium, tin, iron, cobalt, or molybdenum is 1 to 2% by weight. In the present invention, the colloidal silica is added in an amount of 50 to 150% by weight based on the weight ratio of titanium dioxide. In the present invention, the titanium dioxide photocatalyst dispersion has a pH of 6 to 8.

본 발명은 나노크기의 초미세 이산화티타늄 입자표면에 전이금속과 콜로이달실리카를 결합시킨 광촉매분산액 제조방법에 관한 것으로 그 방법을 다음에 구체적으로 설명한다.The present invention relates to a method for preparing a photocatalyst dispersion in which a transition metal and colloidal silica are bonded to a nano-sized ultrafine titanium dioxide particle surface, and the method will be described in detail below.

1단계: 나노크기의 이산화티타늄 분산액을 제조하는 단계로, 물과 산을 몰비로 1 : 0.01 ~ 0.1 비율범위에서 섞고 여기에 티타늄알콕사이드 0.01 ~ 0.1몰을 추가하여 60 ~ 80 ℃ 온도에서 6 ~ 8 시간 교반하여 티타늄알콕사이드를 물과 산으로 가수분해 및 해교반응시켜 입자 크기가 10 nm 이하인 아나타아제형 이산화티타늄 분산액을 제조한다. 이때 사용하는 물은 탈이온수가 바람직하고, 산은 질산(HNO3), 염산(HCl), 황산(H2SO4), 아세트산(CH3COOH) 등 강산 또는 약산인 유/무기산 모두 사용이 가능하지만, 질산과 아세트산이 바람직하고, 티타늄알콕사이드는 티타늄메톡사이드(Titanium methoxide)를 제외한 티타늄프로폭사이드(Titanium propoxide), 티타늄이소프로폭사이드(Titanium isopropoxide), 티타늄부톡사이드(Titanium buthoxide) 등과 같이 상온에서 액상인 티타늄알콕사이드 모두 사용이 가능하다.Step 1: preparing nano-sized titanium dioxide dispersion, in which water and acid are mixed at a molar ratio of 1: 0.01 to 0.1 in a ratio range, and 0.01 to 0.1 mole of titanium alkoxide is added thereto at a temperature of 6 to 8 at 60 to 80 ° C. After stirring for a time, the titanium alkoxide was hydrolyzed and peptized with water and an acid to prepare an anatase type titanium dioxide dispersion having a particle size of 10 nm or less. At this time, de-ionized water is preferable, and acid is nitric acid (HNO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), acetic acid (CH 3 COOH), etc. , Nitric acid and acetic acid are preferred, and titanium alkoxide is at room temperature, such as titanium propoxide, titanium isopropoxide, titanium butoxide, except titanium methoxide. Both liquid titanium alkoxides can be used.

2단계: 전이금속EDTA염을 제조하는 단계로, Na4EDTA과 전이금속화합물의 몰비를 1 : 0.1 ~ 0.75 비율로 각각 물에 녹인 후, 서로 혼합하여 40 ~ 60 ℃ 온도범위에서 1시간이상 교반시켜 Na원자 대신 전이금속이 치환된 전이금속EDTA염을 만들었다. 이 때 Na4EDTA 분자에서 4개의 Na원자 대신 전이금속원자가 많이 치환될수록 불용성화합물로 바뀔 수 있기 때문에 전이금속원자의 치환개수를 EDTA 한 분자당 3개를 넘지 않도록, 바람직하게는 2개를 넘지 않도록 Na4EDTA와 전이금속의 몰비를 조절해야하며, 전이금속EDTA염이 침전되지 않도록 물의 비율을 조절하는 것도 매우중요하다.Step 2: preparing a transition metal EDTA salt, dissolving the molar ratio of Na 4 EDTA and the transition metal compound in water at a ratio of 1: 0.1 to 0.75, respectively, and mixing them with each other and stirring at a temperature range of 40 to 60 ° C. for at least 1 hour. To make a transition metal EDTA salt in which the transition metal is substituted for Na atom. In this case, since more transition metal atoms are substituted for four Na atoms in the Na 4 EDTA molecule, they may be converted into insoluble compounds, so that the number of substitution of transition metal atoms does not exceed three per molecule of EDTA, preferably not more than two It is important to control the molar ratio of Na 4 EDTA and the transition metal, and to control the water ratio so that the transition metal EDTA salt does not precipitate.

전이금속의 종류는 살균력이 있다고 알려진 은이나 구리, 또는 이산화티타늄 광촉매와 결합하여 활성을 증진시키는 킬 수 있는 백금, 팔라듐, 로듐, 루테늄, 주석, 철, 코발트, 몰리브덴 등을 사용할 수 있으며, 물에 대한 용해도가 높고, 물 속에서 전이금속 양이온으로 존재하는 -NO3, -Cl, 일부 -OH 등의 형태로 이루어진 화합물을 사용할 수 있다. 이렇게 제조된 전이금속EDTA염 분산액은 장시간 방치하여도 서로 응집하여 덩어리지는 현상은 발생하지 않았다.Types of transition metals may be silver, copper, or titanium dioxide, which are known to have bactericidal properties, and platinum, palladium, rhodium, ruthenium, tin, iron, cobalt, molybdenum, etc., which can be combined with a photocatalyst to enhance activity. It is possible to use a compound having a high solubility in water, and a form of -NO 3 , -Cl, and some -OH which exist as a transition metal cation in water. The transition metal EDTA salt dispersion prepared as described above was not aggregated with each other even after standing for a long time.

3단계: 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액을 제조하는 최종단계로, 1단계 방법에 의해 제조된 입자크기가 10 nm 이하인 아나타아제 결정형 이산화티타늄표면에 2단계 방법에 의해 제조된 전이금속EDTA염이 용해된 분산액과 표면적이 200 m2/g 이상으로 크고 표면이 음으로 대전된 콜로이달실리카를 30 ~ 60 ℃ 온도에서 1 ~ 2시간 교반하여 반응시킨다.Step 3: A final step of preparing a photocatalyst dispersion in which a transition metal and colloidal silica is combined on a titanium dioxide particle surface, and a two-step method on an anatase crystalline titanium dioxide surface having a particle size of 10 nm or less prepared by a one-step method. The dispersion prepared by dissolving the transition metal EDTA salt and the negatively charged colloidal silica having a large surface area of 200 m 2 / g or more were reacted by stirring at a temperature of 30 to 60 ° C. for 1 to 2 hours.

결합과정은 4개의 Na원자 대신 일부가 전이금속으로 치환된 EDTA는 물에 용해되어 4개 이하의 카르복실기(COO-)를 갖는 음이온으로 존재하게 되며, 콜로이달실리카는 표면이 음으로 대전되어 있어, 양으로 대전된 이산화티타늄 입자표면과 정전기적 상호작용으로 강하게 결합하여 안정화된다.In the bonding process, EDTA, which is partially substituted with a transition metal instead of four Na atoms, is dissolved in water and exists as an anion having four or less carboxyl groups (COO ), and colloidal silica has a negatively charged surface. It is strongly bound and stabilized by electrostatic interaction with the positively charged titanium dioxide particle surface.

이때 이산화티타늄에 대한 EDTA의 양은 중량비로 40 ~ 60%가 적당하며, 전이금속은 종류에 따라 살균력을 증대시키기 위한 목적으로 첨가되는 은이나 구리는 이산화티타늄에 대한 중량비로 10%를, 광촉매활성을 높이기 위해 첨가되는 다른 전이금속은 2%를 초과되지 않도록 하는 것이 바람직하다. 콜로이달실리카의 첨가량은 이산화티타늄에 대한 중량비로 50 ~ 150% 정도 첨가하는 것이 적당하나, 빛의 조사시간이나 광촉매의 적용 조건에 따라 적절히 조절하여 사용한다.At this time, the amount of EDTA to titanium dioxide is suitable by 40 to 60% by weight, and the transition metal is 10% by weight of titanium or silver added for the purpose of increasing sterilization power, and the photocatalytic activity It is desirable that the other transition metal added to increase the content not to exceed 2%. The addition amount of colloidal silica is appropriate to add about 50 ~ 150% by weight ratio to titanium dioxide, but it is appropriately adjusted according to the irradiation time of light or application conditions of the photocatalyst.

전이금속EDTA염과 콜로이달실리카를 결합시킨 이산화티타늄 광촉매분산액은 산성을 띄므로 코팅하고자하는 대상물질의 재질에 구애받지 않고, 안전하고 폭넓게 적용할 수 있게pH를 6 ~ 8 정도로 조절하는 것이 바람직한데, 수산화나트륨(NaOH), 수산화칼륨(KOH), 암모니아수(NH4OH), 에틸렌디아민(C2H8N2) 등과 같은 유/무기 염기를 사용할 수 있다.Titanium dioxide photocatalyst dispersion combined with transition metal EDTA salt and colloidal silica is acidic, so it is desirable to adjust the pH to 6 to 8 so that it can be applied safely and widely regardless of the material of the target material to be coated. Organic / inorganic bases such as sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonia water (NH 4 OH), ethylenediamine (C 2 H 8 N 2 ), and the like may be used.

상기 방법에 의해 제조된 광촉매분산액을 코팅한 후 일정시간이 경과되면 빛에 의해 광촉매분산액에 함유되어 있는 EDTA 및 기타 유기물은 분해되므로 이산화티타늄 입자와 전이금속이 밀착되고 전이금속은 전이금속산화물로 산화되어 광촉매 효과를 증진시킨다. 또한 상기한 방법으로 제조한 광촉매 분삭액으로 코팅한 피막을 연필경도법으로 시험한 결과 H 이상의 경도를 보여 접착력도 우수하였다.After a certain time after coating the photocatalyst dispersion prepared by the above method, EDTA and other organic substances contained in the photocatalyst dispersion are decomposed by light, so that titanium dioxide particles and the transition metal are in close contact and the transition metal is oxidized to a transition metal oxide. To enhance the photocatalytic effect. In addition, the film coated with the photocatalyst powder prepared by the above method was tested by the pencil hardness method, and showed a hardness of H or more, thereby showing excellent adhesion.

<실시예 1><Example 1>

탈이온수 350 g에 질산(60%) 10 g을 섞은 후 교반하고, 여기에 티타늄이소프로폭사이드 40 g을 가하고 온도를 70 ℃로 유지시키며 8시간 교반하여 이산화티타늄의 함량이 약 3%인 분산액을 제조하였고, 이렇게 제조된 이산화티타늄의 특성을 도 1과 도 2에 보인대로 투과전자현미경(TEM)과 X-선회절패턴(XRD)으로 분석한 결과 이산화티타늄의 평균 입자크기는 약 8 ~10 nm 정도이며, 아나타아제 결정형으로 조사되었다.10 g of nitric acid (60%) was mixed with 350 g of deionized water, followed by stirring. 40 g of titanium isopropoxide was added thereto, the temperature was maintained at 70 ° C., and stirred for 8 hours to disperse about 3% of titanium dioxide. As a result of analyzing the characteristics of the prepared titanium dioxide by transmission electron microscope (TEM) and X-ray diffraction pattern (XRD) as shown in Figs. 1 and 2, the average particle size of titanium dioxide is about 8-10 It was in the order of nm and investigated as an anatase crystalline form.

<실시예 2><Example 2>

탈이온수 200 g에 AgNO31.5 g, Fe(NO3)30.3 g, Zn(NO3)20.4 g을 용해시키고, 탈이온수 300 g에 Na4EDTA 5 g을 완전히 용해시킨 후 서로 섞고 온도를 50 ℃로 유지하며 3시간동안 반응시켜 전이금속EDTA염 용액을 제조하였다. 이렇게 제조된 전이금속EDTA염을 실시예 1에서 제조한 이산화티타늄 분산액에 첨가하여 교반하면서, 여기에 듀퐁사에서 제조한 평균입경이 12 nm이고, 표면적이 220 m2/g이며, 입자표면이 음으로 대전된 LUDOX HS-40 콜로이달실리카를 서서히 첨가하면서 온도를 50 ℃로 유지시키며 1시간동안 반응시켜 전이금속EDTA염과 콜로이달실리카가 이산화티타늄 입자표면에 부착된 광촉매분산액을 제조한 후 암모니아수로pH를 7로 조절하였다.Dissolve 1.5 g of AgNO 3 , 0.3 g of Fe (NO 3 ) 3 , and 0.4 g of Zn (NO 3 ) 2 in 200 g of deionized water, completely dissolve 5 g of Na 4 EDTA in 300 g of deionized water, mix and The reaction was carried out for 3 hours at 50 ℃ to prepare a transition metal EDTA salt solution. The transition metal EDTA salt thus prepared was added to the titanium dioxide dispersion prepared in Example 1 and stirred, with an average particle diameter of 12 nm produced by DuPont, 220 m 2 / g, and a negative particle surface. The LUDOX HS-40 colloidal silica charged slowly was added while maintaining the temperature at 50 ° C. and reacted for 1 hour to prepare a photocatalyst dispersion in which the transition metal EDTA salt and the colloidal silica were attached to the titanium dioxide particle surface. pH was adjusted to 7.

<실시예 3><Example 3>

실시예 2의 방법에 따라 제조한 광촉매분산액의 성능을 포름알데히드분해 시험으로 평가하였다. 포름알데히드 분해평가방법은 1 ℓ 용기에 광촉매가 코팅된 10 × 10 cm 유리판과 포름알데히드 2 ㎕를 주입한 후 20 W 블랙라이트를 조사하고, 가스검지관법에 의해 측정하였다. 시험시작 2시간 후 포름알데히드 는 83% 제거되었다.The performance of the photocatalyst dispersion prepared according to the method of Example 2 was evaluated by formaldehyde decomposition test. Formaldehyde decomposition evaluation method was injected into a 1 L container 10 × 10 cm glass plate coated with a photocatalyst and 2 μl of formaldehyde, and irradiated with 20 W black light, and measured by the gas detection tube method. Two hours after the start of the test, 83% of formaldehyde was removed.

<실시예 4><Example 4>

실시예 2의 방법에 따라 제조한 광촉매분산액의 성능을 황색포도상구균(Staphyococcus aureus ATTC 6538)과 폐렴간균(Klebsiella pneumoniae ATTC 4352)의 항균시험을 통해 평가하였다. 항균시험에서 균의 농도는 1.3 × 105개/㎖이고, 비이온계면활성제는 Tween 80, 접종균액에 0.05% 첨가하여 시험하였다. 도 3에서 보듯이 황색포도상구균은 99.9%, 폐렴간균은 97.9% 정균감소율을 보였다.The performance of the photocatalyst dispersion prepared according to the method of Example 2 was evaluated through the antibacterial test of Staphyococcus aureus ATTC 6538 and Klebsiella pneumoniae ATTC 4352. In the antibacterial test, the concentration of bacteria was 1.3 × 10 5 / ml, and the nonionic surfactant was tested by adding Tween 80 and 0.05% to the inoculated bacteria solution. As shown in Figure 3, Staphylococcus aureus was 99.9%, pneumococcal bacteria showed a 97.9% bacteriostatic rate.

<실시예 5>Example 5

상기한 광촉매분산액을 코팅한 유리구슬을 제조하여 파란색 염료인 메틸렌블루 분해실험을 실시하였다. 20 ppm 메틸렌블루용액 20 ml씩을 2개의 샤레에 각각 부은 후, 여기에 광촉매분산액으로 코팅한 유리구슬과 코팅하지 않은 유리구슬 20 g씩을 각각 넣고, 20 W 블랙라이트에서 방사되는 빛을 조사하였다. 반응초기에 광촉매가 코팅되지 않은 유리구슬은 별다른 변화를 보이지는 않지만, 광촉매가 코팅된 유리구슬은 메틸렌블루를 일부 흡착하여 표면이 파란색으로 바뀌었다. 빛을 조사한 후 6시간 후에는 광촉매가 코팅되지 않은 유리구슬과 섞여 있는 메틸렌블루는 파란색을 그대로 유지하였으나, 광촉매가 코팅된 유리구슬에서는 메틸렌블루가 분해되어 무색으로 바뀌었다.The glass beads coated with the photocatalyst dispersion were prepared, and a methylene blue decomposition experiment was performed. 20 ml of 20 ppm methylene blue solution was poured into each of two sares, and 20 g of glass beads coated with a photocatalyst dispersion and 20 g of uncoated glass beads were added thereto, and the light emitted from the 20 W black light was irradiated. In the early stage of the reaction, glass beads not coated with photocatalyst did not show any change, but glass beads coated with photocatalyst absorbed some methylene blue and turned the surface blue. 6 hours after irradiation with light, methylene blue mixed with glass beads not coated with photocatalyst remained blue, but methylene blue was decomposed to colorless in glass beads coated with photocatalyst.

본 발명에서 제시한 방법에 따라 제조된 광촉매는 나노크기의 미세한 이산화티타늄 입자표면에 전이금속과 콜로이달실리카를 EDTA화합물과 정전기적 상호작용을 이용하여 결합시킨 것으로써, 빛이 없는 조건에서도 전이금속에 의한 살균기능과 표면적이 넓은 콜로이달실리카에 의한 오염물질 흡착기능이 추가되어 기존의 광촉매의 단점을 극복할 수 있다.The photocatalyst prepared according to the method of the present invention combines a transition metal and colloidal silica on a nano-sized fine titanium dioxide particle surface by using an electrostatic interaction with an EDTA compound, even in the absence of light. The sterilization function and the adsorption function of contaminants by the colloidal silica having a large surface area are added to overcome the disadvantages of the conventional photocatalyst.

또한 특별한 처리 없이 전이금속EDTA염과 콜로이달실리카를 양전하를 띄는 이산화티타늄 입자표면과 결합시킴으로써 분산액의pH를 중성으로 조절하여도 입자끼리 응집하는 현상이 일어나지 않게 안정화시킬 수 있어 광촉매분산액을 폭넓게 이용할 수 있다는 장점이 있다.In addition, by combining transition metal EDTA salt and colloidal silica with positively charged titanium dioxide particle surface without special treatment, it is possible to stabilize the pH of the dispersion to prevent aggregation of particles even when neutral, so that photocatalytic dispersion can be widely used. There is an advantage.

Claims (7)

물과 산을 몰비로 1 : 0.01 ~ 0.1 비율범위에서 섞고 여기에 티타늄알콕사이드 0.01 ~ 0.1몰을 추가하여 60 ~ 80 ℃ 온도에서 6 ~ 8 시간 교반하여 상기 티타늄알콕사이드를 물과 산으로 가수분해 및 해교반응시켜 입자 크기가 1~10 nm인 아나타아제형 이산화티타늄 분산액을 제조하는 단계; Na4EDTA과 전이금속화합물의 몰비를 1 : 0.1 ~ 0.75 비율로 각각 물에 녹인 후, 서로 혼합하여 40 ~ 60 ℃ 온도범위에서 1~10시간 교반시켜 Na원자 대신 전이금속이 1~3개 치환된 전이금속EDTA염을 제조하는 단계; 상기 아나타아제형 이산화티타늄 분산액의 이산화티타늄표면에 상기 전이금속EDTA염이 용해된 분산액과 표면적이 200~1,000 m2/g이고 표면이 음으로 대전된 콜로이달실리카를 30 ~ 60 ℃에서 1 ~ 2시간 교반하여 반응시켜 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액을 제조하는 단계로 이루어진 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.Mix water and acid in a molar ratio of 1: 0.01 to 0.1 and add 0.01 to 0.1 mole of titanium alkoxide to the mixture and stir for 6 to 8 hours at a temperature of 60 to 80 ° C. to hydrolyze and bridge the titanium alkoxide with water and acid. Reacting to prepare an anatase type titanium dioxide dispersion having a particle size of 1 to 10 nm; The molar ratio of Na 4 EDTA and the transition metal compound was dissolved in water at a ratio of 1: 0.1 to 0.75, respectively, mixed with each other, and stirred for 1 to 10 hours at a temperature range of 40 to 60 ° C. to substitute 1 to 3 transition metals instead of Na atoms. Preparing a transition metal EDTA salt; A dispersion in which the transition metal EDTA salt is dissolved on the titanium dioxide surface of the anatase-type titanium dioxide dispersion and a colloidal silica having a surface area of 200 to 1,000 m 2 / g and a negatively charged surface at 1 to 2 at 30 to 60 ° C A method of producing a photocatalyst dispersion comprising a transition metal and a colloidal silica coupled to a titanium dioxide particle surface, comprising the steps of preparing a photocatalyst dispersion comprising a transition metal and colloidal silica on the titanium dioxide particle surface by reacting with stirring for a time. . 제 1항에 있어서, 상기 물은 탈이온수이고, 상기 산은 질산(HNO3), 염산(HCl), 황산(H2SO4) 또는 아세트산(CH3COOH)이고, 티타늄알콕사이드는 티타늄프로폭사이드(Titanium propoxide), 티타늄이소프로폭사이드(Titanium isopropoxide) 또는 티타늄부톡사이드(Titanium buthoxide)인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The method of claim 1, wherein the water is deionized water, the acid is nitric acid (HNO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ) or acetic acid (CH 3 COOH), and the titanium alkoxide is titanium propoxide ( Titanium propoxide), titanium isopropoxide (Titanium isopropoxide) or titanium butoxide (Titanium buthoxide) characterized in that the production method of the photocatalyst dispersion combined with a transition metal and colloidal silica on the surface of titanium dioxide particles. 제 1항에 있어서, 상기 전이금속은 은, 구리, 백금, 팔라듐, 로듐, 루테늄, 주석, 철, 코발트 또는 몰리브덴인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The photocatalyst dispersion of claim 1, wherein the transition metal is silver, copper, platinum, palladium, rhodium, ruthenium, tin, iron, cobalt or molybdenum. Manufacturing method. 제 1항에 있어서, 상기 이산화티타늄에 대한 EDTA의 양은 중량비로 40 ~ 60중량%인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The method according to claim 1, wherein the amount of EDTA to titanium dioxide is 40 to 60% by weight in terms of weight ratio. The method of preparing a photocatalyst dispersion liquid in which a transition metal and colloidal silica are combined on a titanium dioxide particle surface. 제 3항에 있어서, 상기 은 또는 구리는 이산화티타늄에 대한 중량비로 10중량%이고, 백금, 팔라듐, 로듐, 루테늄, 주석, 철, 코발트 또는 몰리브덴은 1~2 중량%인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The method of claim 3, wherein the silver or copper is 10% by weight based on the titanium dioxide, titanium, palladium, rhodium, ruthenium, tin, iron, cobalt or molybdenum is titanium dioxide, characterized in that 1 to 2% by weight A method for producing a photocatalyst dispersion wherein a transition metal and colloidal silica are bonded to a particle surface. 제 1항에 있어서, 상기 콜로이달실리카는 첨가량이 이산화티타늄에 대한 중량비로 50 ~ 150중량%인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The method of claim 1, wherein the colloidal silica is added in an amount of 50 to 150% by weight based on the weight of titanium dioxide. The method of preparing a photocatalyst dispersion having a transition metal and colloidal silica coupled to a titanium dioxide particle surface. 제 1항에 있어서, 상기 이산화티타늄 광촉매분산액은pH가 6 ~ 8인 것을 특징으로 하는 이산화티타늄 입자표면에 전이금속과 콜로이달실리카가 결합된 광촉매분산액의 제조방법.The method of claim 1, wherein the titanium dioxide photocatalyst dispersion has a pH of 6 to 8, wherein the transition metal and colloidal silica are bonded to the titanium dioxide particle surface.
KR10-2004-0030600A 2004-04-30 2004-04-30 Process of preparing a dispersed solution of photocatalyst KR100453446B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2004-0030600A KR100453446B1 (en) 2004-04-30 2004-04-30 Process of preparing a dispersed solution of photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2004-0030600A KR100453446B1 (en) 2004-04-30 2004-04-30 Process of preparing a dispersed solution of photocatalyst

Publications (2)

Publication Number Publication Date
KR20040052739A true KR20040052739A (en) 2004-06-23
KR100453446B1 KR100453446B1 (en) 2004-10-15

Family

ID=37346310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2004-0030600A KR100453446B1 (en) 2004-04-30 2004-04-30 Process of preparing a dispersed solution of photocatalyst

Country Status (1)

Country Link
KR (1) KR100453446B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715428B1 (en) * 2004-10-02 2007-05-09 주식회사 티오즈 Photocatalyst coating solution ? the manufacturing method thereof
KR20170023527A (en) * 2015-08-24 2017-03-06 한국전기연구원 High-efficiency solar cell absorber film and a method of manufacturing the same using a wet process
CN114700117A (en) * 2022-03-28 2022-07-05 苏州旭晟新材料科技有限公司 Preparation method of novel visible light photocatalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027404B1 (en) * 2018-06-29 2019-10-02 (주)쓰리에이씨 Manufacturing method of Titanium dioxide nanoparticles dispersed solution, Titanium dioxide nanoparticles dispersed solution manufactured by the same, and preparing method of Titanium dioxide film using the Titanium dioxide nanoparticles dispersed solution having excellent deodorization effect for removing formaldehyde, ammonia, acetaldehyde, acetic acid and toluene

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715428B1 (en) * 2004-10-02 2007-05-09 주식회사 티오즈 Photocatalyst coating solution ? the manufacturing method thereof
KR20170023527A (en) * 2015-08-24 2017-03-06 한국전기연구원 High-efficiency solar cell absorber film and a method of manufacturing the same using a wet process
CN114700117A (en) * 2022-03-28 2022-07-05 苏州旭晟新材料科技有限公司 Preparation method of novel visible light photocatalyst

Also Published As

Publication number Publication date
KR100453446B1 (en) 2004-10-15

Similar Documents

Publication Publication Date Title
Raizada et al. Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4
Wu et al. Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review
Eswar et al. Enhanced sunlight photocatalytic activity of Ag 3 PO 4 decorated novel combustion synthesis derived TiO 2 nanobelts for dye and bacterial degradation
Sher et al. Synthesis of novel ternary hybrid g-C3N4@ Ag-ZnO nanocomposite with Z-scheme enhanced solar light‐driven methylene blue degradation and antibacterial activities
Zhang et al. Organic additives-free hydrothermal synthesis and visible-light-driven photodegradation of tetracycline of WO3 nanosheets
Zhang et al. Synthesis of sandwich-structured AgBr@ Ag@ TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes
Wu et al. Photo-induced disinfection property and photocatalytic activity based on the synergistic catalytic technique of Ag doped TiO2 nanofibers
Mishra et al. α-Fe2O3 as a photocatalytic material: A review
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
Oliveira et al. Well-designed β-Ag2MoO4 crystals with photocatalytic and antibacterial activity
Zhao et al. Controlled synthesis and wastewater treatment of Ag 2 O/TiO 2 modified chitosan-based photocatalytic film
Salari Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme a-MnO2 nanorod/a-MoO3 nanocomposites
Choi et al. Recyclable Ag-coated Fe3O4@ TiO2 for efficient photocatalytic oxidation of chlorophenol
Zhao et al. Construction of diatomite/ZnFe layered double hydroxides hybrid composites for enhanced photocatalytic degradation of organic pollutants
Liu et al. Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light
Mahmoodi et al. Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology
Babu et al. Clay semiconductor hetero-system of SnO2/bentonite nanocomposites for catalytic degradation of toxic organic wastes
Yin et al. Surfactant-assisted synthesis of direct Z-scheme AgBr/β-Ag2WO4 heterostructures with enhanced visible-light-driven photocatalytic activities
Dashairya et al. Solar-light-driven photocatalysis by Sb2S3/carbon based composites towards degradation of noxious organic pollutants
JP6154036B1 (en) Coating agent containing antibacterial catalyst and method for producing the same
Adenuga et al. Facile synthesis of a Ag/AgCl/BiOCl composite photocatalyst for visible–light–driven pollutant removal
CN105289685A (en) Surface plasmon resonance enhanced photocatalyst for air purification, preparation method of surface plasmon resonance enhanced photocatalyst and application of surface plasmon resonance enhanced photocatalyst
Marino et al. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes
Basaleh et al. Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr (VI) photoreduction
Sharma et al. Cu 2+-doped α–β phase heterojunctions in Bi 2 O 3 nanoparticles for enhanced photocatalytic degradation of organic dye rhodamine B

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early publication
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20121008

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee