KR20040052177A - Manufacturing method of the non -flammable polyurethane foam - Google Patents

Manufacturing method of the non -flammable polyurethane foam Download PDF

Info

Publication number
KR20040052177A
KR20040052177A KR1020020079928A KR20020079928A KR20040052177A KR 20040052177 A KR20040052177 A KR 20040052177A KR 1020020079928 A KR1020020079928 A KR 1020020079928A KR 20020079928 A KR20020079928 A KR 20020079928A KR 20040052177 A KR20040052177 A KR 20040052177A
Authority
KR
South Korea
Prior art keywords
catalyst
isocyanate
weight
flame retardant
polyol
Prior art date
Application number
KR1020020079928A
Other languages
Korean (ko)
Other versions
KR100537135B1 (en
Inventor
박헌희
정윤길
황문선
이양래
Original Assignee
금호미쓰이화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호미쓰이화학 주식회사 filed Critical 금호미쓰이화학 주식회사
Priority to KR10-2002-0079928A priority Critical patent/KR100537135B1/en
Publication of KR20040052177A publication Critical patent/KR20040052177A/en
Application granted granted Critical
Publication of KR100537135B1 publication Critical patent/KR100537135B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Abstract

PURPOSE: A method for preparing a polyurethane foam for a non-flammable(KSF 2271) panel is provided, to improve adhesive strength to metal and productivity. CONSTITUTION: The method comprises the steps of reacting a resin premix comprising 55-78 wt% of a mixed polyol which comprises 25-75 wt% of a polyester polyol and 25-75 wt% of a polyether polyol having a OH value of 200-300 mg KOH/g and has a OH value of 250-350 mg KOH/g; 0.5-3.0 wt% of a urethane reactive catalyst; 5-10 wt% of a flame retardant; 0.5-2.0 wt% of a silicone surfactant; 1.0-3.0 wt% of a trimerization catalyst; 15-25 wt% of a foaming agent; and 0-2 wt% of water, with polyisocyanate within an isocyanate index of 2.5-3.5. Preferably the polyisocyanate is polymethylene diphenyl diisocyanate or an isocyanate obtained by modifying polymethylene diphenyl diisocyanate with an aliphatic or aromatic polyalkylene oxide, and the content of isocyanate groups is 30-32 wt%.

Description

난연3등급 패널용 폴리우레탄 발포체의 제조방법 {Manufacturing method of the non -flammable polyurethane foam}Manufacturing method of polyurethane foam for flame retardant grade 3 panel {Manufacturing method of the non -flammable polyurethane foam}

본 발명은 건축용 우레탄 패널(pannel)의 단열재로 사용되는 난연성 폴리우레탄 발포체의 제조방법에 관한 것이다.The present invention relates to a method for producing a flame retardant polyurethane foam used as a heat insulating material of a building urethane panel.

합성수지발포체를 단열재로하는 건축용 패널은 조립식 공장, 저장창고, 사무실 건축에 널리 사용되고 있다. 합성수지 발포체를 단열재로 하는 패널의 발포체는 원료의 조성에 따라 폴리스타일렌 폼(일명:스치로폴), 폴리우레탄 폼 등이 있다. 폴리우레탄 패널은 외벽에 철판을 두고 안쪽에 발포성 우레탄 수지를 주입 발포시켜 제조하는데 화재가 발생하는 경우 내부의 폴리우레탄 폼이 연소되어 유독가스가 발생하게되므로 이들의 난열 정도가 건축법에 의거 엄격하게 규제되고 있다.Building panels with synthetic resin foam insulation are widely used in prefabricated factories, warehouses, and office buildings. The foam of the panel which uses a synthetic resin foam as a heat insulating material includes polystyrene foam (aka: Styropol), polyurethane foam and the like depending on the composition of the raw material. Polyurethane panels are manufactured by injecting and foaming foamed urethane resin into the inner wall and foaming urethane resin inside. In case of a fire, the internal polyurethane foam is burned and toxic gas is generated. It is becoming.

건축법상 난연재의 기준은 다음과 같다. 건축법 시행령 제2조 제1항 제9호에서"난연재료"라 함은 불에 잘 타지 아니하는 성질을 가진 재료로서 건설교통부령이 정하는 기준에 적합한 재료를 말한다고 명시하고 있고 건축물의 피난 방화구조 등의 기준에 관한 규칙[건설교통부령제184호] 제5조에서는 '건축법 시행령 제2조에서건설교통부령이 정하는 기준에 적합한 재료라 함은 산업표준화법에 의한 한국산업규격이 정하는 바에 의하여 시험한 결과 난연 3급에 해당하는 것을 말한다.'고 명시하고 있으며 한국산업규격 KSF 2271(건축물의 내장재료 및 구조의 난연성 시험방법)에서는 난연3급의 시험방법을 규정하고 있다.The standards for flame retardant materials in the Building Act are as follows. In Article 2 (1) 9 of the Enforcement Decree of the Building Act, the term "flame retardant material" refers to a material that is incombustible to fire and conforms to a material prescribed by Ordinance of the Ministry of Construction and Transportation. In Article 5 of the Regulation on the Standards of the Ministry of Construction and Transportation, Article 5 of the Construction and Transportation Decree, "materials conforming to the standards set by the Construction and Transportation Decree in Article 2 of the Building Act" were tested in accordance with the Korean Industrial Standards under the Industrial Standardization Act. The result corresponds to Class 3 flame retardant. 'And KSF 2271 (Test method for flame retardancy of interior materials and structures of building) specifies the test method for class 3 flame retardant.

본 발명은 KSF 2271에서 규정하고 있는 난연3급 성능을 나타내는 패널을 생산하는데 사용되는 경질 폴리우레탄 발포체의 제조방법에 관한 것이다. 일반적으로 난연성질을 지니는 폴리우레탄 발포체는 폴리에테르 및 에스테르 폴리올을 혼합하여 사용하고, 난연제, 정포제, 3급 아민 촉매, 물 및 발포제를 사용한 레진 프리믹스와 폴리이소시아네이트를 반응시켜 제조한다. 폴리우레탄은 3급 아민 촉매를 사용하여 폴리올(polyol)과 이소시아네이트(Isocyanate)화합물을 반응시켜 얻어지는 고분자 물질이다. 폴리우레탄은 우레탄 결합()을 갖는 고분자 물질인데 이때 사용되는 3급 아민촉매를 우레탄 촉매 또는 수지화촉매라고 한다.The present invention relates to a process for producing rigid polyurethane foams used to produce panels exhibiting flame retardant class 3 performance as defined in KSF 2271. In general, polyurethane foams having flame retardant properties are prepared by mixing polyether and ester polyols and reacting resin premixes using flame retardants, foam stabilizers, tertiary amine catalysts, water and blowing agents with polyisocyanates. Polyurethane is a high molecular material obtained by reacting a polyol and an isocyanate compound using a tertiary amine catalyst. Polyurethane is a urethane bond ( The tertiary amine catalyst used here is called a urethane catalyst or a resination catalyst.

폴리우레탄제조 원료중 이소시안네이트는 상호결합하여 이량체(二量體) 및 상량체(三量體)가 있다.Isocyanate in the raw material for polyurethane production is a dimer and a monomer in combination with each other.

분자구조내에 이소시안네이트기가 2개 결합되어 이량화 결합구조()를 갖는 것을 이량체라하고 이소시안네이트기가 3개우러 결합되어 삼량화결합구조()를 갖는 것을 삼량체라 한다. 이삼량화 결합 구조는 이소시아누레이트(Isocyanurate)기를 의미한다.Two isocyanate groups bonded in the molecular structure ) Is called a dimer and isocyanate groups are bonded together to form a trimerization structure ( ) Is called a trimer. Isomerization bond structure means an isocyanurate group.

삼량체를 제조할 때 사용되는 촉매를 삼량화 촉매라 한다.The catalyst used when preparing the trimer is called a trimerization catalyst.

종래 폴리우레탄 발포체 제조시 난연성을 높여 주기위하여 방향족 폴리에스테르 폴리올을 약20% 이내로 사용하고, 폴리우렌탄 결합구조내에 열에 안정한 이소시안누레이트 결합을 도입 적용하는 기술개발이 지속적으로 진행되어 왔으나, 이소시안누레이트 결합을 형성시키는 이소시아네이트 인덱스 범위에 대하여서는 구체적으로 연구된바가 없으며, 난연3등급 패널을 제조하기 위한 폴리우레탄 발포체는 생산되지 않았다. 이소시아네이트 인덱스(Isocyanate index)는 폴리올과 이소시아네이트를 반응시켜 폴리우레탄을 제조할 때 이소시아네이트와 레진포리믹스의 투입량의 비율을 나타내는 지수로서 이소시아네이트를 화학량론적(stoichiometry)투입량과 동일하게 투입하는 경우 이 인텍스는 1이고, 화학량론적 투입량보다 과량 투입할대 폴리이소시아네이트 인덱스는 1보다 큰 것이라고 말한다. 폴리우레탄 결합구조내에 벤젠 결합구조나 이소시안누레이트 결합구조와 같은 육각형 형태의 환모양을 형성한 결합구조가 많을수록 열에 대한 안정성이 높고 연소시 유해개스 발생도 억제되는 것으로 알려져 있다. 또한 이소시안누레이트를 형성시켜주기 위해서는 여기에 적합한 촉매를 사용할 필요가 있는데 종래에는 3급 아민촉매와 같은 우레탄촉매를 사용하고 있다. 이런 경우에는 폴리우레탄 폼의 경화시간이 늦게되어 생산성이 낮아지고 철판과의 접착력이 떨어지는 문제가 있다. 폴리우레탄 구조내에서 인텍스 2.5이하에서는 이소시안누레이트기가 상대적으로 적게되어 철판과의 접착력등에서는 우수하나 문제의 핵심인 난연등급에서는 열악한 결과를 보인다. 또한 인덱스가 3.5이상에서는 이소시안누레이트기가 높게 되어 금속 외판과의 접착력 저하되고 치수안정성 저하, 원액의 흐름성 저하에 따른 미충진등의 현상이 발생되게 된다.In order to improve the flame retardancy in the production of polyurethane foam in the prior art, the use of aromatic polyester polyols within about 20% and the introduction of thermally stable isocyanurate bonds in the polyurethane bond structure have been continuously developed. No specific study has been made on the isocyanate index range for forming cyanurate bonds, and no polyurethane foams have been produced for the production of flame retardant grade 3 panels. Isocyanate index is an index that represents the ratio of the input amount of isocyanate and resin polymix when the polyol and isocyanate is reacted to make polyurethane. When the isocyanate is added in the same amount as stoichiometry, this index is 1 The polyisocyanate index is said to be greater than 1 when overinjected beyond the stoichiometric input. It is known that the more the bond structure in which the hexagonal ring shape such as the benzene bond structure or the isocyanurate bond structure is formed in the polyurethane bond structure, the higher the stability against heat and the generation of harmful gases during combustion are also suppressed. In addition, in order to form isocyanurate, it is necessary to use a catalyst suitable for this. Conventionally, a urethane catalyst such as a tertiary amine catalyst is used. In this case, the curing time of the polyurethane foam is late, there is a problem that the productivity is lowered and the adhesive strength with the iron plate is lowered. The less isocyanurate group in Intex 2.5 or less in the polyurethane structure is excellent in adhesion to the iron plate, but inferior in the flame retardant grade, the core of the problem. In addition, when the index is 3.5 or more, the isocyanurate group becomes high, resulting in a decrease in adhesive strength with the metal shell, dimensional stability, and unfilling due to a decrease in flowability of the stock solution.

따라서 우수한 난연성을 유지하면서 금속외판과의 접착력과 생산성이 우수한 폴리우레탄 발포체의 개발을 위해서는 인덱스가 2.5~3.5에서 이소시안누레이트를 함유되는 것이 요망되는 실정에 있다.Accordingly, in order to develop a polyurethane foam having excellent adhesion to a metal shell and excellent productivity while maintaining excellent flame retardancy, it is desired to contain isocyanurate at an index of 2.5 to 3.5.

금속과 폴리우레탄 발포체와 접착력은 우레탄 폼 내부가 아닌 우레탄 외부에서 진행되는 난연성에 목적을 두고 인덱스를 높이면 반응하지 않은 이소시안네이트가 표면에 남아 있어 표면이 끈적거리며 이것으로 인하여 접착력이 약화되고 기존의 생산성을 유지할 수가 없다. 이러한 문제점을 해결하기 위해서 난연성을 가지고 접착력 및 물성에 영향이 없는 인덱스 범위를 설정하였으며 또한 적절한 삼량화 촉매를 선택하였다.Metal and polyurethane foam and adhesive strength is aimed at the flame retardancy that is carried out outside the urethane foam, not inside the urethane foam, and when the index is increased, the unreacted isocyanate remains on the surface and the surface becomes sticky. You cannot maintain productivity. In order to solve this problem, an index range with flame retardancy and no influence on adhesion and physical properties was set, and an appropriate trimerization catalyst was selected.

본 발명의 목적은 KSF. 2271호에서 규정하고 있는 난연3등급의 난연성을 갖으면서 기존 패널의 생산 공정을 그대로 적용 가능한 폴리우레탄 발포체의 제조방법을 제공하는 데 있다. 발명제품을 현장에 적용하기 위해서는 별도의 설비추가가 요구되면 경제적 부담이 작용되기 때문에 사용자적 입장에서 발명을 진행하였다. 본 발명자들은 난연3등급 패널용 폴리우레탄 발포체를 제조하는 방법에 있어서, 폴리에스테르 폴리올을 30wt%이상 사용하고, 이소시아네이트 인덱스(Isocyanato Indes)를2.5∼3.5 범위로하고 3급 아민촉매와 삼량화 촉매를 사용하여 폴리우레탄 발포체를 제조하므로서 난연제를 추가하여 사용하지 않고도 난연성과 생산성이 우수한 난연 3등급 패널용폴리우레탄 발포체를 제조할수 있는 것을 확인하여 본 발명을 완성하게 되었다.The object of the present invention is KSF. It is to provide a method for producing a polyurethane foam having a flame retardant class 3 flame retardancy specified in 2271 and can be applied to the existing production process of the panel as it is. In order to apply the invention to the field, if additional equipment is required, the economic burden is applied, so the invention was carried out from the user's standpoint. In the method for producing a polyurethane foam for flame-retardant grade 3 panel, the inventors use more than 30wt% of polyester polyol, the isocyanate index (Isocyanato Indes) ranges from 2.5 to 3.5, and uses tertiary amine catalyst and trimerization catalyst. The present invention was completed by confirming that the polyurethane foam for flame retardant grade 3 panel having excellent flame retardancy and productivity without using a flame retardant was added by preparing a polyurethane foam.

본 발명은 KSF 2271에서 규정하고있는 난연 3급의 난연성을 갖으면서 발포패널 철판과의 접착성과 생산성이 우수한 폴리우레탄 발포체의 제조방법에 관한것이다.The present invention relates to a method for producing a polyurethane foam having excellent flame retardancy of the flame retardant class 3 as defined in KSF 2271 and excellent in adhesiveness and productivity with a foam panel steel sheet.

건축용 우레탄패널의 단열재로 사용되는 폴리우레탄 발포체를 제조함에 있어서 폴리에스테르 폴리올과 삼량화 촉매를 많이 사용할수록 내열성은 증가되나 철판과의 접착성 탈형성 및 기계적 강도가 저하되는 점에 착안하여 본 발명은 적정한 레진프리믹스의 조성을 선택하고 이소시아네이트 인덱스 범위를 적절하게 조절하여 폴리우레탄 발포체를 제조하므로서 충분한 내열성을 유지하면서 철판과의 접착성이나 탈형성등의 물리적 특성이 저하되지 않는 우레탄 발포체의 제조방법을 제공하고자 하는 것이다.In the production of polyurethane foam used as a heat insulating material for building urethane panels, the more the polyester polyol and the trimerization catalyst is used, the more heat resistance is increased. By selecting the appropriate resin premix composition and adjusting the isocyanate index range appropriately to prepare a polyurethane foam, to provide a method for producing a urethane foam that does not degrade physical properties such as adhesion or deforming with the iron plate while maintaining sufficient heat resistance. It is.

본 발명에서 사용한 레진프리믹스는 프탈릭에스테르 및 테레프탈릭에시드와 같은 에스테르화합물로부터 얻어지는 수산기 값 200~ 300mgKOH/g인 폴리에스테르 폴리올 25~70 중량%와 에틸렌글리콜, 글리세린, 솔비톨, 설탕과 같은 다가알콜류로부터 만들어진 폴리에테르폴리올 25~75 중량%를 혼합하여 혼합폴리올을 조성하고, 이 혼합폴리올은 관능기수가 2~5이고, 평균 수산기가가 250~350 mgKOH/g가 되도록한 것을 특징으로한다. 이 혼합 폴리올 55~78중량%와 난연제 5~10중량%, 3급아민 촉매 0.5~3.0중량%, 실리콘정포제 0.5~2.0중량%, 삼량화촉매 1.0~3.0중량%, 발포제 15~25중량%, 물 0~2.0중량%의 레진프리믹스조성하고 이레진프리믹스를 폴리이소시아네이트 인덱스를 2.5~3.5으로 조절하여 폴리이소아네이트와 반응시키는 경질 폴리우레탄 발포체의 제조방법에 관한 것이다.The resin premixes used in the present invention are from 25 to 70% by weight of a polyester polyol having a hydroxyl value of 200 to 300 mgKOH / g obtained from ester compounds such as phthalic ester and terephthalic acid, and polyhydric alcohols such as ethylene glycol, glycerin, sorbitol, and sugar. 25 to 75% by weight of the polyether polyol thus prepared is mixed to form a mixed polyol, and the mixed polyol is characterized in that the number of functional groups is 2 to 5, and the average hydroxyl value is 250 to 350 mgKOH / g. 55-78 weight% of this mixed polyol, 5-10 weight% of flame retardants, 0.5-3.0 weight% of tertiary amine catalysts, 0.5-2.0 weight% of silicone foaming agents, 1.0-3.0 weight% of trimerization catalysts, 15-25 weight% of foaming agents The present invention relates to a method for preparing a rigid polyurethane foam in which a resin premix of 0 to 2.0 wt% of water is prepared and the resin premix is adjusted to a polyisocyanate by adjusting the polyisocyanate index to 2.5 to 3.5.

본 발명에서 폴리에스테르폴리올은 열에 대한 안정성을 증대시켜 주기 위하여 비교적 안정한 결합력을 갖고있는 프탈릭에스테르 및 테레프탈릭에시드를 출발물질로 하는 방향족 폴리에스테르 폴리올을 사용하였다. 또, 우레탄 발포체의 결합 구조내에 내열성에 매우 강한 이소시아누레이트기를 도입하기 위해 삼량화촉매를 사용하고, 이소시아네이트 인덱스를 통상적인 경질우레탄보다 2~3배 높은 2.5~3.5로 조절하였다.In the present invention, in order to increase the stability to heat, the polyester polyol used an aromatic polyester polyol having phthalic ester and terephthalic acid having a relatively stable binding force as a starting material. In addition, a trimerization catalyst was used to introduce an isocyanurate group which is very resistant to heat resistance in the bonding structure of the urethane foam, and the isocyanate index was adjusted to 2.5 to 3.5, which is 2-3 times higher than a conventional hard urethane.

본 발명에서는 패널용 경질 우레탄 발포체용 원료로 일반적으로 사용되는 관능기수 2~5의 경질용 폴리에테르폴리올을 2종류 이상을 혼합 사용하고, 여기에 테라프탈산 및 프탈산을 개시제로 하고 여기에 1,4부탄디올 또는 에틸렌글리콜을 탈수 축합시킨 폴리에스테르폴리올을 사용하여 벤젠고리 구조를 도입하여 난연성을개선시키고, 여기에 일정량의 금속 삼량화 촉매를 사용하여 발포체의 난연성을 개선하였다. 이는 금속 삼량화 촉매가 발포체의 결합구조에 육각형 형태의 환 모양을 형성하여 결합력이 강한 이소시아누레이트를 형성하고 이 같은 모양은 열안정성이 매우 우수하고 연소시 유해가스 발생억제에 큰 영향을 미친다.In the present invention, two or more kinds of hard polyether polyols having 2 to 5 functional groups, which are generally used as raw materials for hard urethane foam for panels, are used by mixing two or more kinds thereof. Here, terephthalic acid and phthalic acid are used as initiators. The flame retardance was improved by introducing a benzene ring structure using a polyester polyol obtained by dehydrating and condensing butanediol or ethylene glycol, and using a certain amount of metal trimerization catalyst to improve the flame retardancy of the foam. This is because the metal trimerization catalyst forms a hexagonal ring shape in the bonding structure of the foam to form isocyanurate which has a strong bonding force. Such a shape has excellent thermal stability and greatly affects the generation of harmful gases during combustion. .

이러한 레진 프리믹스를 구성하는 폴리올은 만일 폴리에스테르 폴리올의 혼합비가 25% 미만인 경우는 제조된 폴리우레탄 발포체의 난연성능이 매우 떨어지는 문제가 발생하고, 또 폴리에스테르 폴리올이 70% 이상인 경우는 혼합폴리올의 점도가 상승하여 흐름성이 나빠지고, 결합구조가 달라져 폴리우레탄 발포체의 수치안정성, 경도 및 성형성, 탈형성 및 기계적 강도가 악화되는 문제가 야기된다.The polyol constituting such a resin premix has a problem in that the flame retardancy of the manufactured polyurethane foam is very poor when the mixing ratio of the polyester polyol is less than 25%, and the viscosity of the mixed polyol when the polyester polyol is 70% or more. The increase in flow rate worsens and the bonding structure is changed, which causes problems of deterioration in the numerical stability, hardness and moldability, deforming and mechanical strength of the polyurethane foam.

본 발명에서 우레탄 발포체의 제조에 사용되는 촉매는 두 종류로 구분하여 적용하였다. 첫째로는 경질 폴리우레탄 발포체제조시 수지화 촉매로 통상적으로 사용되는 아민촉매를 사용하였다. 예를 들면 트리에틸아민(Triethylamine,TEA), 트리에틸렌디아민(Triethylenediamine, TEDA), 펜타메틸렌디에틸렌 트리아민 (PMDETA, Pentametylenediethylene triamine), 디메틸시클로헥실아민(DMCHA,Dimethylcyclohexyl amine), 테트라메틸엔-헥실디아민(TMHDA,TetraMethhyl-n-HexylDiAmine) 등의 촉매들 중에서 선택한 하나 또는 둘 이상을 혼합하여 사용할 수 있다. 이러한 촉매는 전체 레진 프리믹스 중에 0.5~3 중량%로 함유되는 것이 바람직한 바, 만일 그 함량이 0.5 중량% 미만이면 반응이 지연되어 경화 불량으로 생산성 및 품질이 현저하게 저하되고, 아민촉매의 중량이 3.0 중량%를 초과하면 반응이 빨라 미충진 및 발포체의 크랙이 발생하여 제품 불량이 발생하게된다.Catalysts used in the production of urethane foam in the present invention was applied in two types. First, an amine catalyst commonly used as a resination catalyst was used when preparing a rigid polyurethane foam. For example triethylamine (TEA), triethylenediamine (TEDA), pentamethylenediethylene triamine (PMDETA, Pentametylenediethylene triamine), dimethylcyclohexyl amine (DMCHA), tetramethylene-hexyl One or more selected from catalysts such as diamine (TMHDA, TetraMethhyl-n-HexylDiAmine) may be used in combination. It is preferable that such a catalyst is contained in the total resin premix at 0.5 to 3% by weight. If the content is less than 0.5% by weight, the reaction is delayed, resulting in poor curing and poor productivity and quality, and the weight of the amine catalyst is 3.0. If the weight percentage is exceeded, the reaction is rapid, resulting in unfilled and cracked foam, resulting in product defects.

둘째로는 경질 폴리우레탄 발포체 내부에 우레탄 작용기보다는 이소시아누레이트 작용기를 형성되게 하는 유기금속 삼량화 촉매를 사용하는 것이며, 포타슘옥토에이트(potassium otoate)가 대표적으로 사용될수있다. 이 촉매는 전체 레진 프리믹스중에 1.0~3.0 중량%로 함유되는 것이 바람직한바, 만일 그 함량이 1.0 중량% 미만이면 접합력을 강화시키는 이소시아누레이트 형성이 미진하여 발포체의 탈형성이 나쁘고 3.0 중량%를 초과하면 발포체의 내부 반응열이 증가하여 스커치 현상이 발생할 수 있으며, 과량의 이소시아누레이트기를 형성하여 발포체 기계적 물성과 외관 및 촉감이 나빠진다.Second is to use an organometallic trimerization catalyst which allows isocyanurate functional groups to be formed rather than urethane functional groups within the rigid polyurethane foam, and potassium otoate may be representatively used. The catalyst is preferably contained in 1.0% to 3.0% by weight of the total resin premix. If the content is less than 1.0% by weight, the isocyanurate formation is insufficient to strengthen the bonding strength, resulting in poor deforming of the foam and 3.0% by weight. If exceeded, the internal reaction heat of the foam may increase, and a phenomenon may occur, and an excessive isocyanurate group may be formed to deteriorate the foam mechanical properties, appearance, and feel.

실리콘 정포제는 통상적으로 패널용 경질 폴리우레탄 발포체 제조에 사용되는 것을 사용할 수 있고, 전체 레진 프리믹스 중에 0.5~2.0 중량%로 함유하는 것이 좋다.Silicone foam stabilizers can be used for the production of rigid polyurethane foam for panels in general, it is preferable to contain 0.5 to 2.0% by weight in the total resin premix.

본 발명에서 난연성을 강화하기위해 일반적으로 경질우레탄 발포체 조성물에 사용하는 유기인계 난연제를 전체 레진프리믹스 대비 5~10중량%를 사용하였다. 이는 난연성 개선뿐만 아니라 레진프리믹스의 점도를 낮춰주어 액의 흐름을 원활하게 유도하여 과량의 이소시아네이트를 반응 시킬때 통상적으로 발생하는 혼합성 저하 현상을 예방해준다. 이 때 사용되는 유기인계 난연제로는 트리스클로로-이소프로필 포스페이트가[Tris(chloro-isopropyl)phoshate] 대표적이다. 그리고 발포제로서는 이 분야에서 통상적으로 사용하는 디클로로 플르오로에탄과 물을 동시에 사용하고, 발포제는 전체 레진프리믹스에 15~25 중량%로 물은 0~2중량%로 함유되는 것이 좋다.In order to enhance the flame retardancy in the present invention, the organophosphorus flame retardant generally used in the rigid urethane foam composition was used in an amount of 5 to 10% by weight based on the total resin premix. This not only improves flame retardancy, but also lowers the viscosity of the resin premix to induce a smooth flow of the liquid and prevents the phenomenon of mixing that normally occurs when reacting excess isocyanate. The organophosphorus flame retardant used at this time is trischloro-isopropyl phosphate [Tris (chloro-isopropyl) phoshate] is typical. As the blowing agent, it is preferable to use dichlorofluoroethane and water which are commonly used in this field at the same time, and the blowing agent may contain 15 to 25% by weight of water and 0 to 2% by weight of the total resin premix.

본 발명에서는 상기와 같은 레진프리믹스와 이소시아네이트기의 함량이 30∼32 중량%인 폴리이소시아네이트를 이소시아네이트 인덱스 2.5~3.5으로 조절하여 패널용 경질 폴리우레탄 발포체를 제조할 수 있다. 그러나 이소시아네이트 인덱스는 2.7~3.1가 가장 좋다. 이때 이소시아네이트 인덱스는 매우 중요한 역할을 한다. 이소시아네이트 인덱스가 2.5 이하이면 난연성이 열악해지는 경향이 있으며, 이 인덱스가 3.5 이상이 되면 발포체의 경화가 속도가 느려져 생산성이 떨어지고, 발포체의 부스러지는 현상(Friability)이 증가하는 경향을 보인다.In the present invention, the polyisocyanate having a content of 30 to 32 wt% of the resin premix and the isocyanate group as described above may be adjusted to an isocyanate index of 2.5 to 3.5 to prepare a rigid polyurethane foam for a panel. However, the isocyanate index is best from 2.7 to 3.1. The isocyanate index plays a very important role here. If the isocyanate index is 2.5 or less, the flame retardancy tends to be poor, and when the index is 3.5 or more, the curing of the foam is slowed down, the productivity is lowered, and the friability of the foam is increased.

이하 실시예를 들어 본 발명을 구체적으로 설명한다. 그러나 실시예만으로 본 발명이 한정되는 것은 아니다.The present invention will be described in detail with reference to the following Examples. However, the present invention is not limited only to the examples.

실시예 1~4Examples 1-4

폴리이소시아네이트로는 이소시이네이트기 함량이 31.2 중량% 이며 점도는 195cps/25℃인 것을 사용하였다. 그리고 레진 프리믹스는 다음 표1에 나타낸 조성으로 혼합하여 제조하였다. 그런 다음 20±1℃로 조절된 레진프리믹스와 폴리이소시아네이트의 인덱스가 3.0이 되게 중량비를 계산하여 합계 400g이 되도록 혼합하고 7초간 격렬하게 교반한 후, 200×200×200mm 나무 박스에 주입하여 반응성과 발포체의 외관 및 촉감을 확인하고, 또 혼합원액을 900×210×50mm 알류미늄 몰드에 주입 폴리우레탄 발포체를 성형하여 익일에 강도, 열전도율, 치수안정성을 측정하여 결과를 다음 표1에 나타내었다.As the polyisocyanate, an isocyanate group content of 31.2 wt% and a viscosity of 195 cps / 25 ° C were used. And resin premix was prepared by mixing to the composition shown in Table 1. Then calculate the weight ratio so that the index of resin premix and polyisocyanate adjusted to 20 ± 1 ℃ is 3.0g, mix to make a total of 400g and stir vigorously for 7 seconds, and then inject into a 200 × 200 × 200mm wooden box The appearance and feel of the foam were confirmed, and the mixed stock solution was injected into a 900 × 210 × 50 mm aluminum mold to form a polyurethane foam, and the strength, thermal conductivity, and dimensional stability were measured on the following day, and the results are shown in Table 1 below.

난연성은 KSF 2271에서 규정하고 있는 크기인 220×220×40mm의 시편 제작을 위해 0.5mm 두께의 철판으로 상자를 제조하여 상자 한쪽 면에 발포체 원료를 투입하여 발포시켜 충진시킨 후 난연 성능을 평가하였다. 레진프리믹스 조성물 중에서 폴리올의 배합량을 변화하면서 물성을 측정한 결과 폴리에스테르 폴리올의 사용량을 증가시키면 난연성, 열전도율이 좋아지는 반면 치수 변화율이나 강도는 저하되는 것을 알 수 있었다.The flame retardance was evaluated by measuring the flame retardant performance after filling the foam by filling the foam material on one side of the box by manufacturing a box with a 0.5 mm thick iron plate to produce a specimen of 220 × 220 × 40 mm, the size prescribed by KSF 2271. As a result of measuring the physical properties while changing the compounding amount of the polyol in the resin premix composition, it was found that increasing the amount of the polyester polyol increased flame retardancy and thermal conductivity while decreasing the dimensional change rate and the strength.

조 성 및 물 성Landscape and water castle 실 시 예Example 1One 22 33 44 레진프리믹스처방1)(중량부)Resin premix prescription 1) (by weight) 폴리올 APolyol A 7575 6060 4545 3030 폴리올 BPolyol B 2525 4040 5555 7070 난연제Flame retardant 1010 1010 1010 1010 정포제Defoamer 1.51.5 1.51.5 1.51.5 1.51.5 촉매-1Catalyst-1 0.20.2 0.20.2 0.20.2 0.20.2 촉매-2Catalyst-2 1.51.5 1.41.4 1.31.3 1.21.2 촉매-3Catalyst-3 2.22.2 2.22.2 2.22.2 2.22.2 water 0.50.5 0.50.5 0.50.5 0.50.5 물리적 발포제Physical blowing agent 2828 2828 2828 2828 이소시아네이트(중량부)Isocyanate (parts by weight) M-200M-200 236236 236236 236236 236236 강 도2)(굽힘kgf/㎠)(압축kgf/㎠)Strength 2) (Bending kgf / ㎠) (Compression kgf / ㎠) 4.81.64.81.6 4.81.64.81.6 4.71.54.71.5 4.61.54.61.5 열전도율3)(Kcal/mhr℃)Thermal Conductivity 3) (Kcal / mhr ℃) 164164 165165 165165 166166 난연성4) Flame retardant 4) 합격pass 합격pass 합격pass 합격pass 치수안정성5)(Vol %)고온(70℃)저온(-20℃)고습(70℃,95Rh)Dimensional stability 5) (Vol%) High temperature (70 ℃) Low temperature (-20 ℃) High humidity (70 ℃, 95Rh) 0.16-0.532.880.16-0.532.88 0.18-0.583.210.18-0.583.21 0.26-0.613.430.26-0.613.43 0.45-0.653.710.45-0.653.71 1)레진프리믹스처방-폴리올 A : 설탕, 글리세린, 솔비톨에 프로필렌옥사이드를 부가중합시켜 제조한폴리에테르 폴리올 3종류를 혼합하여 평균 수산기가가 300mgKOH/g이 되게 조절한 혼합폴리올-폴리올 B : 테레프탈릭 에시드를 축합반응시켜 얻어진 폴리에스테르 폴리올, OHv250mgKOH/g-난연제 : 트리스(클로로이소프로필)포스페이트-촉매-1 : 혼합 아민 촉매(Toyocat TMF, Tosoh)-촉매-2 : 디메틸시클로헥실아민(DMCHA)-촉매-3 : 삼량화촉매, 포타슘옥토에이트-발포제 : 디클로로-1-플로로에탄(HCFC-141b)2)강도측정압축강도(Compressive Strength) : ASTM D-1621, JIS A-9514, KS M-3809굴곡강도(Flexural Strength) : ASTM D-490, JIS A-9514, KS M-38093) 열전도율 평가방법 : ASTMD-1621, A-9514, KS M-38094) 난연성 평가방법 : KSF 2271 표면시험, 가스유해성 시험5) 치수안정성 평가방법 : ASTM D-2126, 단위 : %치수안정성의 측정 방법* 저온 안정성 : -30℃, 24시간 경과 후 부피변화 측정* 고온 안정성 : 70℃, 24시간 경과 후 부피변화 측정* 고온 고습 안정성 : 상대습도 95%, 70℃, 24시간 경과 측정부피 변화율 = (V2-V1) / V1 V1 = 변화 전 부피, V2 = 변화 후 부피1) Resin premix prescription-Polyol A: Mixed polyol-polyol B: terephthalic, adjusted to an average hydroxyl value of 300 mgKOH / g by mixing three kinds of polyether polyols prepared by addition polymerization of propylene oxide to sugar, glycerin and sorbitol Polyester polyol obtained by condensation of acid, OHv 250 mg KOH / g-flame retardant: Tris (chloroisopropyl) phosphate-catalyst-1: mixed amine catalyst (Toyocat TMF, Tosoh) -catalyst-2: dimethylcyclohexylamine (DMCHA)- Catalyst-3: trimerization catalyst, potassium octoate-foaming agent: dichloro-1-fluoroethane (HCFC-141b) 2) Compressive strength: ASTM D-1621, JIS A-9514, KS M- 3809 Flexural Strength: ASTM D-490, JIS A-9514, KS M-38093) Thermal Conductivity Evaluation Method: ASTMD-1621, A-9514, KS M-38094) Flame Retardancy Evaluation Method: KSF 2271 Surface Test, Gas Hazard test 5) Evaluation method for dimensional stability: ASTM D-2126, Unit:% Dimensional stability Method * Low temperature stability: -30 ℃, volume change measurement after 24 hours * High temperature stability: 70 ℃, volume change measurement after 24 hours * High temperature and high humidity stability: Relative humidity 95%, 70 ℃, volume change rate after 24 hours = (V2-V1) / V1 V1 = volume before change, V2 = volume after change

실시예 5 ~ 8Examples 5-8

이소시아네이트로는 이소시이네이트기 함량이 31.2 중량% 이며 점도는 205cps/25℃인 것을 사용하였다. 그리고 레진 프리믹스는 다음 표2에 나타낸 조성으로 혼합하여 제조하였다. 실시예 1~4와 동일한 조건에서 실험을 실시하여 그 결과를 다음 표2에 나타내었다.As the isocyanate, an isocyanate group content of 31.2 wt% and a viscosity of 205 cps / 25 ° C were used. And resin premix was prepared by mixing to the composition shown in Table 2. The experiment was conducted under the same conditions as in Examples 1 to 4, and the results are shown in Table 2 below.

레진프리믹스 조성물 중에서 삼량화 촉매의 사용량을 변화하면서 물성을 측정한 결과 삼량화 촉매가 증가할수록 강도, 난연성, 열전도율, 치수안정성은 모두 좋아지지만 반응성이 빨라져 너무 많이 사용하면 충진이 덜되고 크랙이 발생하여 제품 불량이 발생하는 문제가 있음을 알 수 있다.As a result of measuring the physical properties by changing the amount of the trimerization catalyst in the resin premix composition, the strength, flame retardancy, thermal conductivity, and dimensional stability are all improved as the trimerization catalyst is increased, but the reactivity is faster. It can be seen that there is a problem that a product defect occurs.

조 성 및 물 성Landscape and water castle 실 시 예Example 55 66 77 88 레진프리믹스처방1)(중량부)Resin premix prescription 1) (by weight) 폴리올 APolyol A 6060 6060 6060 6060 폴리올 BPolyol B 4040 4040 4040 4040 난연제Flame retardant 1010 1010 1010 1010 정포제Defoamer 1.51.5 1.51.5 1.51.5 1.51.5 촉매-1Catalyst-1 0.20.2 0.20.2 0.20.2 0.20.2 촉매-2Catalyst-2 1.51.5 1.41.4 1.31.3 1.21.2 촉매-3Catalyst-3 2.22.2 2.42.4 2.62.6 2.82.8 water 0.50.5 0.50.5 0.50.5 0.50.5 물리적 발포제Physical blowing agent 2828 2828 2828 2828 이소시아네이트(중량부)Isocyanate (parts by weight) M-200M-200 237237 237237 237237 237237 강 도2)(굽힘kgf/㎠)(압축kgf/㎠)Strength 2) (Bending kgf / ㎠) (Compression kgf / ㎠) 4.81.64.81.6 4.81.64.81.6 4.91.74.91.7 4.91.74.91.7 열전도율3)(Kcal/mhr℃)Thermal Conductivity 3) (Kcal / mhr ℃) 164164 165165 165165 166166 난연성4) Flame retardant 4) 합격pass 합격pass 합격pass 합격pass 치수안정성5)(Vol %)고온(70℃)저온(-20℃)고습(70℃,95Rh)Dimensional stability 5) (Vol%) High temperature (70 ℃) Low temperature (-20 ℃) High humidity (70 ℃, 95Rh) 0.46-0.532.880.46-0.532.88 0.38-0.432.760.38-0.432.76 0.32-0.412.560.32-0.412.56 0.28-0.392.430.28-0.392.43 1), 2), 3), 4), 5) 레진 프리믹스 원료 및 물성측정 방법은 실시예 1~4와 동일함.1), 2), 3), 4), 5) Resin premix raw materials and physical property measurement methods are the same as in Examples 1-4.

실시예 9~12Examples 9-12

혼합 폴리올, 모노올, 물, 촉매, 실리콘 정포제를 다음 표3에 나타낸 조성으로 혼합하여 레진프리믹스를 제조하였다. 이소시아네이트 인덱스를 2.5부터 조절하여 3.5까지 변화시키면서 실시예1~4와 동일하게 경질폴리우레탄 발포체를 성형하여 익일에 열전도율, 치수안정성, 압축, 굽힘강도, 밀도를 측정하여 그 결과를 다음 표3에 나타내었다. 이소시아네이트 인덱스를 증가시키면 반응이 다소느려져 촉매를 증가시키면서 성형을시켰다. 실험결과 이소시아네이트 인덱스를 증가시키면 난연성은 점점 우수해지고, 강도, 치수안정성, 열전도율 모두가 개선되나 발포체 색깔이 진하여 나빠지고, 잘 부스러지는 현상이 발생한다.Resin premix was prepared by mixing the mixed polyol, monool, water, catalyst, and silicon foam stabilizer in the composition shown in Table 3 below. By adjusting the isocyanate index from 2.5 to 3.5, the rigid polyurethane foam was molded in the same manner as in Examples 1 to 4, and the thermal conductivity, dimensional stability, compression, bending strength, and density were measured on the following day, and the results are shown in Table 3 below. It was. Increasing the isocyanate index slowed the reaction slightly and resulted in molding with increasing catalyst. Experimental results show that increasing the isocyanate index increases flame retardancy, and improves the strength, dimensional stability, and thermal conductivity, but the color of the foam becomes darker and becomes more brittle.

조 성 및 물 성Landscape and water castle 실 시 예Example 99 1010 1111 1212 레진프리믹스처방(중량부)Resin premix prescription (part by weight) 폴리올 APolyol A 6060 6060 6060 6060 폴리올 BPolyol B 4040 4040 4040 4040 난연제Flame retardant 1010 1010 1010 1010 정포제Defoamer 1.51.5 1.51.5 1.51.5 1.51.5 촉매-1Catalyst-1 0.20.2 0.20.2 0.20.2 0.20.2 촉매-2Catalyst-2 1.51.5 1.51.5 1.51.5 1.51.5 촉매-3Catalyst-3 2.22.2 2.22.2 2.22.2 2.22.2 water 0.50.5 0.50.5 0.50.5 0.50.5 물리적 발포제Physical blowing agent 2828 2828 2828 2828 이소시아네이트(중량부)Isocyanate (parts by weight) M-200M-200 158158 198198 237237 277277 강 도1)(굽힘kgf/㎠)(압축kgf/㎠)Strength 1) (Bending kgf / ㎠) (Compression kgf / ㎠) 4.61.44.61.4 4.71.54.71.5 4.81.64.81.6 4.91.64.91.6 열전도율2)(Kcal/mhr℃)Thermal Conductivity 2) (Kcal / mhr ℃) 164164 164164 164164 164164 난연성3) Flame retardant 3) 합격pass 합격pass 합격pass 합격pass 치수안정성4)(Vol %)고온(70℃)저온(-20℃)고습(70℃,95Rh)Dimensional stability 4) (Vol%) High temperature (70 ℃) Low temperature (-20 ℃) High humidity (70 ℃, 95Rh) 0.85-0.933.210.85-0.933.21 0.32-0.753.150.32-0.753.15 0.28-0.452.780.28-0.452.78 0.23-0.432.450.23-0.432.45 1), 2), 3), 4), 5) 레진 프리믹스 원료 및 물성측정 방법은 실시예 1~4와 동일함.1), 2), 3), 4), 5) Resin premix raw materials and physical property measurement methods are the same as in Examples 1-4.

본 발명의 방법으로 제조된 난연성 경질 폴리우레탄 발포체는 금속외판과의 접착력과 생산성이 우수하면서 KSF 2271호에서 규정하고 있는 난연 3급의 난연성을 만족시킬 수 있는 효과를 갖는다.The flame-retardant rigid polyurethane foam produced by the method of the present invention has the effect of satisfying the flame retardancy of the flame retardant class 3 specified in KSF 2271 while excellent in adhesion and productivity with the metal shell.

Claims (2)

난연성 폴리우레탄 발포체를 제조하는 방법에 있어서,In the method for producing a flame retardant polyurethane foam, - 수산기 값이 200∼300mg KOH/g인 폴리에스텔 폴리올 25~75 중량%와 폴리에테르 폴리올 75∼25중량%를 혼합하여서된 수산기 값 250∼350mg KOH/g인 혼합폴리올 55∼78 중량%55 to 78 weight percent of a mixed polyol having a hydroxyl value of 250 to 350 mg KOH / g, by mixing 25 to 75 weight percent of a polyester polyol having a hydroxyl value of 200 to 300 mg KOH / g and 75 to 25 weight percent of a polyether polyol. - 우레탄 반응촉매 0.5∼3.0 중량%-0.5 to 3.0 wt% urethane reaction catalyst - 난연재 5∼10 중량%-5 to 10% by weight of flame retardant - 실리콘 정포제 0.5∼2.0 중량%-0.5 to 2.0 wt% of silicone foam stabilizer - 삼량화 촉매 1.0∼3.0 중량%1.0-3.0 wt% of trimerization catalyst - 발포제 15∼25 중량%15-25 wt% of blowing agent - 물 0∼2 중량%0 to 2% by weight of water 로 조성된 레진프리믹스와 폴리이소시아네이트를 이소시아네이트 인덱스 2.5∼3.5범위로하여 반응시키는 난연성 폴리 우레탄 발포체의 제조방법.A method for producing a flame retardant polyurethane foam in which a resin premix and a polyisocyanate prepared in an isocyanate index range from 2.5 to 3.5. 제1항에 있어서, 폴리이소시아네이트는 폴리메틸렌디페닐디이소시아네이트, 또는 폴리메틸렌디페닐디이소시아네이트를 지방족 또는 방향족 폴리알킬렌옥사이드로 변성시킨 이소시아네이트이고, 이들의 이소시아네이트기의 함량이 30∼32중량%인 폴리우레탄 발포체의 제조방법.The polyisocyanate according to claim 1, wherein the polyisocyanate is an isocyanate obtained by modifying a polymethylenediphenyl diisocyanate or a polymethylenediphenyl diisocyanate with an aliphatic or aromatic polyalkylene oxide, and the content of these isocyanate groups is 30 to 32% by weight. Process for the preparation of polyurethane foams.
KR10-2002-0079928A 2002-12-14 2002-12-14 Manufacturing method of the non -flammable polyurethane foam KR100537135B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079928A KR100537135B1 (en) 2002-12-14 2002-12-14 Manufacturing method of the non -flammable polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079928A KR100537135B1 (en) 2002-12-14 2002-12-14 Manufacturing method of the non -flammable polyurethane foam

Publications (2)

Publication Number Publication Date
KR20040052177A true KR20040052177A (en) 2004-06-19
KR100537135B1 KR100537135B1 (en) 2005-12-16

Family

ID=37345929

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0079928A KR100537135B1 (en) 2002-12-14 2002-12-14 Manufacturing method of the non -flammable polyurethane foam

Country Status (1)

Country Link
KR (1) KR100537135B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080316A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Super duplex stainless steel with excellent yield strength and imfact toughness, and menufacturing method thereof
KR20180024849A (en) * 2016-08-31 2018-03-08 (주)엔나노텍 flame-retardant polyol, the manufacturing mothod thereof and polyurethan including the anti-flame property polyol
KR20180137938A (en) * 2017-06-20 2018-12-28 (주)엔나노텍 flame-retardant ester polyol, the manufacturing method thereof and polyisocyanurates including the anti-flame ester polyol
CN110452544A (en) * 2019-08-21 2019-11-15 上海麦浦新材料科技有限公司 A kind of organosilicon foam stabilizer, hard polyurethane foams composition and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835607B2 (en) * 1980-03-21 1983-08-03 保土谷化学工業株式会社 Method for producing polyurethane modified polyisocyanurate foam
JPH09328530A (en) * 1996-06-12 1997-12-22 Toyo Tire & Rubber Co Ltd Production of flame-retardant rigid polyurethane foam
JP2000080141A (en) * 1998-09-03 2000-03-21 Toyo Tire & Rubber Co Ltd Isocyanurate modified polyurethane foam and flame resistant insulation panel
KR100316326B1 (en) * 1999-10-08 2001-12-12 송기혁 Composition for Rigid P.I.R Polyurethane Foam forming by Sprayer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160080316A (en) * 2014-12-26 2016-07-08 주식회사 포스코 Super duplex stainless steel with excellent yield strength and imfact toughness, and menufacturing method thereof
KR20180024849A (en) * 2016-08-31 2018-03-08 (주)엔나노텍 flame-retardant polyol, the manufacturing mothod thereof and polyurethan including the anti-flame property polyol
KR20180137938A (en) * 2017-06-20 2018-12-28 (주)엔나노텍 flame-retardant ester polyol, the manufacturing method thereof and polyisocyanurates including the anti-flame ester polyol
CN110452544A (en) * 2019-08-21 2019-11-15 上海麦浦新材料科技有限公司 A kind of organosilicon foam stabilizer, hard polyurethane foams composition and application thereof

Also Published As

Publication number Publication date
KR100537135B1 (en) 2005-12-16

Similar Documents

Publication Publication Date Title
US9987775B2 (en) Production of polyisocyanurate foam panels
CN101351484B (en) Method of molding rigid polyurethane foams with enhanced thermal conductivity
US9598529B2 (en) Process for the preparation of lignin based polyurethane products
US7750058B2 (en) Process for preparing closed-cell water-blown rigid polyurethane foams having improved mechanical properties
EP0935625B1 (en) Rigid polyurethane foams
JP7098614B2 (en) Polyurethane rigid foam, its manufacturing method, and its uses
CN108623771B (en) Hydroxyl-terminated polyurethane prepolymer and preparation method thereof
EP2411436B1 (en) Production of rigid polyurethane foams and the use thereof
US6808800B2 (en) Rigid polyurethane foam and heat insulating construction element comprising the same
JP2017095553A (en) Method for producing hard polyurethane foam
KR100537135B1 (en) Manufacturing method of the non -flammable polyurethane foam
US6638989B2 (en) Method of preparing polyurethane-modified polyisocyanurate foam
KR100677190B1 (en) Water-foamed polyurethane sandwich panel and process for manufacturing it
US20010003758A1 (en) Rigid isocyanurate-modified polyurethane foams
CN109795184A (en) Polyurethane foam composite plate
KR20140068115A (en) Method for producing insulated pipes having improved properties
KR101319684B1 (en) Modified isocyanate composition with heat-resistant and polyurethane foam composition for pipes insulation with heat-resistant comprising the same and forming method thereof
KR100391550B1 (en) Manufacturing method for polyurethane foam with water as foaming agent
JP3979512B2 (en) Method for producing polyisocyanurate
KR20120053680A (en) Polyisocyanurate foam with enhanced dimension stability and manufacturing methods thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121207

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171211

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191128

Year of fee payment: 15