KR20040043296A - Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell - Google Patents

Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell Download PDF

Info

Publication number
KR20040043296A
KR20040043296A KR1020020071520A KR20020071520A KR20040043296A KR 20040043296 A KR20040043296 A KR 20040043296A KR 1020020071520 A KR1020020071520 A KR 1020020071520A KR 20020071520 A KR20020071520 A KR 20020071520A KR 20040043296 A KR20040043296 A KR 20040043296A
Authority
KR
South Korea
Prior art keywords
cell
liquid crystal
mode
design
reflection
Prior art date
Application number
KR1020020071520A
Other languages
Korean (ko)
Inventor
김재창
윤태훈
이서헌
장미경
Original Assignee
김재창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재창 filed Critical 김재창
Priority to KR1020020071520A priority Critical patent/KR20040043296A/en
Publication of KR20040043296A publication Critical patent/KR20040043296A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/09Function characteristic transflective

Abstract

PURPOSE: A transflective liquid crystal display using a vertically aligned cell rubbed in parallel with a hybrid cell is provided to improve transmissivity and remove asymmetry of a viewing angle. CONSTITUTION: A single pixel of a liquid crystal cell is divided into a reflection mode region and a transmission mode region. The liquid crystal cell is formed using negative liquid crystal. A hybrid aligned nematic cell is applied to the reflection mode region as a liquid crystal mode, and a vertically aligned cell that has been parallel-rubbed is applied to the transmission mode region as a liquid crystal mode. The hybrid aligned cell of the reflection mode region is formed in a manner that a vertically aligned cell is made into a horizontally aligned cell using ion alignment.

Description

하이브리드 셀과 평행 러빙된 수직 배향 셀을 이용한 반투과형 액정표시장치{ Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell}Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell}

기존의 투과형LCD의 경우 실외나 주위가 밝은 경우에 시인성이 양호하지 못한 특성을 나타내며, 반사형 LCD의 경우에는 백 라이트가 필요 없어 저 소비 전력이라는 장점이 있지만 실내나 주위가 어두운 경우에 디스플레이의 밝기가 많이 떨어지는 단점이 있다. 반투과형 LCD는 반사형과 투과형 LCD를 합쳐놓은 형태로 주위가 밝거나 어둡거나에 관계없이 양호한 시인성을 가지게 할 수 있도록 하기 위해 개발되었다. 즉 주변 광이 충분한 경우에는 반사모드를 사용하게 되고 그렇지 못한 경우에는 투과모드를 사용한다. HAN 모드를 이용한 반사 중심 설계로 이루어진 반투과형 모드를 그림 1에 나타내었다. 기존의 기술은 반사 모드에서는 우수한 광특성을 나타내지만, 투과 모드로의 전환 시에 HAN Cell이 가진 비대칭성으로 인해 시야각 특성이 비대칭화 되며, 반사 중심으로 설계된 특성 때문에 투과율의 저하가 발생한다.Conventional transmissive LCD shows poor visibility in outdoor or ambient light. Reflective LCD does not need backlight and has low power consumption. However, brightness of display is low in indoor or ambient light. Has the disadvantage of falling a lot. Semi-transmissive LCD is a combination of reflective and transmissive LCD, and was developed to have good visibility regardless of whether it is bright or dark. In other words, if the ambient light is sufficient, the reflection mode is used, otherwise the transmission mode is used. The transflective mode, which consists of the reflection center design using the HAN mode, is shown in Figure 1. Existing technology shows excellent optical characteristics in reflection mode, but when switching to transmission mode, the asymmetry of HAN Cell asymmetrics the viewing angle characteristic, and the transmittance decreases because of the characteristic designed as the center of reflection.

투과모드에서 발생하는 시야각의 비대칭성을 제거하면서 투과율을 향상시키는 설계를 필요로 한다. 그와 같은 목적을 위해서 반사 모드와 투과 모드에서 서로 다른 액정의 상태를 얻을 수 있는 multimode 방법을 도입하려고 한다. Multimode 방법을 도입하는 경우 반사 또는 투과 모드 가운데 하나의 모드만을 중심으로 설계할 필요가 없으며, 각각의 모드에서 원하는 광학적 특성 및 전기적 특성을 얻을 수 있다는 장점이 있다. 위의 특성을 얻기 위한 원리를 설명하면 다음과 같다. 액정이 어두운 상태와 밝은 상태가 되기 위해서는 전체 위상지연이 다음과 같은 상태가 되어야 한다.There is a need for a design that improves the transmittance while eliminating the asymmetry of the viewing angle occurring in the transmission mode. For this purpose, we will introduce a multimode method that can obtain different liquid crystal states in reflection mode and transmission mode. When the multimode method is introduced, the design does not need to be designed around only one of the reflection or transmission modes, and there is an advantage in that desired optical and electrical characteristics can be obtained in each mode. The principle for obtaining the above characteristics is as follows. In order for the liquid crystal to become a dark state and a bright state, the total phase delay must be as follows.

*(2n-1)/2 (n=정수)* (2n-1) / 2 (n = integer)

*n/2 (n=정수)* n / 2 (n = integer)

예를 들어 의 상태가 밝은 상태라면 는 어두운 상태가 되어야 한다. 일반적으로 반사형에서는 /4 위상변화가 필요하며 투과형에서는 /2의 위상변화가 필요하기 때문에 반사형에 설계기준이 맞추어지는 경우 투과형에서는 우수한 광특성을 기대하기가 힘들다. 따라서 HAN cell을 이용하여 설계된 반투과 구조의 경우 투과 모드에서는 심각한 투과율의 손실이 발생하게 되며 어둔 상태에서 약간 빛이 누설 된다든지, 밝은 상태가 충분히 밝지 못하고 흐릿한 현상이 발생하게 된다. 또한 투과모드로의 전환시 HAN cell의 비대칭성으로 인해 비대칭적인 시야각 특성이 나타난다. 그림 5에서 보는 것처럼 0를 기준으로 비대칭적인 시야각 특성뿐 아니라 낮은 투과율 특성이 발생하는 것을 알 수 있다. 이러한 낮은 투과율과 시야각의 비대칭성을 제거하기 위해 반사모드와 투과모드에서 서로 다른 액정 배열 상태를 만드는 multimode를 설계한다. 그 결과 서로 다른 영역에서 다른 액정 상태를 가지게 하여 반사모드 및 투과모드에서 전체적인 위상변화가 각 모드에 맞게 설계되어 우수한 광특성을 기대할 수 있다. 이때 반사부의 액정 모드로는 HAN Cell을 적용하였고, 투과부의 액정 모드는 parallel 러빙된 VA Cell을 적용하였다. 한 화소에서 각각 다른 모드의 액정 배열 상태를 얻기 위한 방법으로는 에너지상태가 높은 약 250V로 이온 배향 처리를 이용하여 구현할 수 있다.For example, if is a bright state, should be dark. In general, the reflection type requires a phase change of / 4 and the transmission type requires a phase change of / 2. Therefore, when the design criteria are matched with the reflection type, it is difficult to expect excellent optical characteristics in the transmission type. Therefore, the transflective structure designed using the HAN cell causes a significant loss of transmittance in the transmissive mode, and light leakage from the dark state, or the bright state is not bright enough and blurry phenomenon occurs. In addition, the asymmetrical viewing angle characteristic appears due to the asymmetry of the HAN cell when switching to the transmission mode. As shown in Fig. 5, low transmittance characteristics as well as asymmetrical viewing angle characteristics with respect to zero can be seen. In order to eliminate such low transmittance and viewing angle asymmetry, multimode is designed to make different liquid crystal array in reflection mode and transmission mode. As a result, by having different liquid crystal states in different regions, the overall phase change in the reflection mode and the transmission mode is designed for each mode, so that excellent optical characteristics can be expected. At this time, HAN Cell was applied as the liquid crystal mode of the reflector, and VA cells with parallel rubs were applied as the liquid crystal mode of the transmissive unit. As a method for obtaining a liquid crystal array state of different modes in one pixel, the energy state is about 250V, which may be implemented by using an ion alignment process.

도면 1은 기존 액정 셀을 이용한 반투과형 설계도1 is a transflective design using a conventional liquid crystal cell

도면 2는 반사형과 투과형을 이용한 하나의 화소를 위에서 본 그림Figure 2 is a view from above of a pixel using a reflection type and a transmission type

도면 3은 반사형과 투과형을 이용한 하나의 화소를 옆에서 본 그림3 is a side view of one pixel using a reflection type and a transmission type.

도면 4는 Multimode 구조의 반투과형 설계도4 is a transflective design of a multimode structure.

도면 5는 기존구조를 이용한 반투과형의 투과율5 is the transmissivity of the transflective type using the existing structure

도면 6은 Multimode 구조를 이용한 반투과형의 투과율6 is a transflective transmittance using a multimode structure

표 1은 반사 모드와 투과 모드의 상태를 설명한 표Table 1 describes the states of the reflection mode and transmission mode.

표 2는 광시야각 확보에 필요한 보상 필름의 광축Table 2 shows the optical axes of the compensation film required to secure a wide viewing angle.

11: Polarizer 12: Retarder film11: Polarizer 12: Retarder film

13: Glass14: ITO Layer13: Glass14: ITO Layer

15: Rubbing Layer16: Reflector15: Rubbing Layer 16: Reflector

17: Analyzer 18: Back Light17: Analyzer 18: Back Light

21: 투과 영역22: 반사 영역21: transmission region 22: reflection region

31: 투과 영역의 액정32: 반사 영역의 액정31: liquid crystal in transmission region 32: liquid crystal in reflection region

33: Glass41: Polarizer33: Glass41: Polarizer

42: Retarder Film43: Glass42: Retarder Film43: Glass

44: ITO Layer45: 배향층44: ITO Layer 45: alignment layer

46: Reflector47: Analyzer46: Reflector 47: Analyzer

48: Back Light48: Back Light

먼저 그림 2에서 보는 것처럼 액정의 한 화소를 반사 모드 영역과 투과 모드 영역으로 나누었다. 투과를 중심으로 설계를 하는 경우 반사 모드 영역과 투과 모드 영역의 비는 4:1정도가 되게 하였다. 즉 반사 영역의 넓이는 투과 영역의 넓이의 1/5이면 원하는 영역이 얻어진다. 반사를 중심으로 하는 경우 반사 영역의 넓이는 원하는 만큼 적용할 수도 있다. 액정은 Negative 액정을 사용하였다. 전압을 인가하게 되면 전기장의 영향을 받아 전기장 방향으로 액정 분자들이 늘어서게 되는 것을 Positive 액정이라고 하고, 유전 율이 음의 값을 가지며 전기장 방향에 수직으로 배열하는 것을 Negative액정이라고 한다. Negative액정은 전압을 인가하게 되면 Positive액정과는 달리 위상 지연 값이 점점 커지게 된다. Positive 액정 대신에 Negative 액정을 사용하면 반사 모드에서 전압을 인가하기 전 Positive 액정 보다 더 안정적인 /4 위상 지연 상태가 되어 훨씬 더 양호한 광학적 특성을 얻을 수 있다. 반사부에는 액정모드로 HAN(Hybrid Aligned Nematic) Cell을 적용하였다. 전압을 인가하기 전에 이 /4 위상 지연이 되도록 설계하고 전압을 인가하면 /2 위상 지연이 되도록 하였다. 그리고 투과부에는 액정 모드로 Parallel 러빙된 VA (Vertically Aligned) Cell을 이용하였다. 더 상세하게는 Parallel 러빙 처리로 인해 High Bend구조가 되도록 하였다. 이때 전압을 인가하기 전 액정의 위상 지연은 없게 되고 전압을 적당히 인가하여 /2의 위상 지연이 되도록 한다. 표1에 요약한 값들을 나타내었다. 그림 4에 제안된 multimode 구조를 가진 Cell과 다른 보상 필름들을 사용하여 전체 액정 디스플레이를 설계하였다. 표2에 설계에 필요한 필름의 값들을 나타내었다. Multimode 구조의 액정 배열 상태를 얻기 위한 방법을 설명하면 다음과 같다. 반사, 투과 모드의 실제 셀을 제작하기 위해서 액정 셀을 아래 위로 수직 배향하였다. 하나의 셀에 반사, 투과 모드를 나타내기 위해서는 그림 2에서 11의 투과 영역에는 수직 배향된 셀을 그대로 사용하고 12의 반사 영역에는 이미 수직 배향된 셀을 이온 배향을 이용하여 수평 배향으로 만들어 Hybrid구조를 얻게 된다.First, as shown in Figure 2, one pixel of the liquid crystal is divided into a reflection mode region and a transmission mode region. In the case of design based on transmission, the ratio between the reflection mode region and the transmission mode region was about 4: 1. In other words, if the area of the reflection area is 1/5 of the area of the transmission area, the desired area is obtained. When the reflection is centered, the width of the reflection area may be applied as desired. Negative liquid crystal was used as the liquid crystal. When the voltage is applied, the liquid crystal molecules line up in the direction of the electric field under the influence of the electric field, which is called positive liquid crystal. The dielectric constant has a negative value and is arranged perpendicular to the electric field direction. Negative liquid crystals have a larger phase delay value than positive liquid crystals when voltage is applied. The use of negative liquid crystals instead of positive liquid crystals results in a much more stable / 4 phase delay than positive liquid crystals before applying voltage in reflective mode, resulting in much better optical properties. The HAN (Hybrid Aligned Nematic) Cell was applied to the reflector in the liquid crystal mode. It is designed to have this / 4 phase delay before applying voltage and to have / 2 phase delay when applying voltage. In addition, VA (Vertically Aligned) Cell rubbed in liquid crystal mode was used for the transmission part. More specifically, due to the parallel rubbing treatment, a high bend structure is achieved. At this time, before the voltage is applied, there is no phase delay of the liquid crystal, and the voltage is appropriately applied so that the phase delay of / 2 is achieved. The values summarized in Table 1 are shown. The entire liquid crystal display is designed using Cell with multimode structure and other compensation films proposed in Figure 4. Table 2 shows the film values required for the design. A method for obtaining a liquid crystal array state of a multimode structure is described below. The liquid crystal cells were vertically oriented up and down to produce actual cells in reflective, transmissive mode. In order to show the reflection and transmission mode in one cell, the vertically oriented cell is used as it is in the transmission region of Figure 11, and the vertically oriented cell in the reflection region of 12 is horizontally oriented using ion orientation. You get

그림 4에서 보는 것처럼 액정 디스플레이를 설계하여 그 특성을 관찰하였다. 기존의 방법으로 반투과 모드를 설계하여 얻은 결과값은 그림 6과 같다. 앞에서도 언급한 것처럼, 낮은 투과율 특성과 시야각의 비대칭 특성이 얻어짐을 볼 수 있다. 그러나 개선된 방법으로 반투과 모드를 설계하는 경우 그림 6에서 보는 것처럼 낮은 투과율을 개선하였을 뿐만 아니라 시야각의 비대칭도 제거 할 수 있었다. HAN Cell만을 이용한 반투과 모드에서 반사형은 광학적 특성이 우수 하였으나, 투과형 설계에 있어서 Hybrid구조가 가지는 특성으로 인하여 시야각의 비대칭이 발생하였다. 반사형에 적합한 Hybrid구조는 그대로 두고, 투과형에는 양호한 특성을 나타내기 위해 Parallel 러빙된 VA 모드를 사용하였다. Parallel 러빙된 VA Cell은 전압을 인가 하였을 때 Splay구조가 되어 Anti-Parallel 러빙 VA Cell보다 더 양호한 시야각 특성을 얻게 된다. 그림 6에서 알 수 있듯이 HAN Cell만을 사용하였을 때 발생하는 시야각의 비대칭 문제도 제거 되었으며, 광학 특성도 우수한 것을 알 수 있다.As shown in Fig. 4, the liquid crystal display was designed and its characteristics were observed. The result obtained by designing the transflective mode by the conventional method is shown in Figure 6. As mentioned earlier, it can be seen that low transmittance characteristics and asymmetry of the viewing angle are obtained. However, the design of the transflective mode with the improved method not only improved the low transmittance as shown in Fig. 6, but also eliminated the asymmetry of the viewing angle. In the transflective mode using only HAN Cell, the reflection type had excellent optical characteristics, but the asymmetry of the viewing angle occurred due to the characteristics of the hybrid structure in the transmissive design. The hybrid structure suitable for the reflection type was left as it is, and the parallel rubbed VA mode was used to show good characteristics for the transmission type. The parallel rubbed VA Cell has a better viewing angle than the Anti-Parallel rubbing VA Cell when the voltage is applied. As can be seen in Fig. 6, the problem of asymmetry of viewing angle caused by using only HAN Cell has been eliminated, and the optical characteristics are also excellent.

전압 인가전Before voltage application 전압 인가후After voltage applied 위상 지연값Phase delay value 상태condition 위상 지연값Phase delay value 상태condition 반사형Reflective /4/4 DarkDark /2/2 BrightBright 투과형Transmissive 00 DarkDark /2/2 BrightBright

PlatePlate PolarizerPolarizer Compensation Film 1Compensation Film 1 LC CellLC Cell Compensation Film2Compensation Film2 PolarizerPolarizer /2 film/ 2 film A-plateA-plate C-plateC-plate 광축 각Optical axis angle 00 1515 7575 7575 165165 1515 00

Claims (6)

반투과형 설계시 반사 영역에는 Hybrid구조를,In semi-transmissive design, hybrid structure is used for reflection area. 반투과형 설계시 투과 영역에는 Parallel 러빙 VA를 이용하였으며, 이와 유사한 각종 multimode 구조,In the transflective design, the parallel rubbing VA was used for the transmission area. Multimode 구조 설계시 수평 배향 구조를 실현 하기 위한 이온 배향법 적용Application of Ion Orientation Method to realize Horizontal Orientation Structure in Multimode Structure Design 반투과형 설계시 투과 영역에는 Parallel 러빙 된 VA 모드를 이용하여 전압을 인가하여 Splay 구조가 되게 하였다.In the semi-transmissive design, the transmissive region is applied to the Splay structure by applying a voltage using the parallel rubbed VA mode. 반투과형 설계시 Negative액정을 사용하였다.Negative liquid crystal was used in the semi-transmissive design. 반투과형 설계시 Biaxial Film 및 A-plate, C-plate를 사용하여 넓은 시야각을 구현하였다.In the transflective design, wide viewing angle is realized by using biaxial film, A-plate and C-plate.
KR1020020071520A 2002-11-18 2002-11-18 Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell KR20040043296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020071520A KR20040043296A (en) 2002-11-18 2002-11-18 Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020071520A KR20040043296A (en) 2002-11-18 2002-11-18 Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell

Publications (1)

Publication Number Publication Date
KR20040043296A true KR20040043296A (en) 2004-05-24

Family

ID=37339776

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020071520A KR20040043296A (en) 2002-11-18 2002-11-18 Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell

Country Status (1)

Country Link
KR (1) KR20040043296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164627A (en) * 2018-09-25 2019-01-08 北京航空航天大学 A kind of negative liquid crystal transflection display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179822A (en) * 1982-04-15 1983-10-21 Canon Inc Liquid crystal display
JPH09146108A (en) * 1995-11-17 1997-06-06 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its driving method
KR19990075404A (en) * 1998-03-20 1999-10-15 윤종용 Liquid crystal display with reflection mode and transmission mode
KR20010038826A (en) * 1999-10-27 2001-05-15 구본준 transflective liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179822A (en) * 1982-04-15 1983-10-21 Canon Inc Liquid crystal display
JPH09146108A (en) * 1995-11-17 1997-06-06 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its driving method
KR19990075404A (en) * 1998-03-20 1999-10-15 윤종용 Liquid crystal display with reflection mode and transmission mode
KR20010038826A (en) * 1999-10-27 2001-05-15 구본준 transflective liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164627A (en) * 2018-09-25 2019-01-08 北京航空航天大学 A kind of negative liquid crystal transflection display

Similar Documents

Publication Publication Date Title
US6285428B1 (en) IPS LCD having molecules remained parallel with electric fields applied
US7227602B2 (en) In-plane switching liquid crystal display comprising compensation film for angular field of view using +A-plate and +C-plate
KR100239266B1 (en) Optical compensator for liquid crystal display
KR100895155B1 (en) Transflective liquid crystal display device and method of generating a pattterned ?/4 foil
EP2461206B1 (en) Liquid crystal display device
US20070085948A1 (en) Transflective type liquid crystal display device having high transmission and wide viewing angle characteristics
JP3410663B2 (en) Liquid crystal display
US8085370B2 (en) Single-polarizer reflective bistable twisted nematic (BTN) liquid crystal display device
JP2001242462A (en) Liquid crystal display device
KR20010051811A (en) Discotic-type twist-film compensated single-domain or two-domain twisted nematic liquid crystal displays
US6836309B2 (en) High contrast reflective light valve
US6989521B2 (en) Semi-transmission type liquid crystal display device
US6429915B1 (en) Tilted polarizers for liquid crystal displays
KR20040043296A (en) Transflective Liquid Crystal Display using HAN Cell and Parallel rubbed VA Cell
KR100562174B1 (en) Transflective Liquid Crystal Display
KR101159327B1 (en) transflective liquid crystal display device
KR100446375B1 (en) Semi-transmission type liquid crystal display using fringe filed switching mode
KR100886865B1 (en) Reflective type liquid crystal display
JPH07287223A (en) Reflection type liquid crystal display element
JP2004219553A (en) Liquid crystal display device and electronic appliance
KR20080047689A (en) Liquid crystal display
KR100506420B1 (en) Liquid Crystal Display Device Using C-plate
JP2004219552A (en) Liquid crystal display device and electronic appliance
JP2003161944A (en) Liquid crystal display device
KR100816337B1 (en) Liquid crystal display

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application