KR20040031538A - 칼라 히스토그램의 빈값 양자화 방법 - Google Patents

칼라 히스토그램의 빈값 양자화 방법 Download PDF

Info

Publication number
KR20040031538A
KR20040031538A KR1020020061089A KR20020061089A KR20040031538A KR 20040031538 A KR20040031538 A KR 20040031538A KR 1020020061089 A KR1020020061089 A KR 1020020061089A KR 20020061089 A KR20020061089 A KR 20020061089A KR 20040031538 A KR20040031538 A KR 20040031538A
Authority
KR
South Korea
Prior art keywords
divided
value
quantization
values
regions
Prior art date
Application number
KR1020020061089A
Other languages
English (en)
Other versions
KR100488011B1 (ko
Inventor
김현준
이진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR10-2002-0061089A priority Critical patent/KR100488011B1/ko
Priority to CNA200380101034XA priority patent/CN1703727A/zh
Priority to EP03799212A priority patent/EP1550080A4/en
Priority to PCT/KR2003/002040 priority patent/WO2004032056A1/en
Priority to AU2003265129A priority patent/AU2003265129A1/en
Priority to US10/677,376 priority patent/US20040073544A1/en
Publication of KR20040031538A publication Critical patent/KR20040031538A/ko
Application granted granted Critical
Publication of KR100488011B1 publication Critical patent/KR100488011B1/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • G06F16/5838Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은 칼라 히스토그램의 빈값을 양자화하는 방법에 관한 것이다.
본 발명의 칼라 히스토그램 빈값 양자화 방법은, N개의 임계치를 이용해서 N+1개의 구간으로 빈값을 분할하는 단계, 상기 분할된 각 구간중에서 0에 가까운 구간일수록 세밀하게 임의의 정수로 각각의 구간을 균등 분할하여 양자화하는 단계; 를 포함하여 이루어지는 것을 특징으로 하며, 상기 N개의 임계치 중에서 첫번째 임계치는 0이거나 거의 0에 가까운 값이고, 상기 N+1개의 구간 중에서 첫번째 구간은 하나의 값으로 간주한다. 또한 상기 N개의 임계치는 각각, th1 = 0.000000001, th2 = 0.037, th3 = 0.08, th4 = 0.195, th5 = 0.32로 설정하며, 상기 N+1개의 구간 중에서 첫번째 구간(≤th1)은 하나의 값으로 간주하고, 두번째 구간(th1 < th2)은 25개로, 세번째 구간(th2 < th3)은 20개로, 네번째 구간(th3 < th4)은 35개로, 다섯번째 구간(th4 < th5)은 35개로, 마지막 구간(th5 <)은 140개로 균등 분할하여 256개의 값으로 표현하는 것을 특징으로 한다.

Description

칼라 히스토그램의 빈값 양자화 방법{QUANTIZATION OF COLOR HISTOGRAM}
본 발명은 칼라 히스토그램의 빈값을 양자화하는 방법에 관한 것으로서 특히, 히스토그램의 빈값을 정해진 비트 수로 표현하기 위하여 양자화함에 있어서 칼라 히스토그램 빈값의 양자화 간격을 비균등하게 설정하되 상기 비균등하게 설정된 양자화 구간 내에서는 0에 가까울수록 보다 세밀하게 균등 양자화함을 특징으로 하는 칼라 히스토그램 빈값 양자화 방법에 관한 것이다.
내용기반으로 멀티미디어를 검색하는 기술들이 대두됨에 따라 검색 성능을 좌우하는 멀티미디어 특징소에 대한 연구가 활발히 이루어지고 있다.
현재 가장 많이 사용되는 검색 엔진에서는 이미지 검색을 위해 전역적, 지역적 칼라 정보와 텍스쳐 정보 등을 사용하고 있으며, 이 중에서 칼라 정보는 이미지 검색에 가장 중요한 영향을 주는 요소로 알려져 있다. 따라서 보다 효과적인 칼라특징소의 개발이 이루어지고 있으며, 보다 검색에 효과적인 칼라 공간을 개발하려는 시도도 이루어지고 있다.
칼라 정보에는 칼라 히스토그램이 가장 널리 쓰인다. 칼라 히스토그램이란 이미지 등의 멀티미디어 데이터의 칼라 분포를 나타내는 정보로서 칼라 공간을 어떻게 양자화 하느냐에 따라서 히스토그램의 빈 수가 결정된다.
일반적으로 각 빈 값은 소수로 표현되지만 보다 높은 성능과 공간적 효율을 위해 소수 표현 공간보다 작은 N개의 비트로 표현하여 사용할 수 있다. 예를 들어 일반적으로 8비트, 즉 0 에서 1 사이의 소수값을 256 가지로 구분되는 수치로 표현하면 충분히 성능 저하 없이 공간을 절약할 수 있는 것으로 알려져 있다.
이와 같이 빈 값을 양자화하는 방법에는 정규적인 양자화와 비정규적인 양자화로 나누어 생각할 수 있는데, 정규적인 양자화 방법은 0에서 1사이의 값을 균등한 폭으로 나누어 양자화한 후 표현하는 것이고 비 정규적 양자화 방법은 균등하지 않은 폭으로 나누어 양자화한 후 표현하는 것이다.
비 정규적인 양자화 방법을 사용할 경우 정규적인 양자화 방법을 사용하거나 소수값 그대로를 표현한 경우보다 높은 성능을 구현할 수 있는데, 예를 들어 중요한 빈값의 구간은 보다 세밀하게 나누고 구분 능력이 없는 값의 구간은 보다 듬성듬성하게 나눔으로써 성능을 높일 수 있다.
예를 들어 히스토그램의 경우 대부분 빈값이 0.2보다 작은 수로 구성되므로 0.2 이상을 세밀하게 나누는 것은 의미가 없다. 또한 그러한 임계치 이내의 값 중에서도, 0에 가까울수록 더욱 그 빈도수가 많아지는 특성이 있다(도1 참조). 따라서 0에 가까울수록 더욱 세밀하게 양자화하는 것이 효과적이다. 더구나 빈값이 0인 경우와 그렇지 않은 경우는 다른 빈값의 차이와 상당히 다른 의미를 지닌다. 즉, 0와 0.1의 차이는 0.1과 0.5의 차이보다 더욱 큰 차이로 해석될 수 있는데, 이는 그 빈에 해당하는 칼라가 존재하는지의 여부를 의미하므로, 단지 많고 적음을 비교하는 것과는 다른 의미를 지닌다.
이와 같은 이유로 비 정규화 양자화를 이용한 빈값 양자화는 매우 유용하게 사용될 수 있다.
그러나, 칼라 히스토그램을 이용한 멀티미디어 검색에 있어서, 빈값을 표현하는 비트 수는 공간적 효율의 문제를 안고 있으며, 빈값을 표현하는 비트 수를 비균등 양자화 구간 각각에 대하여 동등하게 할당하게 되면 상대적으로 덜 중요한 의미의 빈 구간과 상대적으로 더 중요한 의미의 빈 구간 각각에 대하여 양자화된 값들의 표현 능력이 저하되는 문제점이 있다. 따라서 검색 성능을 향상시키면서도 보다 적은 수의 비트로 빈값을 표현할 수 있는 기법이 요구되며, 멀티미디어 검색 성능에 실질적으로 영향을 주는 0값을 하나의 의미있는 값으로 고려하는 양자화 기법이 요구된다.
본 발명은 칼라 히스토그램 등의 히스토그램을 이용한 멀티미디어 검색에 있어서, 빈값을 적은 수의 비트로 표현함으로써 공간적 효율을 높이면서, 동시에 검색 성능은 오히려 향상시킬 수 있도록 한 칼라 히스토그램의 빈값 양자화 방법을 제공함을 목적으로 한다.
또한 본 발명은 칼라 히스토그램 등의 히스토그램을 이용한 멀티미디어 검색에 있어서, 히스토그램 특성을 고려하여 최적화된 비트 수의 할당과 양자화된 값들의 표현 능력을 높이고 검색 성능을 향상시킬 수 있도록 한 칼라 히스토그램 빈값 양자화 방법을 제공함을 목적으로 한다.
또한 본 발명은 칼라 히스토그램 등의 히스토그램을 이용한 멀티미디어 검색에 있어서, 히스토그램 값의 특성상 0에 가까운 값일수록 그 빈도수가 많음을 고려하여 양자화함으로써 양자화된 값들의 표현능력을 높이고, 0값을 하나의 의미있는 값으로 고려함으로써 검색 성능을 향상시킬 수 있도록 한 칼라 히스토그램의 빈값 양자화 방법을 제공함을 목적으로 한다.
도1은 빈값에 대한 빈의 백분율 분포의 예를 나타낸 도면
도2는 본 발명의 빈값 양자화 방법을 설명하기 위한 도면
도3은 본 발명의 빈값 양자화 테이블의 예를 나타낸 도면
본 발명의 칼라 히스토그램 빈값 양자화 방법은, N개의 임계치를 이용해서 N+1개의 구간으로 빈값을 분할하는 단계, 상기 분할된 각 구간중에서 0에 가까운 구간일수록 세밀하게 임의의 정수로 각각의 구간을 균등 분할하여 양자화하는 단계; 를 포함하여 이루어지는 것을 특징으로 하는 칼라 히스토그램 빈값 양자화 방법이다.
또한 본 발명의 칼라 히스토그램 빈값 양자화 방법에서, 상기 N개의 임계치 중에서 첫번째 임계치는 0이거나 거의 0에 가까운 값인 것을 특징으로 한다.
또한 본 발명의 칼라 히스토그램 빈값 양자화 방법에서, 상기 N+1개의 구간 중에서 첫번째 구간은 하나의 값으로 간주하는 것을 특징으로 한다.
또한 본 발명의 칼라 히스토그램 빈값 양자화 방법에서, 상기 N개의 임계치는 각각, th1 = 0.000000001, th2 = 0.037, th3 = 0.08, th4 = 0.195, th5 = 0.32인 것을 특징으로 한다.
또한 본 발명의 칼라 히스토그램 빈값 양자화 방법에서, 상기 N+1개의 구간 중에서 첫번째 구간(≤th1)은 하나의 값으로 간주하고, 두번째 구간(th1 < th2)은 25개로, 세번째 구간(th2 < th3)은 20개로, 네번째 구간(th3 < th4)은 35개로, 다섯번째 구간(th4 < th5)은 35개로, 마지막 구간(th5 <)은 140개로 균등 분할하여 256개의 값으로 표현하는 것을 특징으로 한다.
도2는 본 발명의 칼라 히스토그램 빈값 양자화 방법의 예를 보여준다. 도2에서는 빈값을 양자화하기 위하여 5개의 임계치(th1, th2, th3, th4, th5)를 사용하였고 총 6개의 구간으로 분할하였다.
도2에서 첫번째 구간(≤th1)을 제외한 나머지 5개의 구간은 다시 임의의 정수로 균등하게 분할하여 전체 빈값을 양자화한다. 여기서 첫번째 임계치(th1)는 0이거나 또는 거의 0에 가까운 임의의 수이며, 이 임계치(th1) 보다 작거나 같은 구간으로 이루어진 첫번째 구간(≤th1)이 의미하는 것은 빈에 해당하는 칼라의 존재를 의미한다. 그러므로 첫번째 임계치(th1) 보다 작거나 같은 구간은 더 이상 분할되지 않으며, 그 하나가 하나의 값으로 표현된다.
나머지 5개의 구간 즉, th1<th2, th2<th3, th3<th4, th4<th5, th5< 구간에 대해서는 임의의 정수로 균등하게 분할한다. 본 발명에서는 실시예로서 상기 5개의 임계치(th1,th2,th3,th4,th5)를 각각 다음과 같이 설정하였다.
th1 = 0.000000001, th2 = 0.037, th3 = 0.08, th4 = 0.195, th5 = 0.32.
본 발명에서 상기 6개의 구간을 분할하는 방법에 대해서 살펴본다. 앞서 설명한 바와 같이 첫번째 구간(≤th1)에 대해서는 하나의 값으로 표현하고, th1 보다 크고 th2 보다 작은 두번째 구간(th1<th2)은 25개의 세부 구간으로 균등하게 분할하여 25개의 값으로 표현하였다. th2 보다 크고 th3 보다 작은 세번째 구간(th2<th3)은 20개의 세부 구간으로 균등하게 분할하여 20개의 값으로 표현하였다.
th3 보다 크고 th4 보다 작은 네번째 구간(th3<th4)은 35개의 세부 구간으로 균등하게 분할하여 35개의 값으로 표현하였다. th4 보다 크고 th5 보다 작은 다섯번째 구간(th4<th5)은 35개의 세부 구간으로 균등하게 분할하여 35개의 값으로 표현하였다. 마지막으로, th5 보다 큰 여섯번째 구간(th5<)은 140개로 균등하게 분할하여 140개의 값으로 표현하였다.
이와 같이 5개의 임계치(th1,th2,th3,th4,th5)에 의해서 비균등 분할된 6개의 구간 각각에 대하여 빈값을 균등 분할하여 표현함으로써 전체 256개의 값으로 빈값을 표현하였고, 이는 곧 8비트로 표현될 수 있음을 의미한다. 즉, 비트 수 8로 256개의 빈값 표현이 이루어지게 되는 것이다.
지금까지 설명한 5개의 임계치에 따른 6개 구간과 각 구간에서 표현되는 값을 정리하여 도3에 나타내었다.
도3에 나타낸 바와 같이, 본 발명에서는 히스토그램의 빈값을 정해진 비트 수로 표현하기 위해 양자화함에 있어서, N개의 임계치를 정하여 N+1개의 구간으로 분할하고, 상기 각 구간을 임의의 정수로 균등하게 분할하되, 0에 가까울수록 세밀하게 분할하고 있다. 또한, N개의 임계치 중에서 0에 가까운 첫번째 임계치 값은 0이거나 혹은 거의 0과 같은 아주 작은 값으로 할당하였고, 이 첫번째 구간은 더 이상 분할하지 않고 하나의 값으로 간주하고 있다. 따라서, 빈값을 적은 수의 비트로 표현함으로써 공간적 효율을 높이면서 동시에 검색 성능은 오히려 증가시킬 수 있게 된다.
또한, 히스토그램 값의 특성 상 0에 가까운 값일수록 그 빈도수가 많음을 고려해서 양자화함으로써 양자화된 값들의 표현 능력을 높이고, 0값을 하나의 의미있는 값으로 고려함으로써 검색 성능을 높일 수 있게 된다.
특히 본 발명은 히스토그램 빈 값을 5개의 임계치(th1,th2,th3,th4,th5)를 이용해서 6개의 구간으로 분할하고, th1 = 0.000000001, th2 = 0.037, th3 = 0.08, th4 = 0.195, th5 = 0.32로 설정해 주는 것과 함께, ≤th1 구간은 하나의 값으로 간주하고, th1<th2 구간은 25개로 균등분할하고, th2<th3 구간은 20개로 균등분할하고, th3<th4는 35개로 균등분할하고, th4<th5는 35개로 균등분할하고, th5< 구간은 140개로 균등분할하여 총 256개의 값으로 빈값을 표현하는 적용 예를 보여주고 있으며, 이렇게 함으로써 8비트로 빈값을 표현하는 기반을 제공할 수 있음을 보여주었다.
본 발명은 칼라 히스토그램의 빈값을 양자화함에 있어, 빈값을 비균등한 N개의 임계치를 이용해서 N+1개의 구간으로 나누고, 각각의 구간에 대해서 0에 가까울수록 세밀하게 균등 분할하는 방법으로 빈값을 표현하였다. 따라서, 본 발명에 의하면 적은 수의 비트로 빈값을 표현하고 또 0에 가까운 값일수록 그 빈도수가 많음을 고려하여 양자화함으로써, 양자화된 값들의 표현 능력을 높이고 검색성능을 향상시키며, 빈값 표현에 있어 공간적 효율을 높일 수 있게 된다.

Claims (5)

  1. N개의 임계치를 이용해서 N+1개의 구간으로 빈값을 분할하는 단계, 상기 분할된 각 구간중에서 0에 가까운 구간일수록 세밀하게 임의의 정수로 각각의 구간을 균등 분할하여 양자화하는 단계; 를 포함하여 이루어지는 것을 특징으로 하는 칼라 히스토그램의 빈값 양자화 방법.
  2. 제 1 항에 있어서, 상기 N개의 임계치 중에서 첫번째 임계치는 0이거나 또는 거의 0에 가까운 값인 것을 특징으로 하는 칼라 히스토그램의 빈값 양자화 방법.
  3. 제 1 항에 있어서, 상기 N+1개의 구간 중에서 첫번째 구간은 하나의 값으로 간주하는 것을 특징으로 하는 칼라 히스토그램의 빈값 양자화 방법.
  4. 제 1 항에 있어서, 상기 N개의 임계치는 각각, th1 = 0.000000001, th2 = 0.037, th3 = 0.08, th4 = 0.195, th5 = 0.32인 것을 특징으로 하는 칼라 히스토그램의 빈값 양자화 방법.
  5. 제 1 항에 있어서, 상기 N=5(th1,th2,th3,th4,th5)이고, N+1개의 구간 중에서 첫번째 구간(≤th1)은 하나의 값으로 간주하고, 두번째 구간(th1 < th2)은 25개로, 세번째 구간(th2 < th3)은 20개로, 네번째 구간(th3 < th4)은 35개로, 다섯번째 구간(th4 < th5)은 35개로, 마지막 구간(th5 <)은 140개로 균등 분할하여 256개의 값으로 표현하는 것을 특징으로 하는 칼라 히스토그램의 빈값 양자화 방법.
KR10-2002-0061089A 2002-10-07 2002-10-07 칼라 히스토그램의 빈값 양자화 방법 KR100488011B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2002-0061089A KR100488011B1 (ko) 2002-10-07 2002-10-07 칼라 히스토그램의 빈값 양자화 방법
CNA200380101034XA CN1703727A (zh) 2002-10-07 2003-10-02 颜色直方图柄值的量化方法
EP03799212A EP1550080A4 (en) 2002-10-07 2003-10-02 METHOD FOR QUANTIFYING A BINARY VALUE OF A COLOR HISTOGRAM
PCT/KR2003/002040 WO2004032056A1 (en) 2002-10-07 2003-10-02 Method of quantizing bin value of color histogram
AU2003265129A AU2003265129A1 (en) 2002-10-07 2003-10-02 Method of quantizing bin value of color histogram
US10/677,376 US20040073544A1 (en) 2002-10-07 2003-10-03 Method of quantizing bin value of color histogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0061089A KR100488011B1 (ko) 2002-10-07 2002-10-07 칼라 히스토그램의 빈값 양자화 방법

Publications (2)

Publication Number Publication Date
KR20040031538A true KR20040031538A (ko) 2004-04-13
KR100488011B1 KR100488011B1 (ko) 2005-05-06

Family

ID=32064908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0061089A KR100488011B1 (ko) 2002-10-07 2002-10-07 칼라 히스토그램의 빈값 양자화 방법

Country Status (6)

Country Link
US (1) US20040073544A1 (ko)
EP (1) EP1550080A4 (ko)
KR (1) KR100488011B1 (ko)
CN (1) CN1703727A (ko)
AU (1) AU2003265129A1 (ko)
WO (1) WO2004032056A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014088A1 (en) * 2004-08-05 2006-02-09 Nam Young Baek Slide type mobile communication terminal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2485887A1 (en) * 2004-10-25 2006-04-25 Athentech Technologies Inc. Adjustment of multiple data channels using relative strength histograms
US8711926B2 (en) * 2007-02-08 2014-04-29 Qualcomm Incorporated Distortion estimation for quantized data
US10776992B2 (en) * 2017-07-05 2020-09-15 Qualcomm Incorporated Asynchronous time warp with depth data

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737060A (ja) * 1993-07-20 1995-02-07 Hitachi Ltd 画像の色量子化方法
KR100364753B1 (ko) * 1999-11-19 2002-12-16 엘지전자 주식회사 칼라 히스토그램의 빈값 양자화 방법
JP3676259B2 (ja) * 2000-05-26 2005-07-27 エルジー電子株式会社 Hmmdカラースペースに基づいたカラー量子化方法とマルチメディア
DE1174804T1 (de) * 2000-07-21 2002-10-02 Lg Electronics Inc., Seoul/Soul Verfahren zum Suchen von Multimedia-Daten mit progressiven Histogrammen
KR100430273B1 (ko) * 2000-07-21 2004-05-04 엘지전자 주식회사 비정규적인 빈값 양자화된 칼라 히스토그램을 이용한멀티미디어 검색방법
KR100439371B1 (ko) * 2000-09-08 2004-07-09 엘지전자 주식회사 히스토그램을 이용한 멀티미디어 검색방법
KR20020031015A (ko) * 2000-10-21 2002-04-26 오길록 에지 히스토그램 빈의 비선형 양자화 및 유사도 계산
US7062084B2 (en) * 2000-12-01 2006-06-13 Sharp Laboratories Of America, Inc. Method for image description using color and local spatial information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014088A1 (en) * 2004-08-05 2006-02-09 Nam Young Baek Slide type mobile communication terminal

Also Published As

Publication number Publication date
US20040073544A1 (en) 2004-04-15
EP1550080A4 (en) 2008-05-14
EP1550080A1 (en) 2005-07-06
CN1703727A (zh) 2005-11-30
AU2003265129A1 (en) 2004-04-23
WO2004032056A1 (en) 2004-04-15
KR100488011B1 (ko) 2005-05-06

Similar Documents

Publication Publication Date Title
Duanmu et al. Fast CU partition decision using machine learning for screen content compression
KR100364753B1 (ko) 칼라 히스토그램의 빈값 양자화 방법
JP2013198161A (ja) 画像の圧縮
Winter et al. Fast indexing strategies for robust image hashes
Paeth Image file compression made easy
KR100488011B1 (ko) 칼라 히스토그램의 빈값 양자화 방법
CN114902285A (zh) 一种最近邻搜索方法及装置、设备、存储介质
KR100439371B1 (ko) 히스토그램을 이용한 멀티미디어 검색방법
KR100430273B1 (ko) 비정규적인 빈값 양자화된 칼라 히스토그램을 이용한멀티미디어 검색방법
JP4052837B2 (ja) イメージ領域を描写する方法
US6240431B1 (en) Decompression of limited range floating point numbers
JP2006262161A (ja) 画像処理装置、画像処理方法、およびその方法を記憶する記憶媒体
KR20230167141A (ko) 팔레트 테이블 유도에 적용되는 계층적 히스토그램 계산
CA2992930A1 (en) Method for choosing a compression algorithm depending on the image type
Chung et al. Fuzzy color quantization and its application to scene change detection
Daga et al. kd Tree-Segmented Block Truncation Coding for Image Compression
Jallouli et al. An adaptive block-based histogram packing for improving the compression performance of JPEG-LS for images with sparse and locally sparse histograms
Kwan Fingerprints for Compressed Columnar Data Search
Peters et al. Microarray image compression using a variation of singular value decomposition
Rahmani et al. A comparative analysis of traditional and modern data compression schemes for large multi-dimensional extendible array
US9106864B2 (en) Multi-bit error diffusion
Kadimisetty et al. Frequent pattern mining approach to image compression
KR20010048785A (ko) 2진 칼라 히스토그램을 이용한 멀티미디어 객체의 특징소추출방법과 특징소구조 및 멀티미디어 검색방법
Pun et al. Image retrieval using a novel color quantization approach
Ahmad et al. An Approach to Color Image Coding Based on Adaptive Multilevel Block Truncation Coding

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110328

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee