KR20040029881A - Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it - Google Patents

Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it Download PDF

Info

Publication number
KR20040029881A
KR20040029881A KR1020020060321A KR20020060321A KR20040029881A KR 20040029881 A KR20040029881 A KR 20040029881A KR 1020020060321 A KR1020020060321 A KR 1020020060321A KR 20020060321 A KR20020060321 A KR 20020060321A KR 20040029881 A KR20040029881 A KR 20040029881A
Authority
KR
South Korea
Prior art keywords
weight
polyol
polyurethane foam
parts
cryogenic
Prior art date
Application number
KR1020020060321A
Other languages
Korean (ko)
Inventor
임재인
Original Assignee
주식회사 화인텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 화인텍 filed Critical 주식회사 화인텍
Priority to KR1020020060321A priority Critical patent/KR20040029881A/en
Publication of KR20040029881A publication Critical patent/KR20040029881A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/125Water, e.g. hydrated salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Abstract

PURPOSE: A polyurethane foam for warming and cooling an ultralow temperature pipe and an insulator using the polyurethane are provided, to improve the heat insulation and the mechanical properties even at an ultralow temperature and the flame retardancy. CONSTITUTION: The polyurethane foam is obtained by reacting a polyol component and an isocyanate compound in the presence of a foaming agent, a catalyst and other additives, wherein the polyol component comprises 40-60 wt% of a polyol obtained by the addition of sorbitol and propylene oxide or ethylene oxide, 20-40 wt% of a polyol obtained by the polymerization of phthalic acid and an alcohol, 10-30 wt% of a polyol obtained by the addition of glycol and propylene oxide or ethylene oxide, and 10-30 wt% of a polyol obtained by the addition of pentaerythritol and propylene oxide or ethylene oxide, and the isocyanate compound is a polymeric MDI having a functional group of 2.6-3.0.

Description

초저온 파이프 보냉용 폴리우레탄 폼 및 그것을 이용한 단열재{POLYISOCYANURATE FOAM FOR ULTRA-LOW-TEMPERATURE INSULATION OF PIPE, THE PROCESS FOR PRODUCING IT, AND INSULATING MATERIAL BY USING IT}POLYISOCYANURATE FOAM FOR ULTRA-LOW-TEMPERATURE INSULATION OF PIPE, THE PROCESS FOR PRODUCING IT, AND INSULATING MATERIAL BY USING IT}

본 발명은 발포제로서 물이나 HFC류를 사용한 파이프 보냉용 폴리우레탄 폼에 관한 것으로서, 초저온에서도 뛰어난 단열성과 기계적 특성을 나타낼뿐만 아니라 난연선이 강화된 경질 폴리우레탄 폼 및 단열재에 관한 것이다.The present invention relates to a polyurethane foam for pipe cold insulation using water or HFCs as a foaming agent, and to a rigid polyurethane foam and a heat insulator not only exhibiting excellent thermal insulation and mechanical properties even at ultra low temperatures, but also having reinforced flame retardant wires.

최근 청정에너지로 각광 받고 있는 LNG는 그 특성상 초저온 상태에서 저장 및 운송되기 때문에, 운송도중 손실을 최소화하기 위해 LNG저정탱크 및 운송매체인 파이프도 단열이 이루어져야 한다. 특히, LNG 운송용 파이프라인에는 -165℃ 이하의 초저온 물질이 흐르기 때문에, LNG 운송용 파이프의 단열재는 초저온과 접촉되더라도 온도차에 의한 수축 및 팽창이 발생하지 않도록 선팽창계수가 매우 적은 물질이 보냉재로 사용되어야 한다.LNG, which has recently been spotlighted as clean energy, is stored and transported in ultra-low temperature conditions. Therefore, LNG storage tanks and pipes, which are transportation media, should be insulated to minimize losses during transportation. In particular, since the cryogenic material below -165 ° C flows in the LNG transportation pipeline, the material having a very low coefficient of linear expansion should be used as an insulator so that the insulation of the LNG transportation pipe does not contract or expand due to temperature difference even when it is in contact with the cryogenic temperature. .

또한, LNG는 근본적으로 가지고 있는 인화성으로 인하여 화재시 대형사고를 일으킬 수 있으므로, LNG 운송용 파이프라인의 단열 시공시에는 단열재로서 난연성을 가지는 재질을 선택하는 것이 필수적이다.In addition, since LNG may cause a large accident in the fire due to the inherent flammability, it is essential to select a material having flame retardancy as a heat insulating material when insulating the LNG transport pipeline.

상기와 같은 특성을 가진 것으로 종래에는 폴리우레탄 폼을 많이 사용하였다. 그 이유로는 폴리우레탄 폼은 단열성이 우수하고 가공이 용이할 뿐만 아니라, 초저온에서도 균열 및 수축이 발생되지 않아 알루미늄 호일, 아스팔트지 등의 초저온 파이프 보냉재용 면재로 사용되는 모든 재질에 대해 접착력이 우수하기 때문이다. 또한, 폴리우레탄 폼은 가공이 용이하여 LNG 인수기지에서 요구되는 모든 배관 치수대로 제작이 가능하여 작업성도 우수하다.In the prior art, many polyurethane foams were used. For this reason, polyurethane foam is not only excellent in heat insulation and easy to process, but also has excellent adhesion to all materials used as cryogenic pipe insulation materials such as aluminum foil and asphalt paper, as it does not generate cracks and shrinkage even at very low temperatures. Because. In addition, polyurethane foam is easy to process and can be manufactured according to all pipe dimensions required at LNG take-up base.

하지만, 종래에 사용하던 폴리우레탄 보냉재는 제조과정 중 발포제로서 CFC-11(트리클로로모노플루에르메탄) 또는 HCFC-141b(디클로로모노플루오르에탄)를 사용하였다. 상기 발포제는 오존층을 파괴하고 지구 온난화를 유발하는 물질로서 지구환경 보호를 위해 환경유해물질의 생산 및 사용을 규제하는 국제협약인 몬트리올 의정서에 의해 규제대상 물질로 1989년 규정되었다. 선진국의 경우 CFC-11은 이미 1995년에 사용 및 생산이 완전 금지되었고, HCFC-141b도 몬트리올 의정서 상으로는 2030년가지 사용가능한 것으로 되어 있으나 지구환경 보호를 위한 노력의 일환으로 유럽연합(EU), 미국 및 일본 등 선진국에서는 자체규정으로 HCFC-141b의 사용연한을 2003년으로 설정하고, 그 이후에는 이를 사용한 물질의 생산, 수출입 및 사용을 금하고 있다.However, conventional polyurethane coolant used CFC-11 (trichloro monofluoroethane) or HCFC-141b (dichloro monofluoroethane) as a blowing agent during the manufacturing process. The blowing agent was defined in 1989 under the Montreal Protocol, which is an international convention regulating the production and use of environmentally harmful substances to destroy the ozone layer and cause global warming. In developed countries, CFC-11 was already banned from use and production in 1995, and HCFC-141b will be available under the Montreal Protocol for 2030, but as part of efforts to protect the global environment, the EU and the US In developed countries such as Japan and Japan, the regulations on the use of HCFC-141b are set to 2003 in their own regulations, after which the production, import, export and use of the substances are prohibited.

따라서, 최근에는 CFC-11나 HCFC-141b를 대체할 발포제로서 HFC(하이드로플루오르카본)류나 싸이크로펜탄 또는 물 등이 각광을 받고 있다. 그러나, 이들 대체 발포제는 기본적으로 발포제 자체의 단열성이 종래의 CFC-11나 HCFC-141b에 비해 떨어진다. 즉, 이 발포제로 폴리우레탄을 성형하면 기계적 강도가 약해져 저온하에서 수축이 심하게 발생하거나, 면재와의 접착력이 열악해지고 부스러지기 쉬워 제품 제조자체가 어려워질뿐만 아니라 난연성이 떨어지는 등 기존 발포제를 사용한 폴리우레탄폼에 비해 물성이 떨어진다.Therefore, HFCs (hydrofluorocarbons), cyclopentane, water, and the like have recently been in the spotlight as blowing agents to replace CFC-11 and HCFC-141b. However, these alternative blowing agents are basically inferior to the thermal insulation of the blowing agent itself compared to conventional CFC-11 or HCFC-141b. In other words, when the polyurethane is molded with this foaming agent, the mechanical strength becomes weak, causing severe shrinkage at low temperatures, poor adhesion to the face material, and brittleness. Physical properties are inferior to foam.

예를 들어, 본 출원인이 1998년에 출원한 대한민국특허등록 제2783654호 "폴리이소시아누레이트 폼"을 살펴보면, 폼 제조공정에 있어서 발포제를 상기의 대체 발포제를 사용했을 경우 원액의 점도가 높아져 제품 성형성이 떨어지거나, 내부 발포율이 커져 크랙이 발생하였다. 또한, 단열성이 종래보다 떨어져서 사용시 단열재의 두께를 증가시켜야 하는 문제점 등이 발생하였다.For example, referring to Korean Patent Registration No. 2783654 "Polyisocyanurate Foam" filed in 1998 by the present applicant, when the foaming agent is used as the foaming agent in the foam manufacturing process, the viscosity of the undiluted solution is increased. Cracking occurred due to poor properties or increased internal foaming rate. In addition, there is a problem that the thickness of the heat insulating material to increase when using the heat insulation is worse than the conventional.

본 발명은 상기와 같은 문제점을 해결하기 위한 창안된 것으로서, 발포제로서 물이나 HFC류를 사용하면서도 종래의 발포재를 사용한 기존의 폴리우레탄 폼과 같이 단열성이 우수하고 가공이 용이하며, 초저온하에서도 균열 및 수축이 발생하지 않고, 치수안정성 및 난연성이 좋아 각종 면재와 접착력이 우수한 초저온 파이프 보냉용 폴리우레탄 폼을 제공하는 데 그 목적이 있다.The present invention has been devised to solve the above problems, using water or HFC as a foaming agent, but excellent thermal insulation and easy processing, such as conventional polyurethane foam using a conventional foam material, cracking even at very low temperatures And it does not shrink, the dimensional stability and flame retardancy is good to provide a cryogenic polyurethane foam for cryogenic pipe excellent excellent in various face materials and adhesive strength.

상기와 같은 목적을 달성하기 위하여 본 발명에 따른 초저온 파이프 보냉용 폴리우레탄 폼 및 그것을 이용한 단열재는 발포제, 반응촉매 및 기타 첨가제의 존재하에서 폴리올 성분과 이소시아네이트 성분을 반응시킴으로서 생성되는 폴리우레탄 폼에 있어서, 상기 폴리올 성분은 (a)솔비톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 40 ~ 60중량% (b)무스프탈산에 알콜을 중합하여얻어지는 폴리올 20 ~ 40중량% (c)글리콜에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량% (d)펜타에리트리톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량%를 포함하는 혼합 폴리올 조성물이고, 상기 이소시아네이트 성분은 관능기가 2.6 ~ 3.0인 폴리머릭MDI인 것을 포함한다.In the polyurethane foam for cryogenic pipe insulation according to the present invention and the heat insulating material using the same according to the present invention for achieving the above object, in the polyurethane foam produced by reacting a polyol component and an isocyanate component in the presence of a blowing agent, a reaction catalyst and other additives, The polyol component is (a) 40 to 60% by weight of polyol obtained by adding propylene oxide or ethylene oxide to sorbitol (b) 20 to 40% by weight of polyol obtained by polymerizing alcohol to phthalic acid (c) propylene oxide or ethylene to glycol 10-30 weight% of polyols obtained by adding an oxide (d) It is a mixed polyol composition containing 10-30 weight% of polyols obtained by adding a propylene oxide and ethylene oxide to pentaerythritol, The said isocyanate component is 2.6-3.0 functional groups. Phosphorus polymeric MDI.

바람직하게, 상기 혼합 폴리올 조성물의 평균 OH값은 400 ~ 500이고, 상기 이소시아네이트 성분의 평균 NCO%는 29 ~ 32인 것을 포함한다.Preferably, the average OH value of the mixed polyol composition is 400 to 500, and the average NCO% of the isocyanate component includes 29 to 32.

또한, 상기 폴리올 성분의 OH에 대한 상기 이소시아네이트 성분의 NCO 비인 NCO/OH는 1.0 ~ 1.5인 것을 포함하는 것이 바람직하다.In addition, it is preferable that NCO / OH which is NCO ratio of the said isocyanate component with respect to OH of the said polyol component contains 1.0-1.5.

또한, 바람직하게 상기 발포제는 폴리올 성분 100중량부에 대해 물 2.0 ~ 5.0중량부를 사용하거나, 폴리올 성분 100중량부에 대해 물 0.5 ~ 1.5중량부와 HFC-365mfc를 15 ~ 30중량부 사용하는 것을 포함한다.In addition, the blowing agent preferably includes using 2.0 to 5.0 parts by weight of water based on 100 parts by weight of polyol component, or using 0.5 to 1.5 parts by weight of water and 15 to 30 parts by weight of HFC-365mfc based on 100 parts by weight of polyol component. do.

바람직하게, 본 발명의 폴리우레탄 폼은 첨가제로서 강도보강 및 경화시간을 단축시키기 위한 가교제와 난연성을 보강하기 위한 난연제를 포함한다.Preferably, the polyurethane foam of the present invention as a additive includes a crosslinking agent for shortening the strength reinforcement and curing time and a flame retardant for reinforcing the flame retardancy.

또한, 본 발명은 상기 폴리우레탄 폼을 사용하여 제조되는 단열재 및 LNG 운송용 파이프를 포함하는 것이 바람직하다..In addition, the present invention preferably comprises a heat insulating material and a pipe for LNG transportation using the polyurethane foam.

이하에서는 본 발명에 따른 폴리우레탄 폼을 제조하기 위한 조성을 살펴본다. 좀 더 자세히 말하면, 2개 이상의 히드록실기를 갖고 있는 분자량 250 - 650의 폴리올 성분과, 적어도 2개 이상의 이소시아네이트기를 갖는 폴리이소시아네트 성분과 발포제, 촉매 및 기타 첨가제의 혼합물을 반응시킴으로써 일반적인 경질 폴리우레탄 폼의 특징인 우수한 단열성을 유지하면서 -165℃ 이하의 초저온에서도 고강도와 우수한 저온 치수안정성을 가지며 특히 난연성이 강화된 경질 폴리우레탄 폼을 제조한다.Hereinafter, look at the composition for producing a polyurethane foam according to the present invention. More specifically, it is generally hard polyurethane by reacting a polyol component having a molecular weight of 250 to 650 having at least two hydroxyl groups with a mixture of a polyisocyanate component having at least two isocyanate groups with a blowing agent, a catalyst and other additives. While maintaining excellent thermal insulation, which is a characteristic of the foam, a rigid polyurethane foam having high strength and excellent low temperature dimensional stability even at extremely low temperatures of -165 ° C. and lowered flame retardancy is prepared.

특히, 본 발명의 폴리우레탄 폼 조성물은 관능기 2.5 이상의 폴리머릭MDI 100중량부에 대하여 관능기 2 이상의 폴리올을 30 ~ 50중량부, 반응촉매 0.2 ~ 1.0중량부, 발포제 5 ~ 15중량부 기타 첨가제 5 ~ 15중량부를 배합하며, 바람직하게 상기 폴리올 성분은 (a)솔비톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 40 ~ 60중량% (b)무스프탈산에 알콜을 중합하여 얻어지는 폴리올 20 ~ 40중량% (c)글리콜에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량% (d)펜타에리트리톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량%를 포함하는 혼합 폴리올 조성물이다. 아울러, 상기 이소시아네이트 성분은 관능기가 2.6 ~ 3.0인 폴리머릭MDI인 것이 바람직하다.In particular, the polyurethane foam composition of the present invention is 30 to 50 parts by weight of the polyol or more of the functional group 2 or more with respect to 100 parts by weight of the polymeric MDI of 2.5 or more functional groups, 0.2 to 1.0 parts by weight of the reaction catalyst, 5 to 15 parts by weight of the blowing agent and other additives 5 to 15 parts by weight of the polyol component, preferably the polyol component (a) 40 to 60% by weight of a polyol obtained by adding propylene oxide or ethylene oxide (b) 20 to 40% by weight of a polyol obtained by polymerizing alcohol to phthalic acid ( c) 10-30 weight% of polyols obtained by adding a propylene oxide and ethylene oxide to glycol (d) It is a mixed polyol composition containing 10-30 weight% of polyols obtained by adding a propylene oxide and ethylene oxide to pentaerythritol. In addition, the isocyanate component is preferably a polymeric MDI having a functional group of 2.6 to 3.0.

상기 혼합 폴리올 조성물에 있어서 솔비톨 성분은 초저온 치수안정성, 폼의 기계적강도의 향상에 효과가 있으며, 무스프탈산 성분은 열전도도의 개선 및 폼 기포의 균일한 형성에 기여한다. 또한, 글리콜 성분은 원액의 점도 강하 효과가 우수하고 폼형성 중 유동성 및 접착력을 증대시키는데 기여하며, 펜타에리트리톨은 성분은 원액의 흐름성 및 기계적 강도를 향상시킨다.In the mixed polyol composition, the sorbitol component is effective in improving the cryogenic dimensional stability and the mechanical strength of the foam, and the phthalic acid component contributes to the improvement of the thermal conductivity and the uniform formation of foam bubbles. In addition, the glycol component is excellent in the viscosity lowering effect of the stock solution and contributes to increase the fluidity and adhesion during foaming, pentaerythritol component improves the flowability and mechanical strength of the stock solution.

상기와 같은 특성을 가지는 혼합 폴리올 성분의 평균 0H값은 400 - 500인 것이 안정된 경질 폴리우레탄 폼을 제조하는데 바람직하다. 상기 폴리올 조성물의 평균 OH값이 400 이하이면 초저온 치수안정성과 제품의 기계적강도가 떨어지고, 평균 OH값이 500을 초과하면 깨어짐과 열전도도가 증가되어, 상술한 적정범위를 벗어난 평균 OH값은 제품의 불량원인으로 되어 생산성이 저하된다.The average 0H value of the mixed polyol component having the above characteristics is preferably 400 to 500 for producing a stable rigid polyurethane foam. If the average OH value of the polyol composition is 400 or less, the cryogenic dimensional stability and the mechanical strength of the product is lowered, and if the average OH value is more than 500, the cracking and thermal conductivity are increased, and the average OH value outside the above-mentioned proper range is The cause of the defect is a decrease in productivity.

한편, 상기 혼합 폴리올 조성물과 반응시킬 폴리머릭MDI(폴리메틸렌 폴리페닐디이소시아네이트) 성분은 관능기수 2.6 ~ 3.0인 것을 사용하며, 이때의 폴리머릭MDI 성분은 평균 NCO%가 29% - 32%인 것이 바람직하다. 그 이유로는 상기 폴리머릭MDI 성분은 기계적 강도 향상에 유효하지만, 폴리머릭MDI 성분의 NCO%가 29% 이하이면 저온치수 안정성이 떨어지고, 32% 이상이면 유동성이 저하되기 때문이다.Meanwhile, the polymeric MDI (polymethylene polyphenyldiisocyanate) component to be reacted with the mixed polyol composition uses a functional group of 2.6 to 3.0, wherein the polymeric MDI component has an average NCO% of 29% to 32%. desirable. The reason is that the polymeric MDI component is effective for improving mechanical strength, but if the NCO% of the polymeric MDI component is 29% or less, the low temperature dimensional stability is lowered, and if it is 32% or more, fluidity is lowered.

또한, 폴리머릭MDI 성분과 혼합 폴리올 성분의 반응비율은 폴리머릭MDI 성분의 NCO와 폴리올의 OH의 비인 NCO/OH가 1.0 ~ 1.5인 것이 바람직하며, 더욱 바람직하게는 1.1 ~ 1.3이다. NCO/OH의 비가 1.0 이하가 되면 폴리우레탄 폼이 약해져서 저온치수안정성이 저하되고 기계적 강도가 감소하며, NCO/0H의 비가 1.5을 초과하면 폼의 부스러짐 현상이 발생한다.The reaction ratio of the polymeric MDI component and the mixed polyol component is preferably NCO / OH, which is a ratio of NCO of the polymeric MDI component and OH of the polyol, of 1.0 to 1.5, more preferably 1.1 to 1.3. When the ratio of NCO / OH is 1.0 or less, the polyurethane foam is weakened, so that low-temperature dimensional stability is lowered and mechanical strength is reduced. When the ratio of NCO / 0H is more than 1.5, a foaming phenomenon occurs.

따라서, 상기 폴리올 성분 및 반응시킬 폴리머릭MDI 성분의 배합 비율이 상기 범위를 벗어나게 되면, 본 발명의 목적은 달성 할 수 없게 된다.Therefore, when the blending ratio of the polyol component and the polymeric MDI component to be reacted is outside the above range, the object of the present invention cannot be achieved.

본 발명에 따르면 폴리우레탄 폼은 상기와 같은 특수한 조성의 혼합 폴리올 성분과 폴리머릭MDI 성분을 기본원료로 해서 발포제, 반응촉매 및 기타 첨가제를 반응시킴으로써 얻을 수 있다.According to the present invention, a polyurethane foam can be obtained by reacting a blowing agent, a reaction catalyst and other additives using a mixed polyol component having a special composition as described above and a polymeric MDI component as a basic raw material.

일반적으로 폴리우레탄 폼에 사용되는 발포제로서는 물, 카르복실산, 플루오르 탄소계 발포제 또는 이산화탄소, 공기 같은 불활성 기체이다.Blowing agents generally used in polyurethane foams are water, carboxylic acids, fluorocarbon-based blowing agents or inert gases such as carbon dioxide and air.

본 발명에 따르면, 발포제로는 물 또는 플루오르 탄소계 발포제로서 HFC류를 사용한다. 물을 단독으로 사용할 경우에는 폴리올 성분 100중량부에 대해 2.0 ~ 5.0 중량부를 채용하며, 물과 HFC를 혼합사용할 경우에는 물 0.5 ~ 1.5중량부와 HFC 15 ~ 30중량부가 바람직하다. 여기에서, 발포제로서 물을 단독으로 사용할 경우 물 사용량이 2.0 이하 이면 원하는 밀도가 나오지 않으며, 5.0이상이면 폴리우레탄 폼의 단열성이 떨어지고 폼이 부스러지면서 면재와의 접착력도 약해진다.According to the present invention, as the blowing agent, HFCs as water or fluorocarbon blowing agents are used. use. When water is used alone, 2.0 to 5.0 parts by weight based on 100 parts by weight of the polyol component is employed, and when water and HFC are mixed, 0.5 to 1.5 parts by weight of water and 15 to 30 parts by weight of HFC are preferable. In this case, when water is used alone as the blowing agent, the desired density does not come out when the water usage is 2.0 or less, and when the water content is 5.0 or more, the insulation of the polyurethane foam is inferior, and the foam is brittle, and the adhesion to the face member is also weakened.

본 발명에 사용되는 반응촉매는 폴리우레탄 폼을 얻기위해 사용할 수 있는 전형적인 촉매로서, 예를들면 트리에틸아민, 트리프로필아민, 트리이소프로판올아민, 트리부틸아민, 트리옥틸아민, 헥사데실디메틸아민, N-메틸몰포린, N-에틸몰포린, N-옥타데실몰포린, 모노에탄올아민, 디에탄올아민, 디메틸에탄올아민, 트리에탄올아민, N-메틸디에탄올아민, N,N-디메틸에탄올아민, 디에틸렌트리아민, N,N,N',N'-테트라메틸부탄디아민, N,N,N',N'-테트라메틸-1,3-부탄디아민, N,N,N',N'-테트라에틸헥사메틸렌디아민, 비스[2-(N,N-디메틸아미노)에틸]에테르, N,N'-디메틸벤질아민, N,N-디메틸시클로헥실아민, N,N,N',N',n'-펜타메틸디에틸렌트리아민, 트리에틸렌디아민, 트리에틸렌디아민의 개미산 및 기타염, 제 1 및 제 2 아민의 아미노기와 옥시알킬렌부가물, N,N-디알킬피페라진류와 같은 아자고리화합물, 여러 가지의 N,N',N'-트리알킬아미노알킬헥사히드로트리아진류의 β-아미노카르보닐촉매 등의 아민계 촉매이다.Reaction catalysts used in the present invention are typical catalysts that can be used to obtain polyurethane foams, for example triethylamine, tripropylamine, triisopropanolamine, tributylamine, trioctylamine, hexadecyldimethylamine, N Methyl morpholine, N-ethyl morpholine, N-octadecyl morpholine, monoethanolamine, diethanolamine, dimethylethanolamine, triethanolamine, N-methyl diethanolamine, N, N-dimethylethanolamine, diethylene Triamine, N, N, N ', N'-tetramethylbutanediamine, N, N, N', N'-tetramethyl-1,3-butanediamine, N, N, N ', N'-tetraethyl Hexamethylenediamine, bis [2- (N, N-dimethylamino) ethyl] ether, N, N'-dimethylbenzylamine, N, N-dimethylcyclohexylamine, N, N, N ', N', n ' -Pentamethyldiethylenetriamine, triethylenediamine, formic acid and other salts of triethylenediamine, amino groups and oxyalkylene adducts of the first and second amines, N, N-dialkylpipera Acids and the like aza ring compounds, a number of the N, N ', N'- trialkyl-amino-alkyl-hexahydro-triazol jinryu of β- aminocarbonyl-amine-containing catalyst of the catalyst and the like.

이들 촉매는 단독 또는 혼합해서 사용하고, 그 사용량은 폴리올 성분 100중량부에 대해 0.3 ~ 1.5중량부가 바람직하며, 보다 바람직하게는 0.5 ~ 1.2 중량부이다.These catalysts are used individually or in mixture, The usage-amount is 0.3-1.5 weight part with respect to 100 weight part of polyol components, More preferably, it is 0.5-1.2 weight part.

아울러, 본 발명에 사용되는 계면 활성제로서는 폴리우레탄 폼 제조에 일반적으로 사용되는 유기 실리콘계 화합물로서 폴리알킬렌글리콜 실리콘 공중합체를 사용한다. 이때 사용되는 계면 활성제의 양은 폴리올 성분 100중량부에 대해 1.0 ~ 4.0중량부가 바람직하며, 보다 바람직하게는 1.5 ~ 3.0중량부이다.In addition, as the surfactant used in the present invention, a polyalkylene glycol silicone copolymer is used as the organosilicon compound generally used in polyurethane foam production. At this time, the amount of the surfactant used is preferably 1.0 to 4.0 parts by weight, more preferably 1.5 to 3.0 parts by weight based on 100 parts by weight of the polyol component.

또한, 본 발명의 폴리우레탄 폼에 있어서 폴리우레탄 폼의 강도 보강 및 경화시간 단축을 위해서 가교제를 사용할 수 있다. 가교제로서는 일반적으로 폴리우레탄 폼의 제조에 사용되고 있는 공지의 가교제를 사용한다. 예를 들면, 에틸렌글리콜, 디에틸렌글리콜, 폴리에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜, 글리세롤, 부탄디올 등의 화합물을 들 수 있으며, 이들은 단독 또는 2종 이상을 혼합해서 사용할 수도 있다. 특히, 바람직한 가교제는 폴리에틸렌글리콜 또는 부탄디올이며, 그 사용량은 폴리올 성분 100중량부에 대해 2 ~ 15중량부가 바람직하며, 보다 바람직하게는 3 ~ 5중량부이다.In addition, in the polyurethane foam of the present invention, a crosslinking agent may be used to reinforce the strength of the polyurethane foam and to shorten the curing time. Generally as a crosslinking agent, the well-known crosslinking agent used for manufacture of a polyurethane foam is used. For example, compounds, such as ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, glycerol, butanediol, are mentioned, These can also be used individually or in mixture of 2 or more types. In particular, a preferable crosslinking agent is polyethylene glycol or butanediol, and the usage-amount is 2-15 weight part with respect to 100 weight part of polyol components, More preferably, it is 3-5 weight part.

또한, 본 발명의 경질 폴리우레탄 폼의 난연성을 강화하기 위해서 난연제를 첨가할 수 있다. 본 발명에 사용되는 난연제로서는 예를 들면, 트리스(2-틀로로에틸)포스페이트, 트리스(클로로프로필)포스페이트, 트리스(디프로포프로필)포스페이트 등이 있다. 난연제를 사용할 경우 그 사용량은 폴리올 성분 100중량부에 대해 10 ~ 20중량부가 바람직하며, 보다 바람직하게는 5 ~ 15중량부이다.In addition, a flame retardant may be added to enhance the flame retardancy of the rigid polyurethane foam of the present invention. Examples of the flame retardant used in the present invention include tris (2-chloroethyl) phosphate, tris (chloropropyl) phosphate, tris (dipropopropyl) phosphate, and the like. When the flame retardant is used, the amount thereof is preferably 10 to 20 parts by weight, more preferably 5 to 15 parts by weight based on 100 parts by weight of the polyol component.

기타 우레탄 화학으로 상용되는 충전제, 산화방지제, 자외선흡수제 등의 안정제 및 착색제 등을 필요에 따라 첨가할 수 있다.Other fillers commonly used in urethane chemistry, stabilizers such as antioxidants, ultraviolet absorbers and the like can be added as necessary.

이하, 본 발명을 비교예와 실시예를 가지고 상세하게 설명한다. 아래의 실시예와 비교예에서 특별히 설명하지 않는 한 '부' 및 '%'는 중량에 의한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail with a comparative example and an Example. Unless otherwise specified in the following Examples and Comparative Examples, "part" and "%" are by weight.

[비교예 1 및 2][Comparative Examples 1 and 2]

본 비교예에서는 평균 OH값이 370 - 460을 갖는 폴리올 성분 100부(솔비톨+PO/EO 25중량%, 무수프탈산+OH 40중량%, 글리콜+PO/EO 15 ~ 20중량%, 펜타에리트리톨+PO/EO 15 ~ 20중량%로 이루어지는 혼합 폴리올 성분), 발포제로서 물 2.1 ~ 2.5부를 사용하였다. 예컨대, 비교예 1에서는 밀도를 45Kg/m3정도로 조절하기 위해 물을 2.5부 사용하였고, 비교예 2는 밀도를 55Kg/m3정도로 조절하기 위해 물을 2.1부 사용하였다. 또한, 비교예 1에서는 평균 NCO%가 29 - 32인 폴리머릭MDI를 175부 사용하고, 비교예 2에서는 168부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.In this comparative example, 100 parts of a polyol component having an average OH value of 370-460 (25 wt% of sorbitol + PO / EO, 40 wt% of phthalic anhydride + OH, 15-20 wt% of glycol + PO / EO, pentaerythritol + 2.1-2.5 parts of water was used as the mixed polyol component which consists of 15-20 weight% of PO / EO) and a blowing agent. For example, in Comparative Example 1, 2.5 parts of water was used to adjust the density to about 45 Kg / m 3 , and Comparative Example 2 used 2.1 parts of water to adjust the density to about 55 Kg / m 3 . In Comparative Example 1, 175 parts of polymeric MDI having an average NCO% of 29 to 32 were used, and in Comparative Example 2, foaming and curing were performed to prepare a sample of polyurethane foam using 168 parts. Table 1 shows.

[비교예 3 및 4][Comparative Examples 3 and 4]

본 비교예에서는 평균 OH값이 370 - 460을 갖는 폴리올 성분 100부(솔비톨+PO/EO 25중량%, 무수프탈산+OH 30중량%, 글리콜+PO/EO 10 ~ 15중량%, 펜타에리트리톨+PO/EO 30 ~ 35중량%로 이루어지는 혼합 폴리올 성분), 발포제로서물 1.0부와 HCFC-141b를 사용하였다. 여기에 비교예 3에서는 밀도를 45Kg/m3정도로 조절하기 위해 HCFC-141b 20부와 물 0.8부를 사용하였고, 비교예 4는 밀도를 55Kg/m3정도로 조절하기 위해 HCFC-141b 16부와 물 0.7부를 사용하였다. 또한, 비교예 3에서는 평균 NCO%가 29 - 32인 폴리머릭MDI를 148부 사용하고, 비교예 4에서는 147부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.In this comparative example, 100 parts of a polyol component having an average OH value of 370-460 (25 wt% of sorbitol + PO / EO, 30 wt% of phthalic anhydride + OH, 10-15 wt% of glycol + PO / EO, pentaerythritol + Mixed polyol component consisting of 30 to 35% by weight of PO / EO) and 1.0 part of water and HCFC-141b were used as the blowing agent. In Comparative Example 3, 20 parts of HCFC-141b and 0.8 parts of water were used to adjust the density to about 45 Kg / m 3 , and in Comparative Example 4, 16 parts of HCFC-141b and 0.7 parts of water were adjusted to adjust the density to 55 Kg / m 3. Wealth was used. In Comparative Example 3, 148 parts of polymeric MDI having an average NCO% of 29 to 32 were used, and in Comparative Example 4, 147 parts of foaming and curing were performed to prepare a sample of the polyurethane foam. Table 1 shows.

[실시예 1]Example 1

본 실시예 1에서는 평균 OH값이 400 ~ 500을 갖는 폴리올 성분 100부(솔비톨+PO/EO 40중량%, 무수프탈산+OH 27중량%, 글리콜+PO/EO 15중량%, 펜타에리트리톨+PO/EO 12중량%로 이루어지는 혼합 폴리올 성분과 가교제 3중량%)와, 발포제로서 물 2.5부를 사용하고, 여기에 평균 NC0%가 29 ~ 32인 폴리머릭MDI 175부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.In Example 1, 100 parts of a polyol component having an average OH value of 400 to 500 (40 wt% of sorbitol + PO / EO, 27 wt% of phthalic anhydride + OH, 15 wt% of glycol + PO / EO, and pentaerythritol + PO / Polyether component consisting of 12% by weight of EO and 3% by weight of a crosslinking agent) and 2.5 parts of water as a blowing agent, and a sample of polyurethane foam was prepared using 175 parts of polymeric MDI having an average NC0% of 29 to 32. In order to perform foaming and curing, the results are shown in Table 1.

[실시예 2]Example 2

본 실시예 2에서는 평균 OH값이 400 ~ 500을 갖는 폴리올 성분 100부(솔비톨+PO/EO 40중량%, 무수프탈산+OH 27중량%, 글리콜+PO/EO 10중량%, 펜타에리트리톨+PO/EO 20중량%로 이루어지는 혼합 폴리올 성분과 가교제 3중량%)와, 발포제로서 물 2.1부를 사용하고, 여기에 평균 NC0%가 29 ~ 32인 폴리머릭MDI 168부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.In Example 2, 100 parts of a polyol component having an average OH value of 400 to 500 (40 wt% of sorbitol + PO / EO, 27 wt% of phthalic anhydride + OH, 10 wt% of glycol + PO / EO, and pentaerythritol + PO / Polyethylene component consisting of 20% by weight and 3% by weight of a crosslinking agent) and 2.1 parts of water as a blowing agent, and a sample of polyurethane foam was prepared using 168 parts of polymeric MDI having an average NC0% of 29 to 32. In order to perform foaming and curing, the results are shown in Table 1.

[실시예 3]Example 3

본 실시예 3에서는 평균 OH값이 400 ~ 500을 갖는 폴리올 성분 100부(솔비톨+PO/EO 30중량%, 무수프탈산+OH 21중량%, 글리콜+PO/EO 15중량%, 펜타에리트리톨+PO/EO 30중량%로 이루어지는 혼합 폴리올 성분과 가교제 4중량%)와, 발포제로서 물 0.8부와 HFC-365mfc 20부를 사용하고, 여기에 평균 NC0%가 29 ~ 32인 폴리머릭MDI 148부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.In Example 3, 100 parts of a polyol component having an average OH value of 400 to 500 (30 wt% of sorbitol + PO / EO, 21 wt% of phthalic anhydride + OH, 15 wt% of glycol + PO / EO, and pentaerythritol + PO / EO 30% by weight of mixed polyol component and 4% by weight of crosslinking agent) and 0.8 parts of water and 20 parts of HFC-365mfc as blowing agent, and 148 parts of polymeric MDI having an average NC0% of 29 to 32. Foaming and curing were carried out to prepare a sample of urethane foam and the results are shown in Table 1.

[실시예 4]Example 4

표 1에 도시된 바와 같이, 평균 OH값이 400 ~ 500을 갖는 폴리올 성분 100부(솔비톨+PO/EO 40중량%, 무수프탈산+OH 21중량%, 글리콜+PO/EO 15중량%, 펜타에리트리톨+PO/EO 20중량%로 이루어지는 혼합 폴리올 성분과 가교제 4중량%)와, 발포제로서 물 0.7부와 HFC-365mfc 16부를 사용하고, 여기에 평균 NC0%가 29 ~ 32인 폴리머릭MDI 147부를 사용하여 폴리우레탄 폼의 샘플을 제조하기 위해 발포와 경화를 실행하였으며, 그 결과를 표 1에 나타내었다.As shown in Table 1, 100 parts of a polyol component having an average OH value of 400 to 500 (40 wt% of sorbitol + PO / EO, 21 wt% of phthalic anhydride + OH, 15 wt% of glycol + PO / EO, pentaeryte Mixed polyol component consisting of 20% by weight of lithol + PO / EO and 4% by weight of crosslinking agent), and 0.7 parts of water and 16 parts of HFC-365mfc as foaming agents, and 147 parts of polymeric MDI having an average NC0% of 29 to 32 Foaming and curing were carried out to prepare samples of polyurethane foam using the results shown in Table 1.

아울러, 상기 비교예와 실시예의 비교결과는 표 1의 '물성'의 항에 나타나있으며, 그 물성은 아래에 설명된 바와 같이 정의된다.In addition, the comparative results of the comparative example and the embodiment are shown in the section of 'physical properties' of Table 1, the physical properties are defined as described below.

1. 자유발포밀도: 내부치수 200×200×200mm인 합판으로된 개방형 박스에 주입 발포된 폼의 발포밀도(kg/㎥)1.Free foam density: Foam density of foam foamed in injection foam into open box of plywood with internal dimension 200 × 200 × 200mm (kg / ㎥)

2. 제품밀도: 실제로 생산된 제품의 발포밀도(kg/㎥)2. Density of product: Foam density of actual product (kg / ㎥)

3. 열전도율: 엔터사의 열전도율 측정기(모델번호 2031)을 사용하여 측정(ASTM C-518에 따름)3. Thermal Conductivity: Measured using the Enter Thermal Conductivity Meter (Model No. 2031) (according to ASTM C-518).

4. 압축강도: 상온 및 초저온에서 로이드사의 만능시험기 사용하여 측정(ASTM D-1621에 따름)4. Compressive strength: measured using Lloyd's universal testing machine at room temperature and ultra low temperature (according to ASTM D-1621)

5. 인장강도: 상온 및 초저온에서 로이드사의 만능시험기 사용하여 측정(ASTM D-1623에 따름)5. Tensile strength: measured using Lloyd's universal testing machine at room temperature and ultra low temperature (according to ASTM D-1623)

6. 독립기포율 : ASTM D-2856에 기준함6. Independent bubble ratio: Based on ASTM D-2856

7. 흡습성: KSM 3809에 기준함7. Hygroscopicity: Based on KSM 3809

8. 저온충격시험: 액화질소에 1시간 담근후 균열발생 여부 확인(-195℃)8. Low temperature impact test: Check for crack occurrence after immersion in liquid nitrogen for 1 hour (-195 ℃)

9. 난연성: JIA AS-9511에 기준함9. Flame Retardant: Based on JIA AS-9511

구분division 성분ingredient 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 폴리올Polyol 솔비톨+PO/EOSorbitol + PO / EO 2525 2525 2525 2525 4040 4040 3030 4040 무수프탈산+OHPhthalic anhydride + OH 4040 4040 3030 3030 2727 2727 2121 2121 글리콜+PO/EOGlycol + PO / EO 2020 1515 1515 1010 1515 1010 1515 1515 펜타에리트리톨+PO/EOPentaerythritol + PO / EO 1515 2020 3030 3535 1212 2020 3030 2020 가교제Crosslinking agent -- -- -- -- 33 33 44 44 발포제blowing agent HFC-365mfcHFC-365mfc -- -- 2020 1616 -- -- 2020 1616 water 2.52.5 2.12.1 0.80.8 0.70.7 2.52.5 2.12.1 0.80.8 0.70.7 계면활성제Surfactants 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 촉매catalyst 0.80.8 0.70.7 1.21.2 1.11.1 0.80.8 0.70.7 1.21.2 1.11.1 난연제Flame retardant 1010 1010 1010 1010 1010 1010 1010 1010 폴리머릭MDIPolymeric MDI 175175 168168 148148 147147 175175 168168 148148 147147 폼물성Foam property 자유발포밀도(kg/m3)Free Foam Density (kg / m 3 ) 4141 5454 4545 5555 4343 5555 4444 5454 제품밀도(kg/m3)Product Density (kg / m 3 ) 4343 5555 4646 5757 4545 5656 4646 5656 열전도율(kcal/m·hr·℃)Thermal Conductivity (kcal / m · hr · ℃) 0.03100.0310 0.03200.0320 0.02900.0290 0.02950.0295 0.02000.0200 0.02000.0200 0.01700.0170 0.01720.0172 압축강도(kg/m3)Compressive strength (kg / m 3 ) 20℃20 ℃ 1.21.2 1.61.6 1.31.3 1.71.7 2.22.2 2.72.7 2.32.3 2.72.7 -170℃-170 ℃ 2.32.3 2.82.8 2.52.5 2.92.9 3.43.4 4.14.1 3.53.5 4.34.3 인장강도(kg/m3)Tensile strength (kg / m 3 ) 20℃20 ℃ 2.12.1 2.62.6 2.22.2 2.52.5 3.03.0 3.63.6 3.13.1 3.73.7 -170℃-170 ℃ 2.42.4 2.92.9 2.62.6 3.13.1 3.53.5 4.14.1 3.53.5 4.44.4 독립기포율(%)Independent Bubble Rate (%) 9292 9494 9393 9595 9494 9595 9494 9696 흡습성(g/100cm2)Hygroscopicity (g / 100cm 2 ) 1.51.5 1.41.4 1.71.7 1.31.3 1.11.1 1.01.0 1.21.2 1.11.1 저온 충격Low temperature shock crackcrack -- crackcrack -- No crackNo crack 난연성(연소거리 : mm연소시간 : sec)Flame retardant (Combustion distance: mm Burning time: sec) 45694569 32613261 52815281 40794079 30593059 28632863 47724772 36763676

여기서, PO: 프로필렌산화물, EO; 에틸렌산화물, 폴리머릭MDI: 폴리메틸렌 폴리페닐디이소시아네이트, HCFC-141b: 디클로로모노플루오르에탄이다.PO: propylene oxide, EO; Ethylene oxide, polymeric MDI: polymethylene polyphenyl diisocyanate, HCFC-141b: dichloromonofluoroethane.

상기와 같이 본 발명에 의해 얻어지는 폴리우레탄 폼은 밀도 40 ~ 60kg/㎥, 열전도율 0.02kcal/m·hr·℃이하이고, 독립 기포율 90% 이상이며, 압축강도가 상온 및 -170℃의 초저온에서 각각 2.2kg/㎠ 및 3.1kg/㎠ 이상이며, 인장강도가 상온및 초저온하에서 각각 2.7kg/㎠ 및 3.1kg/㎠ 이상의 특성을 가지는 것이 바람직하다. 특히, 본 발명의 폴리우레탄 폼의 난연성은 JIS A-9511의 규정에 의한 자기소화성을 가진다.As described above, the polyurethane foam obtained by the present invention has a density of 40 to 60 kg / m 3, a thermal conductivity of 0.02 kcal / m · hr · ° C. or less, an independent bubble ratio of 90% or more, and a compressive strength at room temperature and ultra low temperature of −170 ° C. It is preferably at least 2.2 kg / cm 2 and 3.1 kg / cm 2, and the tensile strength is preferably at least 2.7 kg / cm 2 and 3.1 kg / cm 2 at room temperature and ultra low temperature, respectively. In particular, the flame retardance of the polyurethane foam of the present invention has self-extinguishing according to the provisions of JIS A-9511.

상기 표 1을 참조해서 설명하면, 비교예 1내지 4는 발포제가 HCFC-141b일 때 적용되는 폴리올 조성에 대체 발포제인 물과 HFC-365mfc를 적용시켰을 때의 결과이다. 특히, 상기 비교예 1 및 비교예 3의 자유발포밀도는 약 45kg/㎥로 만족한 결과를 가지지만, 열전도율이 0.0310kcal/m·hr·℃ 이상의 높은 값을 가져 단열성이 좋지 않음을 알 수 있다. 또한, 상온과 초저온에 있어서 압축강도와 인장강도 등의 기계적 특성이 현저히 저하되어 초저온용 보냉재로 사용될 때 크랙발생 등의 문제가 발생할 수 있다.Referring to Table 1, Comparative Examples 1 to 4 is a result of applying the water and HFC-365mfc, which is an alternative blowing agent to the polyol composition applied when the blowing agent is HCFC-141b. In particular, the free foam density of Comparative Examples 1 and 3 has a satisfactory result of about 45kg / ㎥, it can be seen that the thermal conductivity is not good because the thermal conductivity is higher than 0.0310kcal / m · hr · ℃. . In addition, the mechanical properties such as compressive strength and tensile strength are significantly reduced at room temperature and ultra low temperature, such that problems such as cracking may occur when used as a cryogenic insulation for cryogenic temperatures.

또한, 비교예 2 및 비교예 4는 상기 비교예 1, 3과 유사한 폴리올 조성을 가지지만, 폴리우레탄의 밀도를 높이기 위해 발포제의 조성을 변화시켰다. 현재 일반적으로 통용되는 폴리우레탄 스펙의 밀도는 40 ~ 60kg/㎥이기 때문에, 여기에 맞추기 위한 발포제의 조성은 물 만 사용될 경우에는 폴리올 성분 100중량부에 대해 물 2.0 ~ 5.0중량부를 사용하는 것이 바람직하며, 물과 HFC-365mfc를 혼합 사용할 경우에는 폴리올 성분 100중량부에 대해 물 0.5 ~ 1.5중량부와 HFC-365mfc 15 ~ 30중량부 사용하는 것이 바람직하다. 상기의 값을 벗어나게 되면 요구되는 밀도의 규격을 벗어나게 된다. 상기와 같이 발포제를 혼합하여 비교예 2와 비교예 4의 조성으로 폴리우레탄 폼을 제조한 경우에는 상기 비교예 1, 3에 비해 물성이 좋아지기는 했지만, 요구되는 물성을 여전히 만족하지 못하기 때문에 초저온 보냉재로 사용하기에는 적합하지 않다.In addition, Comparative Example 2 and Comparative Example 4 has a polyol composition similar to Comparative Examples 1 and 3, but the composition of the blowing agent was changed to increase the density of the polyurethane. Since the density of polyurethane specifications currently commonly used is 40 to 60 kg / m 3, the composition of the foaming agent to suit this is preferably 2.0 to 5.0 parts by weight of water based on 100 parts by weight of polyol component when only water is used. When mixed with water and HFC-365mfc, it is preferable to use 0.5 to 1.5 parts by weight of water and 15 to 30 parts by weight of HFC-365mfc based on 100 parts by weight of the polyol component. Deviation from the above values deviates from the specification of the required density. When the polyurethane foam was prepared in the composition of Comparative Example 2 and Comparative Example 4 by mixing the foaming agent as described above, although the physical properties are improved compared to the Comparative Examples 1 and 3, the required physical properties are still not satisfied. Not suitable for use as cryogenic insulation.

한편, 실시예 1 내지 실시예 4의 경우에는 발포제로서 종래의 HCFC-141b를 사용하지 않고, 물 또는 차세대 발포재인 HFC-365mfc를 사용함에도 불구하고 대체로 우수한 성질을 가짐을 알 수 있다. 예켄대, 상온 및 초저온에서 인장강도가 각각 2.7kg/㎠ 및 3.1kg/㎠ 이상, 상온 및 초저온에서 압축강도가 각각 2.2kg/㎠ 및 3.1kg/㎠ 이상을 가져 요구되는 규격을 만족한다. 아울러, 폴리우레탄 폼의 중요한 특성 중 하나인 열전도율이 HCFC-141b와 유사하거나 크게 떨어지지 않아 초저온 보냉재로서 요구되는 규격을 만족하고 있다. 특히, 본 발명의 실시예에 따르면 -165℃ 이하의 초저온하에서 균열이 발생하지 않아 우수한 기계적 특성을 나타냄을 알 수 있다.On the other hand, in the case of Examples 1 to 4 it can be seen that it does not use the conventional HCFC-141b as a foaming agent, but generally has excellent properties despite using water or the next-generation foam HFC-365mfc. At Yenken, room temperature and ultra low temperature, the tensile strength is 2.7kg / cm 2 and 3.1kg / cm 2 or more, respectively, and the compressive strength at room temperature and ultra low temperature is 2.2kg / cm 2 and 3.1kg / cm 2 or more, respectively. In addition, the thermal conductivity, which is one of the important characteristics of the polyurethane foam, is similar to HCFC-141b and does not drop significantly, thereby satisfying the specification required as the cryogenic insulator. In particular, according to the embodiment of the present invention it can be seen that the crack does not occur under the ultra-low temperature below -165 ℃ exhibits excellent mechanical properties.

본 발명의 폴리우레탄 폼은 슬래브스톡(slabstock) 방식에 의해 제조된다. 상기 슬래브스톡 방식은 컨베이어 위에 폴리우레탄 조성물을 일정 비율로 혼합한 것을 토출 발포시키는 것으로서, 폼 형성시 외부 저항을 적게 받아 폼 내부구조가 균일하게 분포하게 된다. 상기와 같이 제조된 폴리우레탄 폼에 상,하 면재로서 합성수지필름, 종이, 아스팔트지, 금속판막 등의 유연성 제품을 사용하여 발포폼을 제조한다.The polyurethane foam of the present invention is produced by slabstock method. The slabstock method is to discharge and foam the mixture of the polyurethane composition in a predetermined ratio on the conveyor, the foam internal structure is uniformly distributed by receiving less external resistance when forming the foam. Foam foam is manufactured by using flexible products such as synthetic resin film, paper, asphalt paper, and metal film as upper and lower face materials on the polyurethane foam prepared as described above.

이렇게 경화된 폼은 원하는 크기의 블록폼으로 절단된 후 목적에 맞게 파이프커버, 엘보우, 파이프, 서포트 등의 형상을 가진 단열재로 가공된다.The cured foam is cut into block foam of a desired size and then processed into a heat insulating material having a shape of a pipe cover, an elbow, a pipe, a support, etc. according to the purpose.

이상과 같이, 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As mentioned above, although this invention was demonstrated by the limited Example, this invention is not limited by this and it is various in the range of equality of a common technical idea in the technical field to which this invention belongs, and a claim described below. Of course, modifications and variations are possible.

본 발명의 초저온 파이프 보냉용 폴리우레탄 폼 및 그것을 이용한 단열재에 따르면, 초저온하에서도 폴리우레탄 폼이 고유하게 가지는 우수한 단열성을 유지하면서 균열이 발생하지 않는 우수한 기계적 강도를 나타내며, 특히 뛰어난 난연성을 얻을 수 있다.According to the cryogenic pipe insulation polyurethane foam of the present invention and the heat insulating material using the same, it exhibits excellent mechanical strength without cracking while maintaining excellent heat insulation inherent in the polyurethane foam even under ultra low temperature, and particularly excellent flame retardancy can be obtained. .

Claims (7)

발포제, 반응촉매 및 기타 첨가제의 존재하에서 폴리올 성분과 이소시아네이트 성분을 반응시키는 것에 의해 생성되는 폴리우레탄 폼에 있어서,Polyurethane foams produced by reacting a polyol component with an isocyanate component in the presence of a blowing agent, reaction catalyst and other additives, 상기 폴리올 성분은 (a)솔비톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 40 ~ 60중량% (b)무스프탈산에 알콜을 중합하여 얻어지는 폴리올 20 ~ 40중량% (c)글리콜에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량% (d)펜타에리트리톨에 프로필렌 산화물이나 에틸렌 산화물을 부가해서 얻어지는 폴리올 10 ~ 30중량%를 포함하는 혼합 폴리올 조성물이고,The polyol component is (a) 40 to 60% by weight of polyol obtained by adding propylene oxide or ethylene oxide to sorbitol (b) 20 to 40% by weight of polyol obtained by polymerizing alcohol to phthalic acid (c) propylene oxide or ethylene 10-30 weight% of polyol obtained by adding an oxide (d) It is a mixed polyol composition containing 10-30 weight% of polyol obtained by adding a propylene oxide and ethylene oxide to pentaerythritol, 상기 이소시아네이트 성분은 관능기가 2.6 ~ 3.0인 폴리머릭MDI인 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.The isocyanate component is a cryogenic polyurethane foam for cold pipes, characterized in that the functional group is a polymeric MDI of 2.6 ~ 3.0. 제 1항에 있어서,The method of claim 1, 상기 혼합 폴리올 조성물의 평균 OH값은 400 ~ 500이고, 상기 이소시아네이트 성분의 평균 NCO%는 29 ~ 32인 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.The average OH value of the mixed polyol composition is 400 ~ 500, the average NCO% of the isocyanate component is 29 ~ 32 cryogenic polyurethane foam for cold insulation. 제 1 항에 있어서,The method of claim 1, 상기 폴리올 성분의 OH에 대한 상기 이소시아네이트 성분의 NCO의 비인NCO/OH는 1.0 ~ 1.5인 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.NCO / OH, the ratio of NCO of the isocyanate component to OH of the polyol component, is a cryogenic polyurethane foam for cryogenic pipes, characterized in that 1.0 to 1.5. 제 1 항에 있어서,The method of claim 1, 상기 발포제는 폴리올 성분 100중량부에 대해 물 2.0 ~ 5.0중량부를 사용하는 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.The foaming agent is a polyurethane foam for cryogenic pipe cold, characterized in that using 2.0 to 5.0 parts by weight of water based on 100 parts by weight of the polyol component. 제 1 항에 있어서,The method of claim 1, 상기 발포제는 폴리올 성분 100중량부에 대해 물 0.5 ~ 1.5중량부와 HFC-365mfc를 15 ~ 30중량부 사용하는 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.The foaming agent is a polyurethane foam for cryogenic pipe cold, characterized in that using 0.5 to 1.5 parts by weight of water and 15 to 30 parts by weight of HFC-365mfc based on 100 parts by weight of the polyol component. 제 1 항에 있어서,The method of claim 1, 상기 첨가제로서 강도보강 및 경화시간을 단축시키기 위한 가교제와 난연성을 보강하기 위한 난연제를 포함하는 것을 특징으로 하는 초저온 파이프보냉용 폴리우레탄 폼.Ultra-low temperature polyurethane cold insulation polyurethane foam comprising a crosslinking agent for reinforcing strength and shortening the curing time and a flame retardant for reinforcing flame retardancy as the additive. 청구항 1의 초저온 파이프보냉용 폴리우레탄 폼을 사용하여 형성된 단열재.Insulation material formed using the cryogenic polyurethane foam for cold storage of claim 1.
KR1020020060321A 2002-10-02 2002-10-02 Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it KR20040029881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020060321A KR20040029881A (en) 2002-10-02 2002-10-02 Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020060321A KR20040029881A (en) 2002-10-02 2002-10-02 Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it

Publications (1)

Publication Number Publication Date
KR20040029881A true KR20040029881A (en) 2004-04-08

Family

ID=37331225

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020060321A KR20040029881A (en) 2002-10-02 2002-10-02 Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it

Country Status (1)

Country Link
KR (1) KR20040029881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440782A (en) * 2018-03-14 2018-08-24 贵州华云汽车饰件制造有限公司 A kind of polyurethane hard bubble composite material and its preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303940A (en) * 1995-05-10 1996-11-22 Hitachi Ltd Insulating box and refrigerator using the box
KR970001398A (en) * 1995-06-09 1997-01-24 김정돈 Rigid Urethane Foam for Structural Materials
US6013691A (en) * 1996-05-21 2000-01-11 Insta-Foam Products, Inc. Expansible sealant compositions and blowing agents
KR100278364B1 (en) * 1998-07-29 2001-01-15 김홍근 Cryogenic Cold-Reinforced Polyurethane Foam and Insulation Using It
KR100278363B1 (en) * 1998-07-29 2001-01-15 김홍근 Cryogenic Polyurethane Foam and Insulation Material
KR100284981B1 (en) * 1998-12-28 2001-03-15 한갑수 Cryogenic Polyurethane Foam and Manufacturing Method Thereof
KR20010072282A (en) * 1998-08-07 2001-07-31 추후제출 Process for Preparing a Flexible Polyurethane Foam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303940A (en) * 1995-05-10 1996-11-22 Hitachi Ltd Insulating box and refrigerator using the box
KR970001398A (en) * 1995-06-09 1997-01-24 김정돈 Rigid Urethane Foam for Structural Materials
US6013691A (en) * 1996-05-21 2000-01-11 Insta-Foam Products, Inc. Expansible sealant compositions and blowing agents
KR100278364B1 (en) * 1998-07-29 2001-01-15 김홍근 Cryogenic Cold-Reinforced Polyurethane Foam and Insulation Using It
KR100278363B1 (en) * 1998-07-29 2001-01-15 김홍근 Cryogenic Polyurethane Foam and Insulation Material
KR20010072282A (en) * 1998-08-07 2001-07-31 추후제출 Process for Preparing a Flexible Polyurethane Foam
KR100284981B1 (en) * 1998-12-28 2001-03-15 한갑수 Cryogenic Polyurethane Foam and Manufacturing Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108440782A (en) * 2018-03-14 2018-08-24 贵州华云汽车饰件制造有限公司 A kind of polyurethane hard bubble composite material and its preparation method

Similar Documents

Publication Publication Date Title
KR101238100B1 (en) Method for producing rigid polyurethane foams
ES2405684T3 (en) Production of rigid polyurethane foams and their use
EP2115026B1 (en) Amine-initiated polyols and rigid polyurethane foam made therefrom
WO2008094238A1 (en) Ortho-cyclohexanediamine-initiated polyols and rigid polyurethane foam made therefrom
BRPI0620510A2 (en) rigidly molded polyurethane foam
SK58199A3 (en) Rigid polyurethane foams
KR20190090373A (en) Polyurethane rigid foams, process for their preparation, and uses thereof
EP2231742A2 (en) Thermally insulating isocyanate-based foams
US20110130477A1 (en) Rigid polyurethane foam systems based on ortho-cyclohexanediamine-initiated polyols
ES2378504T3 (en) Procedure for preparing a rigid polyurethane foam from polyols initiated with methylenebis (cyclohexylamine)
US20110124759A1 (en) Polyol blends containing ortho-cyclohexanediamine-initiated polyols for rigid polyurethane foams
KR101634309B1 (en) Rigid polyurethane spray foam composition of low density
US6617368B2 (en) Isotropic rigid foams
KR20160023050A (en) A high flame retarding polyurethane foam using a foaming agent of methylformate and a insulator comprising the same
KR100901115B1 (en) Polyurethane foam compositions for pipes insulation and manufacturing method thereof and foam therefrom
KR100278363B1 (en) Cryogenic Polyurethane Foam and Insulation Material
KR100753252B1 (en) Flame retardant polyurethane foam for ultra-low-temperature and manufacturing method thereof
KR100542145B1 (en) Polyisocyanurate foam for ultra-low-temperature insulation, and insulating material by using it
KR20040029881A (en) Polyisocyanurate foam for ultra-low-temperature insulation of pipe, the process for producing it, and insulating material by using it
KR101645117B1 (en) Rigid polyurethane foams and method for manufacturing the same
JP2008001805A (en) Polyol composition for rigid polyurethane foam and method for producing rigid polyurethane foam
KR100278365B1 (en) Polyisocyanurate foam for cryogenic pipe insulation and insulation using the same
JP2004131651A (en) Rigid polyurethane foam and method for producing the same foam
KR102461461B1 (en) Polyol composition for polyisocyanuarte foam comprising eco-friendly blowing agents and polyisocyanurate foam for pipe cover using the same
JP2004131650A (en) Rigid polyurethane foam and method for producing the same foam

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application