KR20040021782A - Manufacturing method of modified asphalt with polyester fiber - Google Patents
Manufacturing method of modified asphalt with polyester fiber Download PDFInfo
- Publication number
- KR20040021782A KR20040021782A KR1020020053131A KR20020053131A KR20040021782A KR 20040021782 A KR20040021782 A KR 20040021782A KR 1020020053131 A KR1020020053131 A KR 1020020053131A KR 20020053131 A KR20020053131 A KR 20020053131A KR 20040021782 A KR20040021782 A KR 20040021782A
- Authority
- KR
- South Korea
- Prior art keywords
- asphalt
- polymer
- modified asphalt
- parts
- styrene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
본 발명은 폴리에스터 섬유를 이용한 개질 아스팔트의 제조방법에 관한 것으로서, 더욱 상세하게는 고분자가 첨가된 개질 아스팔트의 외부 응력에 대한 저항 특성을 증진시키기 위해 고분자와 함께 고분자 섬유를 첨가하여 개질 아스팔트를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing modified asphalt using polyester fibers, and more particularly, to produce modified asphalt by adding polymer fibers together with a polymer to enhance resistance to external stress of the modified asphalt to which the polymer is added. It is about how to.
아스팔트는 도로 포설 후 도로의 특성상 계절별 온도차와 시간의 경과에 따라 내마모성, 내유동성 및 내구성이 떨어지는 문제점을 안고 있다.Asphalt has a problem of abrasion resistance, flow resistance, and durability falling with the temperature difference and the passage of time due to the characteristics of the road after the road laying.
이러한 문제점을 개선하기 위해서 근래 들어서는 아스팔트에 스틸렌-부타디엔 고무, 부틸고무 등의 고분자를 혼합하여 고온에서의 소성변형에 대한 저항성을 향상시키고, 저온에서의 충격 균열을 억제하는데 우수한 효과를 보이는 개질아스팔트에 대한 연구가 진행되고 있으며, 실제 산업현장에서 도로에 적용하는 경우가 점진적으로 증가하는 추세에 있다.In order to improve this problem, recently, asphalt is mixed with polymers such as styrene-butadiene rubber and butyl rubber to improve the resistance to plastic deformation at high temperatures and to suppress impact cracking at low temperatures. Research is being conducted, and the case of applying to roads in actual industrial sites is gradually increasing.
이러한 연구는 미국 특허 제3,985,694호(1976. 10. 12. Richard J. Petrucco외 1인)와 미국 특허 제4,130,516호(1978. 12. 19. Duane W. Gagie 외 1인)에 개시된 바와 같이, 아스팔트에 폴리올레핀이나 스티렌-부타디엔 고무같은 열가소성 탄성체를 첨가하여 물성을 보다 향상시킨 역청/중합체 조성물의 제조방법에서 볼 수 있다.This study is described in US Pat. No. 3,985,694 (October 12, 1976 by Richard J. Petrucco et al.) And US Pat. No. 4,130,516 (Dec. 19, 1978 Duane W. Gagie et al.). It can be seen in the production of bitumen / polymer compositions having improved physical properties by adding thermoplastic elastomers such as polyolefins and styrene-butadiene rubbers.
위에서 언급한 바와 같이 도로에 사용되는 고분자가 첨가된 개질 아스팔트는 순수한 아스팔트 바인더에 비하여 고온특성, 저온특성, 내노화성 및 소성변형 저항성 등의 물성 증진에 매우 효과적인 것으로 알려져 있다. 이는 순수한 아스팔트에 비해 고온에서의 고점도, 저온에서의 내 저온성, 열 및 산소 등에 견디는 내노화성 등이 우수한 고분자 재료들이 고분자 영역을 형성하여 아스팔트 영역을 강화시키기 때문에 얻을 수 있는 복합재료로서의 효과 때문이다.As mentioned above, the modified asphalt to which the polymer used for the road is added is known to be very effective in improving physical properties such as high temperature properties, low temperature properties, aging resistance and plastic deformation resistance, compared to pure asphalt binders. This is because polymer materials, which have high viscosity at high temperature, low temperature resistance at low temperature, and aging resistance that resist heat and oxygen, compared to pure asphalt, form a polymer region and strengthen the asphalt region. .
그런데 아스팔트 고분자의 복합재료에 고분자 섬유를 분산시켜 개질 아스팔트로서 제조한다면, 이 고분자 섬유는 아스팔트 영역 내에 존재하여 외부에서 가해지는 응력에 대해 더욱더 높은 저항성을 부여할 수 있으며, 고분자 영역과 고분자 영역 간 그리고 아스팔트 영역과 고분자 영역간의 네트워크를 형성시켜 치수안정성을 향상시킴으로써, 외부에서 가해지는 응력 및 온도에 대하여 더욱더 높은 저항성을 발현시킬 수 있을 것이다.However, if the polymer fiber is dispersed in the composite material of the asphalt polymer and manufactured as modified asphalt, the polymer fiber is present in the asphalt area and thus can provide higher resistance to external stress. By forming a network between the asphalt region and the polymer region to improve the dimensional stability, it is possible to express even higher resistance to external stresses and temperatures.
이에, 본 발명에서는 고분자 섬유를 첨가하여 개질 아스팔트의 외부 응력에 대한 저항 특성을 증진시킬 수 있는 개질 아스팔트의 제조방법을 제공하는 데 그목적이 있다.Accordingly, an object of the present invention is to provide a method for producing modified asphalt that can increase the resistance to external stress of the modified asphalt by adding polymer fibers.
상기와 같은 목적을 달성하기 위한 본 발명의 개질 아스팔트의 제조방법은 아스팔트에 고분자를 첨가하는 방법으로서, 이때 고분자 섬유를 더 첨가하는 것을 그 특징으로 한다.Method for producing a modified asphalt of the present invention for achieving the above object as a method of adding a polymer to the asphalt, characterized in that the addition of the polymer fibers.
이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
일반적으로, 도로 및 방수쉬트 등에 사용되는 개질 아스팔트는 외부의 힘이 전달되어 변형을 일으키게 된다. 더욱이 아스팔트는 그 특성상 온도 증가에 따라서 외부 힘에 의한 변형이 매우 크게 발생되어지게 된다. 이러한 외부 응력에 대한 저항력을 최대화시키기 위하여 아스팔트에 고분자를 첨가하여 개질 아스팔트로 제조하여 사용된다. 이는 첨가된 고분자가 아스팔트보다 소성변형에 대한 저항성이 크기 때문이다.In general, modified asphalt used for roads, waterproof sheets, and the like causes deformation by transmitting external force. In addition, the asphalt is very deformed by the external force as the temperature increases due to its characteristics. In order to maximize the resistance to such external stress, the polymer is added to the asphalt, and the modified asphalt is used. This is because the added polymer is more resistant to plastic deformation than asphalt.
본 발명은 위와 같은 고분자가 첨가된 개질 아스팔트 내에 고분자 섬유를 분산시켜 제조하여, 이 고분자 섬유가 개질 아스팔트 내에서 네트워크 효과를 발생시킴으로써 외부에서 가해지는 응력에 대하여 더욱더 높은 저항성을 발현시킬 수 있도록 하는 개질 아스팔트 제조에 관한 것이다.The present invention is prepared by dispersing the polymer fibers in the modified asphalt to which the polymer is added as described above, by modifying the polymer fibers to be able to express even higher resistance to stress applied from the outside by generating a network effect in the modified asphalt Relates to asphalt production.
구체적으로는, 개질 아스팔트의 외부 응력에 대한 저항력을 증진시키기 위해 스틸렌-부타디엔-스틸렌 블록 공중합체 등의 열가소성 탄성체를 아스팔트에 첨가하여 제조하고 잘 혼합된 고분자 아스팔트 혼합물에 고분자 섬유를 추가로 첨가한 후혼합하여 고분자가 첨가된 개질 아스팔트를 제조한다. 이렇게 함으로써 고분자 섬유가 개질 아스팔트 내에서 분산되어 외부 응력에 대한 저항성이 강화된 개질 아스팔트로서의 물성 증진을 보이게 된다.Specifically, thermoplastic elastomers such as styrene-butadiene-styrene block copolymers are prepared by adding to the asphalt in order to increase resistance to external stress of the modified asphalt, and further adding polymer fibers to the well mixed polymer asphalt mixture. Mixing produces a modified asphalt to which the polymer is added. In this way, the polymer fibers are dispersed in the modified asphalt, thereby showing physical property enhancement as modified asphalt having enhanced resistance to external stress.
개질 아스팔트의 고온 물성 및 저온 물성을 동시에 개량하기 위해서 고분자로는 스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체가 주로 사용되는 데, 스틸렌-부타디엔 블록 공중합체와 스틸렌-부타디엔 랜덤 공중합체 고무를 사용할 수 있는 바, 이에 한정되는 것은 아니다.Styrene-butadiene-styrene block copolymer thermoplastic elastomer is mainly used to improve the high and low temperature properties of the modified asphalt, and styrene-butadiene block copolymer and styrene-butadiene random copolymer rubber Bars are not limited thereto.
고분자 섬유로는 폴리에스터 섬유 또는 폴리프로필렌 섬유를 사용할 수 있다. 이같은 고분자 섬유의 첨가량은 개질 아스팔트에 첨가된 고분자 100중량부에 대하여 0.1~200중량부 되도록 하는 것이 바람직한 바, 만일 고분자 섬유의 첨가량이 고분자 100중량부에 대하여 200중량부 초과면 아스팔트 및 고분자 대비 고분자 섬유가 과량으로 투입되어 혼합공정에서의 어려움이 발생될 수 있다.Polyester fibers or polypropylene fibers may be used as the polymer fibers. The amount of the polymer fiber added is preferably 0.1 to 200 parts by weight based on 100 parts by weight of the polymer added to the modified asphalt. If the amount of the polymer fiber is more than 200 parts by weight based on 100 parts by weight of the polymer, the polymer is compared with the asphalt and the polymer. Excessive amounts of fiber may cause difficulties in the mixing process.
이와같은 아스팔트, 고분자 및 고분자 섬유를 이용한 개질 아스팔트의 제조는 열가소성 탄성체를 액체 상태의 아스팔트에 첨가 후 하이쉬어 믹서 등에서 혼합하여 고분자와 아스팔트 혼합물을 제조한 다음, 여기에 고분자 섬유를 첨가하여 180℃의 액체 상태에서 혼합하면 본 발명의 개질 아스팔트를 얻을 수 있다.In the manufacture of modified asphalt using asphalt, polymer and polymer fibers as described above, the thermoplastic elastomer is added to the liquid asphalt and mixed in a high shear mixer to prepare a polymer and asphalt mixture. By mixing in a liquid state, the modified asphalt of the present invention can be obtained.
이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.
<실시예 1><Example 1>
스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체를 아스팔트 100중량부에 대하여 180℃의 액체 상태의 아스팔트에 첨가한 후 하이쉬어 믹서에서 30분 동안 혼합하여 고분자와 아스팔트 혼합물을 제조하였다. 여기에 촙 스트랜드(chopped strand) 형태의 길이 1/8 인치의 폴리에스터 고분자 섬유를 스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체 100중량부에 대하여 10중량부 되도록 첨가하여 180℃의 액체 상태에서 5분 동안 혼합하였다.A styrene-butadiene-styrene block copolymer thermoplastic elastomer was added to a liquid asphalt at 180 ° C. with respect to 100 parts by weight of asphalt, followed by mixing for 30 minutes in a high shear mixer to prepare a polymer and asphalt mixture. 5 minutes in a liquid state at 180 ° C by adding 10 parts by weight of polyester polymer fibers having a length of 1/8 inch of chopped strand to 100 parts by weight of the styrene-butadiene-styrene block copolymer thermoplastic elastomer Mixed during.
혼합한 후 혼합물을 인장강도 측정용 시편제조 용기에 부어 넣고 냉각 후 인장강도를 측정하였다. 인장강도 측정 시편 크기는 10×10×50mm 크기가 되도록 제작하였다. 제조된 시편을 측정온도를 25℃로 유지하고 양쪽에서 잡아당겨 시편이 1cm 늘어날 때까지의 힘을 측정하였는데 350kg/㎠였다.After mixing, the mixture was poured into a specimen preparation container for measuring tensile strength, and the tensile strength was measured after cooling. Tensile strength measurement specimen size was prepared to be 10 × 10 × 50mm size. The prepared specimen was maintained at 25 ° C. and pulled from both sides to measure the force until the specimen increased by 1 cm, which was 350 kg / cm 2.
<실시예 2><Example 2>
스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체를 아스팔트 100중량부에 대하여 4중량부가 되도록 하여 180℃ 액체 상태의 아스팔트에 첨가한 후 하이쉬어 믹서에서 30분 동안 혼합하여 고분자와 아스팔트 혼합물을 제조하였다. 여기에 촙 스트랜드(chopped strand) 형태의 길이 1/12 인치의 폴리에스터 고분자 섬유를 스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체 100중량부에 대하여 5중량부가 되도록 첨가하여 180℃의 액체 상태에서 5분 동안 혼합하였다.The styrene-butadiene-styrene block copolymer thermoplastic elastomer was added to 4 parts by weight based on 100 parts by weight of asphalt, and then added to 180 ° C. liquid asphalt, followed by mixing for 30 minutes in a high shear mixer to prepare a polymer and asphalt mixture. 5 minutes in a liquid state at 180 ° C by adding chopped strand of polyester polymer fibers of 1/12 inch length to 5 parts by weight based on 100 parts by weight of the styrene-butadiene-styrene block copolymer thermoplastic elastomer. Mixed during.
혼합 후 혼합물을 인장강도 측정용 시편제조 용기에 부어 넣고 냉각한 후 인장강도를 측정하였다. 인장강도 측정 시편 크기는 10×10×150mm 크기가 되도록 제작하였다. 제조된 시편은 측정온도를 25℃로 유지하고 양쪽에서 잡아당겨 시편이 1cm 늘어날 때까지의 힘을 측정하였는데 200kg/㎠였다.After mixing, the mixture was poured into a specimen preparation container for measuring tensile strength, and the tensile strength was measured after cooling. Tensile strength measurement specimen size was prepared to be 10 × 10 × 150mm size. The prepared specimens were measured at a temperature of 25 ° C. and pulled from both sides to measure a force until the specimen increased by 1 cm, which was 200 kg / cm 2.
<실시예 3><Example 3>
스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체를 아스팔트 100중량부에 대하여 4중량부가 되도록 하여 180℃ 액체 상태의 아스팔트에 첨가한 후 하이쉬어 믹서에서 30분 동안 혼합하여 고분자와 아스팔트 혼합물을 제조하였다. 여기에 촙 스트랜드(chopped strand) 형태의 길이 1/12 인치의 폴리에스터 고분자 섬유를 스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체 150중량부에 대하여 100중량부가 되도록 첨가하여 180℃의 액체 상태에서 5분 동안 혼합하였다.The styrene-butadiene-styrene block copolymer thermoplastic elastomer was added to 4 parts by weight based on 100 parts by weight of asphalt, and then added to 180 ° C. liquid asphalt, followed by mixing for 30 minutes in a high shear mixer to prepare a polymer and asphalt mixture. To this, 5 minutes in a liquid state at 180 ° C. was added to the polyester polymer fibers having a chopped strand length of 1/12 inch to 100 parts by weight based on 150 parts by weight of the styrene-butadiene-styrene block copolymer thermoplastic elastomer. Mixed during.
혼합 후 혼합물을 인장강도 측정용 시편제조 용기에 부어 넣고 냉각한 후 인장강도를 측정하였다. 인장강도 측정 시편 크기는 10×10×150mm 크기가 되도록 제작하였다. 제조된 시편은 측정온도를 25℃로 유지하고 양쪽에서 잡아당겨 시편이 1cm 늘어날 때까지의 힘을 측정하였는데 650kg/㎠였다.After mixing, the mixture was poured into a specimen preparation container for measuring tensile strength, and the tensile strength was measured after cooling. Tensile strength measurement specimen size was prepared to be 10 × 10 × 150mm size. The prepared specimens were measured at a temperature of 25 ° C. and pulled from both sides to measure a force until the specimen increased by 1 cm, which was 650 kg / cm 2.
<비교예 1>Comparative Example 1
스틸렌-부타디엔-스틸렌 블록 공중합체 열가소성 탄성체를 아스팔트 100중량부에 대하여 4중량부 되도록 하여 180℃의 액체 상태의 아스팔트에 첨가한 후 하이쉬어 믹서에서 30분 동안 혼합하여, 고분자와 아스팔트 혼합물을 제조하였다. 혼합 후 혼합물을 인장강도 측정용 시편제조 용기에 부어 넣고 냉각 후 인장강도를 측정하였다. 인장강도 측정 시편 크기는 10×10×150mm 크기가 되도록 제작하였다. 제조된 시편은 측정온도를 25℃ 유지하고 양쪽에서 잡아당겨 시편이 1cm 늘어날 때까지의 힘을 측정하였는데 150kg/㎠였다.A styrene-butadiene-styrene block copolymer thermoplastic elastomer was added to 4 parts by weight with respect to 100 parts by weight of asphalt, and then added to a liquid asphalt at 180 ° C., followed by mixing for 30 minutes in a high shear mixer to prepare a polymer and asphalt mixture. . After mixing, the mixture was poured into a specimen preparation container for measuring tensile strength, and the tensile strength after cooling was measured. Tensile strength measurement specimen size was prepared to be 10 × 10 × 150mm size. The prepared specimen was kept at a temperature of 25 ℃ and pulled from both sides to measure the force until the specimen increases by 1cm was 150kg / ㎠.
이상에서 상세히 설명한 바와 같이, 본 발명에 따라 고분자 섬유를 첨가하여 개질 아스팔트를 제조할 경우 외부 응력에 대한 개질 아스팔트 인장강도를 증진시킬 수 있었다. 이러한 제조 방법에 의한 개질 아스팔트 혼합물은 외부에서 응력이 전달되어 응력에 대한 저항력이 필요로 되는 아스팔트 재료 용도로 효과적으로 사용될 수 있다.As described above in detail, when the modified asphalt was prepared by adding the polymer fiber according to the present invention, the modified asphalt tensile strength against external stress could be improved. The modified asphalt mixture by this manufacturing method can be effectively used for asphalt material applications in which the stress is transmitted from the outside and the resistance to stress is required.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020053131A KR20040021782A (en) | 2002-09-04 | 2002-09-04 | Manufacturing method of modified asphalt with polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020053131A KR20040021782A (en) | 2002-09-04 | 2002-09-04 | Manufacturing method of modified asphalt with polyester fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040021782A true KR20040021782A (en) | 2004-03-11 |
Family
ID=37325769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020053131A KR20040021782A (en) | 2002-09-04 | 2002-09-04 | Manufacturing method of modified asphalt with polyester fiber |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040021782A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130516A (en) * | 1976-04-12 | 1978-12-19 | Phillips Petroleum Company | High ductility asphalt |
KR980009186A (en) * | 1996-07-19 | 1998-04-30 | 허동섭 | PACKAGING MATERIAL FOR ATHLETIC PLANT FOR ROAD SERVICE |
KR20000020919A (en) * | 1998-09-24 | 2000-04-15 | 황익현 | Porous asphalt concrete and pavement method thereof |
JP2000127159A (en) * | 1998-10-21 | 2000-05-09 | Minami Ito | Improving material for asphalt and asphalt composition containing it |
KR20000030064A (en) * | 1999-07-30 | 2000-06-05 | 박승범 | A Manufacturing Methods of High Performance and Recycled Asphalt Mixtures using Fly Ash and Organic Fibers for Road Pavement |
-
2002
- 2002-09-04 KR KR1020020053131A patent/KR20040021782A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130516A (en) * | 1976-04-12 | 1978-12-19 | Phillips Petroleum Company | High ductility asphalt |
KR980009186A (en) * | 1996-07-19 | 1998-04-30 | 허동섭 | PACKAGING MATERIAL FOR ATHLETIC PLANT FOR ROAD SERVICE |
KR20000020919A (en) * | 1998-09-24 | 2000-04-15 | 황익현 | Porous asphalt concrete and pavement method thereof |
JP2000127159A (en) * | 1998-10-21 | 2000-05-09 | Minami Ito | Improving material for asphalt and asphalt composition containing it |
KR20000030064A (en) * | 1999-07-30 | 2000-06-05 | 박승범 | A Manufacturing Methods of High Performance and Recycled Asphalt Mixtures using Fly Ash and Organic Fibers for Road Pavement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xiang et al. | Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism | |
Sun et al. | Performance of polyurethane modified asphalt and its mixtures | |
KR101494799B1 (en) | Complex Reinforcing Material with Glass Fiber, Hot-Mix Asphalt Mixture Using the Same, and Method for Manufacturing the Same | |
Sun et al. | Thermal, mechanical properties, and low‐temperature performance of fibrous nanoclay‐reinforced epoxy asphalt composites and their concretes | |
KR101386702B1 (en) | Asphalt admixtures, and method for preparation of the same | |
CN104629391A (en) | High-elasticity asphalt modified composition, modifier, modified asphalt, modified asphalt mixture and preparation method | |
CA1186448A (en) | Modified sulfur cement | |
KR100764917B1 (en) | An aspalt modifier comprising polyethylene and waste polypropylene and method for preparing the same | |
Hamedi et al. | Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt | |
WO2010107134A1 (en) | Asphalt modifier, asphalt composition, asphalt mixture, and methods for producing them | |
Javani et al. | Effect of polypropylene fibers and recycled glass on AC mixtures mechanical properties | |
KR101511236B1 (en) | Low cost and environmentally friendly asphalt binder composition for guss asphalt pavement using indonesian buton natural asphalt and manufacturing method thereof | |
KR100639893B1 (en) | Asphalt composition containing styrene-butadiene-styrene block copolymers having unsymmetric polystyrene block | |
Zeng et al. | Study on the microstructure and properties of hot-mix epoxy asphalt | |
CN112062504A (en) | Cold-mix concrete and preparation method thereof | |
KR101802412B1 (en) | Self-crosslinking recycled asphalt additive and and its manufacturing method thereof, recycled cold asphalt concrete mixture contaning the same | |
KR101171338B1 (en) | Environmental warm asphalt paving method, modifided asphalt binder and the producing method thereof | |
KR101717707B1 (en) | A Manufacturing method of recycled ascon comprising high molecular polymer | |
Daniel | Assessing the impact of the incorporation of aramid and polyolefin to hot and warm asphaltic mixture using dry and wet process: A Review | |
KR20040021782A (en) | Manufacturing method of modified asphalt with polyester fiber | |
CN109824289A (en) | A kind of bituminous concrete high-modulus modifier and its preparation method and application | |
Emmaima et al. | Experimental Investigation of Polymer and Nanomaterial modified Asphalt Binder | |
Zahedi et al. | The most appropriate mixing method of polypropylene fiber with aggregates and bitumen based on binder mix design | |
RU2554585C2 (en) | Method of obtaining modified sulphur | |
KR101511237B1 (en) | Low cost and environmentally friendly asphalt mixture for guss asphalt pavement using indonesian buton natural asphalt and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |