KR20040017491A - Method for preparing synthesis gas from dimethyl ether - Google Patents

Method for preparing synthesis gas from dimethyl ether Download PDF

Info

Publication number
KR20040017491A
KR20040017491A KR1020020049565A KR20020049565A KR20040017491A KR 20040017491 A KR20040017491 A KR 20040017491A KR 1020020049565 A KR1020020049565 A KR 1020020049565A KR 20020049565 A KR20020049565 A KR 20020049565A KR 20040017491 A KR20040017491 A KR 20040017491A
Authority
KR
South Korea
Prior art keywords
dimethyl ether
reforming
hydrogen
steam
synthesis gas
Prior art date
Application number
KR1020020049565A
Other languages
Korean (ko)
Inventor
오전근
방진환
홍성완
민화식
민영창
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020020049565A priority Critical patent/KR20040017491A/en
Publication of KR20040017491A publication Critical patent/KR20040017491A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas

Abstract

PURPOSE: A method for preparing synthetic gas through steam reforming of dimethyl ether by using commercial reforming catalyst containing a principal constituent of nickel is provided. CONSTITUTION: The method for preparing synthetic gas from dimethyl ether comprises the process of preparing synthetic gas by steam reforming dimethyl ether or dimethyl ether mixed raw material at a reaction temperature of 200 to 900 deg.C under a reforming catalyst containing 5 to 40 wt.% of a principal constituent of nickel and subsidiary constituents of alkali metal and alkali earth metal, wherein a mole ration of carbon in dimethyl ether for steam is 1:0.5 to 6, wherein a principal constituent of the obtained synthetic gas is hydrogen, and wherein the dimethyl ether mixed raw material comprises at least one raw material selected from the group consisting of naphtha containing 1% or more of dimethyl ether, LPG (liquefied petroleum gas), LNG (liquefied natural gas), methane, ethane, propane, butane, methanol, and ethanol.

Description

디메틸에테르로부터 합성가스를 제조하는 방법{Method for preparing synthesis gas from dimethyl ether}Method for preparing synthesis gas from dimethyl ether

본 발명은 디메틸에테르(dimethyl ether, DME)로부터 합성가스를 제조하는 방법에 관한 것으로, 좀 더 구체적으로는 니켈을 주성분으로 하는 개질 촉매를 사용하여 디메틸에테르를 수증기 개질(steam reforming) 또는 이산화탄소-수증기 개질(CO2-steam reforming)시켜 수소 함량이 높은 합성가스(synthesis gas)를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing a synthesis gas from dimethyl ether (DME), and more particularly, steam reforming or carbon dioxide-vapor reforming of dimethyl ether using a reforming catalyst based on nickel. The present invention relates to a method for producing a synthesis gas having a high hydrogen content by reforming (CO 2 -steam reforming).

합성가스는 일산화탄소와 수소 또는 질소와 수소의 다양한 혼합물인 C1 화학원료로서, 주로 천연가스와 나프타로부터 얻어지나, 사실상 석탄, 토탄, 나무, 생물자원, 농업 찌꺼기 및 각종 산업의 부생가스를 포함하는 도시 폐기물을 포함하는 거의 모든 탄소 함유 물질로부터 만들어질 수 있다.Syngas is a C1 chemical raw material, carbon monoxide and hydrogen, or various mixtures of nitrogen and hydrogen, mainly derived from natural gas and naphtha, but in fact a city containing coal, peat, wood, biomass, agricultural debris, and by-product gases from various industries. It can be made from almost any carbon-containing material, including waste.

또한 이를 이용한 C1 화학의 주요 합성 대상물인 디메틸에테르는 메탄올과 함께 오래 전부터 연구되어 왔으나, 올레핀 생산, MTG(Methanol to Gasoline), 스프레이의 분사추진체, 메틸 아세테이트 합성 등의 용도가 지금까지의 주된 용도였다.In addition, dimethyl ether, which is the main compound of C1 chemistry, has been studied for a long time with methanol, but its main uses have been olefin production, MTG (Methanol to Gasoline), spray propulsion of spray, and methyl acetate synthesis. .

그러나, 디메틸에테르는 디젤 엔진의 연료로 사용할 경우, 매연의 발생량이 현저히 감소하고, NOx의 발생이 없다는 장점으로 인해 경유를 대체할 수 있는 새로운 자동차 연료로 주목받고 있으며, LPG와 기체 특성이 유사하여, LPG의 인프라를 통하여 보급이 가능하여 LPG를 대체할 수 있는 가정용 연료 또는 발전용 연료로 주목받고 있다. 또한, 최근에는 디메틸에테르를 석유화학공정의 원료, 연료전지의 연료로 활용하려는 등의 다양한 응용기술 또한 개발되고 있는 실정이다.However, when used as a fuel for diesel engines, dimethyl ether is noticed as a new automobile fuel that can replace diesel fuel due to the fact that the amount of smoke generated is significantly reduced and NO x is not generated, and LPG and gas characteristics are similar. Therefore, it can be spread through the infrastructure of LPG, attracting attention as a fuel for household or power generation that can replace LPG. In addition, recently, various applications such as dimethyl ether to be used as a raw material of petrochemical process and fuel of fuel cell have been developed.

상술한 바와 같은 디메틸에테르는 LNG로 개발하기에 경제적으로 불리한 소규모의 미개발 천연가스전의 천연가스나, 저가의 석탄을 저장이 가능하고 운송이 간편한 형태로 전환한 환경친화적인 청정에너지로서, 다양한 형태의 메탄올 생산공정과 NKK사, 할더 토프소에 에이/에스(Haldor topsoe A/S)사 등의 생산공정(미국특허 제5,466,720호, 제5,389,689호, 제5,218,003호)으로, 휘발유나 경유, LPG 또는 LNG 등의 다른 에너지와 경쟁할 만한 가격대에서 생산이 가능하게 되었다.As mentioned above, dimethyl ether is an eco-friendly clean energy that converts natural gas from small-scale undeveloped natural gas fields that are economically disadvantageous to develop into LNG, or low-cost coal, into a form that can be stored and easily transported. Methanol production process and production processes of NKK and Halder Topsoe A / S (US Pat. Nos. 5,466,720, 5,389,689, 5,218,003). Production was possible at a price point that could compete with other energy sources.

한편, 탄화수소류를 수증기 개질 반응을 통하여, 합성가스 또는 수소를 제조하는 기술은 종래 널리 사용되는 기술로서, 저분자량의 알칸족인 메탄, 에탄, 프로판, 부탄 등을 비롯하여, 메탄올, 에탄올, 석유화학공정의 나프타 등을 공급원료로 사용하고, 이는 석유화학 플랜트 등 대규모 수소를 필요로 하는 설비에서부터 수소를 연료로 전기를 발생시키는 소규모 연료전지에 이르기까지 널리 이용된다.On the other hand, a technique for producing a synthesis gas or hydrogen through a steam reforming reaction of hydrocarbons is a widely used technique, including methane, ethane, propane, butane, low molecular weight alkanes, methanol, ethanol, petrochemical process Naphtha is used as a feedstock, and it is widely used in small-scale fuel cells that generate electricity from hydrogen as fuel.

이에 따라 상술한 바와 같은 경제적이고, 환경친화적 에너지원인 디메틸에테르를 수증기 또는 이산화탄소-수증기 개질을 통하여 합성가스 형태로 제조하고, 발생되는 수소와 일산화탄소 등을 분리하여 활용하는 기술이 새롭게 개발되고 있으나, 아직 초기단계로서 특허나 문헌이 매우 드문 실정이다.Accordingly, a technology for preparing dimethyl ether, an economical and environmentally friendly energy source as described above, in the form of syngas through steam or carbon dioxide-steam reforming, and separating and using hydrogen and carbon monoxide generated, has been newly developed. As an early stage, patents and documents are very rare.

이와 관련된 종래 기술은 다음과 같다.The related art is as follows.

아모코 코포레이션(Amoco Corporation)사의 미국특허 제5,626,794호에서는 알칼리 금속을 포함하지 않는 구리/아연 계열의 촉매를 이용하여, 디메틸에테르를 가수분해(hydrolysis)시켜 합성가스를 제조하고, 일련의 반응기에서 수성가스 전환(water-gas shift)에 연결하는 수소전환(hydroshifting) 공정으로 합성가스를 연소기(combustor)의 원료로 사용하는 방법을 처음으로 개시하였다.In US Patent No. 5,626,794 to Amoko Corporation, a synthesis gas is prepared by hydrolysis of dimethyl ether using a copper / zinc-based catalyst that does not contain alkali metals, followed by aqueous reaction in a series of reactors. A method of using syngas as a raw material of a combustor is disclosed for the first time in a hydroshifting process connected to a water-gas shift.

그 후, 할더 토포소에 에이/에스(Haldor Topsoe A/S)사의 니엘센(Nielsen) 등의 미국특허 제5,837,217호에서는 디메틸에테르에 물을 반응시키는데 있어 H-형의 ZSM-5 촉매를 사용하여 메탄올을 생성한 후, 일반적인 메탄올 개질 촉매인 구리/아연/알루미나 촉매(Cu/Zn/Al2O3)에서 수증기 개질하는 두 촉매를 물리적으로 혼합하여 합성 가스를 제조하는 공정을 소개하였으며, 2001년에 갈비타(Galvita) 등은 이와 유사한 방법으로, 디메틸에테르의 수화를 통한 메탄올 생성에 이어 구리계 메탄올 개질 촉매를 이용하여 합성가스를 제조하는 연구를 보고하였다.Later, U.S. Patent No. 5,837,217 to Nielsen et al., Haldor Topsoe A / S, used a H-type ZSM-5 catalyst to react water with dimethyl ether. After the production of methanol, a process of preparing a synthesis gas by physically mixing two steam reforming catalysts in a general methanol reforming catalyst, a copper / zinc / alumina catalyst (Cu / Zn / Al 2 O 3 ), was introduced. Galvita et al. Reported a method for producing syngas using a similar method, followed by methanol production through hydration of dimethyl ether followed by copper-based methanol reforming catalysts.

전술한 바와 같이 종래의 디메틸에테르 수증기 개질 반응에 의한 합성 가스 또는 수소 제조 방법은 디메틸에테르의 메탄올화와, 메탄올 개질에 각기 다른 기작을 갖는 촉매를 혼합하여 사용하는 방법으로, 촉매의 혼합을 통한 반응 기작은 한 반응기내에 두 촉매를 충진할 경우, 각 촉매의 특성에 따른 온도편차를 가져와, 반응기의 수명을 저하시킬 수 있으며, 이러한 혼합에 의한 나쁜 영향을 제거하기 위해서는 별도의 반응기로 촉매를 구분해야 하기 때문에 장치 비용이 증가하는 등의 단점이 있다.As described above, the conventional method for producing synthesis gas or hydrogen by dimethyl ether steam reforming is a method of mixing dimethyl ether with methanol and a catalyst having a different mechanism for methanol reforming. When the two catalysts are packed in one reactor, the temperature difference according to the characteristics of each catalyst can be brought about, which can reduce the lifetime of the reactor. In order to remove the adverse effect of the mixing, the catalysts must be separated into separate reactors. Therefore, there is a disadvantage such as an increase in device cost.

한편, 나프타, LPG, 메탄 등의 탄화수소류의 수증기 개질 반응에서는 탄소 생성을 방지하기 위해 나트륨, 칼륨 등의 알칼리 금속 및 칼슘 등의 알칼리 토금속, 또는 실리카 등을 조촉매로 함유하는 니켈 촉매를 일반적으로 사용하고 있으나, 이러한 니켈 촉매를 이용하여 디메틸에테르를 수증기 개질하여 합성가스 또는 수소를 제조하는 방법이나, 기타 다른 계열의 촉매를 사용한 방법은 소개된 바가 없는 실정이다.Meanwhile, in the steam reforming reaction of hydrocarbons such as naphtha, LPG and methane, nickel catalysts containing alkali metals such as sodium and potassium, alkaline earth metals such as calcium, or silica as cocatalysts are generally used to prevent carbon generation. Although it is used, a method of producing a synthesis gas or hydrogen by steam reforming dimethyl ether using such a nickel catalyst, or a method using another series of catalysts has not been introduced.

이에 본 발명에서는 종래의 통상적인 개질 촉매, 즉 니켈을 주성분으로 하며, 탄소생성을 방지하기 위해 나트륨, 칼륨 등의 알칼리 금속 및 칼슘 등의 알칼리 토금속을 조촉매로 미량 함유하는 촉매를 사용하여, 종래 개질 공정의 변경 없이 디메틸에테르를 원료로 사용하여 합성가스 또는 수소를 높은 전환율과 선택성으로 얻을 수 있음을 확인할 수 있었고, 이를 기초로 하여 본 발명을 완성하였다.Therefore, in the present invention, conventional reforming catalysts, that is, nickel, are used as a main component, and a catalyst containing a trace amount of alkali earth metals such as calcium and sodium as a cocatalyst to prevent carbon formation is used. By using dimethyl ether as a raw material without changing the reforming process it was confirmed that the synthesis gas or hydrogen can be obtained with a high conversion and selectivity, the present invention was completed based on this.

따라서, 본 발명의 목적은 니켈을 주성분으로 하는 상용 개질 촉매를 사용하여 디메틸에테르의 수증기 개질을 통해 합성가스를 제조하는 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing syngas through steam reforming of dimethyl ether using a commercially available reforming catalyst based on nickel.

상기 목적을 달성하기 위하여, 본 발명의 디메틸에테르로부터 합성가스를 제조하는 방법은 5 내지 40중량%의 니켈을 주성분으로 하고, 보조성분으로 알칼리 금속과 알칼리 토금속을 함유하는 개질 촉매하, 200 내지 900℃의 반응온도에서 디메틸에테르 또는 디메틸에테르 혼합원료를 수증기 개질하는 것으로 이루어진다.In order to achieve the above object, the method for producing a synthesis gas from the dimethyl ether of the present invention is 200 to 900 under a reforming catalyst containing 5 to 40% by weight of nickel as a main component, and an alkali metal and alkaline earth metal as an auxiliary component Steam reforming of dimethyl ether or dimethyl ether mixed raw materials at a reaction temperature of < RTI ID = 0.0 >

도 1은 본 발명의 일실시예에 따라 디메틸에테르로부터 합성가스를 제조하는 개략적 흐름도이다.1 is a schematic flowchart of preparing a synthesis gas from dimethyl ether according to an embodiment of the present invention.

◎ 도면의 주요부분에 대한 부호의 설명 ◎◎ Explanation of symbols for main part of drawing

1 … 디메틸에테르2 … 기타원료One … Dimethyl ether 2... Other raw materials

3 … 수증기 4 … 이산화탄소3…. Water vapor 4.. carbon dioxide

5 … 전개질 장치(pre-reforming unit)6 … 주개질 장치5... Pre-reforming unit 6... Main reformer

7 … 수성가스 전환장치(water-gas shifting unit)7. Water-gas shifting unit

8 … 합성가스(synthesis gas)9 … 가스 정제장치(PSA unit)8 … Synthesis gas 9.. Gas Purifier (PSA unit)

10 … 정제한 수소 또는 이산화탄소11 … 정제제 후 폐가스10... Purified hydrogen or carbon dioxide 11... Waste gas after purification

이하, 본 발명을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

전술한 바와 같이, 본 발명은 디메틸에테르의 개질 반응을 통해 합성가스를 제조하는 방법에 관한 것으로 좀 더 구체적으로는 종래의 통상적인 수증기 개질 상용촉매, 즉 니켈을 주성분으로 하며, 탄소생성을 방지하기 위해 나트륨, 칼륨 등의 알칼리 금속 및 칼슘 등의 알칼리 토금속을 조촉매로 함유하는 촉매를 사용하여, 기존 개질 반응공정의 구조 변경 없이 디메틸에테르를 원료로 사용하여 합성가스나 수소를 제조하는 방법에 관한 것이다.As described above, the present invention relates to a method for preparing a synthesis gas through a reforming reaction of dimethyl ether, and more specifically, to a conventional steam reforming commercial catalyst, ie, nickel as a main component, and to prevent carbon generation. A method for producing syngas or hydrogen using a catalyst containing an alkali metal such as sodium and potassium and an alkaline earth metal such as calcium as a cocatalyst and dimethyl ether as a raw material without changing the structure of an existing reforming reaction process. will be.

본 발명의 합성가스 제조방법에 있어서, 상기 촉매는 주성분으로 니켈 5 내지 40중량%, 및 보조성분으로 알칼리 금속과 알칼리 토금속을 함유하는 촉매로, 상기 촉매의 존재하에, 디메틸에테르와 물(수증기)을 또는 물과 이산화탄소(CO2)를 접촉시키는 방법으로 수행된다. 이 경우, 디메틸에테르 수증기 개질 반응의 온도는 200 내지 900℃이고, 바람직하게는 500 내지 900℃, 더욱 바람직하게는 750 내지 850℃이다.In the syngas production method of the present invention, the catalyst is a catalyst containing 5 to 40% by weight of nickel as the main component, and alkali metal and alkaline earth metal as the auxiliary component, in the presence of the catalyst, dimethyl ether and water (steam) Or by contacting water with carbon dioxide (CO 2 ). In this case, the temperature of the dimethyl ether steam reforming reaction is 200 to 900 ° C, preferably 500 to 900 ° C, more preferably 750 to 850 ° C.

본 발명의 수증기 개질 반응에서, 디메틸에테르 1몰에 대한 수증기의 몰비는 1 내지 12이고, 이를 통상적으로 사용되는 수증기에 대한 탄소의 몰비(steam to carbon ratio)로 표현하면 1: 0.5 내지 6, 바람직하게는 1: 2.5 내지 5이다. 상기 몰비가 0.5 미만이면 전환율이 감소하며, 촉매 내에 탄소가 생성되어 촉매활성이 저하될 수 있고, 6을 초과하면 반응성이 좋아지는 측면보다 물을 수증기로 증발시키기 위한 열량이 과다하게 소비되어 경제적인 측면에서 불리하다.In the steam reforming reaction of the present invention, the molar ratio of water vapor to 1 mole of dimethyl ether is 1 to 12, which is expressed in terms of the steam to carbon ratio of steam to conventionally used 1: 0.5 to 6, preferably Preferably 1: 2.5 to 5. If the molar ratio is less than 0.5, the conversion rate is reduced, and carbon may be generated in the catalyst, thereby degrading catalytic activity. If the molar ratio is greater than 6, the amount of heat for evaporating water into water vapor is more economical than the aspect of improving reactivity. Is disadvantageous.

한편, 본 발명에서는 상기 디메틸에테르를 종래의 수소플랜트의 공급원료로 사용되는 나프타, LPG, LNG, 메탄, 에탄, 프로판, 부탄, 메탄올, 에탄올 등과 함께 혼합하여 상기 니켈을 주성분으로 하며 알칼리 금속과 알칼리 토금속을 보조성분으로 포함하는 개질 촉매 하에서 반응시켜 수소를 얻을 수 있다. 이때, 상기 혼합원료 중 디메틸에테르는 1% 이상 함유된다. 이때, 사용되는 수증기 개질 반응기의 일실시예는 도 1에 나타낸 바와 같다.Meanwhile, in the present invention, the dimethyl ether is mixed with naphtha, LPG, LNG, methane, ethane, propane, butane, methanol, ethanol, and the like, which are used as feedstocks of a conventional hydrogen plant, and the nickel is used as a main component. Hydrogen may be obtained by reaction under a reforming catalyst containing an earth metal as an auxiliary component. In this case, 1% or more of dimethyl ether is contained in the mixed raw material. At this time, one embodiment of the steam reforming reactor used is as shown in FIG.

도 1을 좀 더 구체적으로 살펴보면, 디메틸에테르(1), 나프타 등의기타연료(2), 수증기(3), 및 이산화탄소(4)를 공급한 다음 전개질 장치(5), 주개질 장치(6), 수성가스 전환장치(7)를 차례로 통과시켜 합성가스(8)를 얻은 후, 이를 다시 가스 정제장치(9)에 통과시킴으로써 정제한 수소 또는 이산화탄소(10)를 얻으며, 정제 후 남은 폐가스(11)가 배출되는 것이다. 상기 주개질 장치(6)는 특히, 본 발명에선 언급한 촉매를 포함하는 주개질 반응기로서, 본 발명에서는 주개질 장치가 전개질 장치, 수성가스 전환장치 및 가스 정제장치와 이룰 수 있는 가능한 모든 조합을 포함한다.Referring to Figure 1 in more detail, the dimethyl ether (1), other fuels such as naphtha (2), water vapor (3), and carbon dioxide (4) is supplied to the developing device (5), main reforming device (6) ), And then through the water gas conversion device (7) in order to obtain a synthesis gas (8), and then passed through the gas purification device (9) to obtain purified hydrogen or carbon dioxide (10), and the remaining waste gas (11) after purification ) Is discharged. The main reforming unit 6 is in particular a main reforming reactor comprising the catalyst mentioned in the present invention, in which the main reforming unit can be any combination possible with the developing unit, the water gas shifter and the gas purification unit. It includes.

본 발명에서는 석유화학공정의 수소플랜트의 공급원료로 사용되는 나프타, 프로판, 부탄, LPG 등이 일반적으로 전개질 장치에서 메탄과 수소, 일산화탄소, 이산화탄소 등의 혼합물로 분해되어 주개질 장치(6)로 도입되는 점과 관련하여 비교를 위해, 본 발명의 디메틸에테르의 수증기 개질과 메탄 수증기 개질에 요구되는 반응열 및 수소 단위당 필요한 반응열을 계산하였고, 그 결과를 하기 표 1에 나타내었다.In the present invention, naphtha, propane, butane, LPG, and the like, which are used as feedstocks of the hydrogen plant in the petrochemical process, are generally decomposed into a mixture of methane and hydrogen, carbon monoxide, carbon dioxide, and the like in the developing apparatus to the main reformer (6). For comparison with respect to the point of introduction, the heat of reaction required for steam reforming and methane steam reforming of the dimethyl ether of the present invention and the heat of reaction required per hydrogen unit were calculated, and the results are shown in Table 1 below.

원료Raw material 수증기 개질 반응식Steam reforming scheme 반응열Reaction heat 메탄methane CH4+2H2O ↔ CO2+ 4H2 CH 4 + 2H 2 O ↔ CO 2 + 4H 2 △Ho= 165.12 kJ/molΔH o = 165.12 kJ / mol 디메틸에테르Dimethyl ether CH3OCH3+3H2O ↔ 2CO2+6H2 CH 3 OCH 3 + 3H 2 O ↔ 2CO 2 + 6H 2 △Ho= 122.66 kJ/molΔH o = 122.66 kJ / mol 필요 반응열비(디메틸에테르 1몰 반응열/메탄 1몰 반응열)Required heat ratio (dimethyl ether 1 mole reaction heat / methane 1 mole reaction heat) 0.740.74 동일량 수소 제조시 요구 반응열비* Reaction heat ratio required for the production of equivalent hydrogen * 0.490.49

* : 디메틸에테르로부터 수소 1몰 제조시 요구되는 반응열/메탄으로부터 수소 1몰 제조시 요구되는 반응열*: The heat of reaction required to prepare 1 mole of hydrogen from dimethyl ether

상기 표 1로부터 알 수 있는 바와 같이, 디메틸에테르 수증기 개질은 가장짧은 알칸족인 메탄의 수증기 개질에 필요한 반응열보다 낮아 개질 반응기의 히터 및 버너의 부하를 감소시킬 수 있다.As can be seen from Table 1, dimethyl ether steam reforming is lower than the heat of reaction required for steam reforming of the shortest alkanes methane, it is possible to reduce the load of the heater and burner of the reforming reactor.

또한, 디메틸에테르를 수증기 개질하여 석유화학공정의 수소플랜트용 공급원료 적용할 경우, 단위 수소 원가를 평가하여 비교하였고, 그 결과를 하기 표 2에 나타내었다.In addition, when dimethyl ether was steam-modified to apply a feedstock for a hydrogen plant in a petrochemical process, unit hydrogen cost was evaluated and compared, and the results are shown in Table 2 below.

$/MSCF H2 $ / MSCF H 2 Won/NM3 H2 Won / NM3 H 2 중질 나프타Heavy naphtha 1.911.91 87.887.8 경질 나프타Hard naphtha 2.182.18 99.999.9 프로판Propane 2.942.94 135.2135.2 부탄butane 2.992.99 137.4137.4 디메틸에테르Dimethyl ether 1.181.18 54.054.0

기준) 2000 겨울 수소플랜트 원료가격 기준, 디메틸에테르 : 27.3 MM BTU/Ton, 4 $/MMBTUBased on 2000 winter hydrogen plant raw material price, dimethyl ether: 27.3 MM BTU / Ton, 4 $ / MMBTU

상기 표 2로부터 알 수 있는 바와 같이, 수소 제조 플랜트에서도 디메틸에테르는 다른 원료에 비해 경제적인 것으로 평가되었다.As can be seen from Table 2, dimethyl ether was evaluated to be more economical than other raw materials in a hydrogen production plant.

또한, 본 발명에 따르면 수소 함량이 높은 합성가스를 얻을 수 있는 바, 높은 수소 함량을 필요로 하는 암모니아 제조 공정 또는 고농도의 수소 제조를 위한 합성가스 공정에 적합하다.In addition, according to the present invention, it is possible to obtain a synthesis gas having a high hydrogen content, which is suitable for ammonia production process requiring a high hydrogen content or a synthesis gas process for producing a high concentration of hydrogen.

전술한 바와 같이, 본 발명에 따라 상용 니켈 계열 촉매를 사용하여 디메틸에테르 수증기 개질 또는 이산화탄소-수증기 개질 반응을 실시한 결과, 디메틸에테르에서 합성가스로의 높은 전환율을 나타내었고, 또한 수소 선택성이 높았으며, 종래 메탄 개질에 비해 동량의 수소 제조시 필요한 반응소비열이 약 절반수준으로서,에너지 효율 측면에서도 우수하며, 동일 원료 주입시 더욱 많은 양의 수소를 경제적으로 생산할 수 있었다.As described above, dimethyl ether steam reforming or carbon dioxide-steam reforming reaction using a commercial nickel-based catalyst according to the present invention showed high conversion of dimethyl ether to syngas, and also had high hydrogen selectivity. Compared to methane reforming, the heat of reaction consumption required for the production of the same amount of hydrogen is about half the level, which is excellent in terms of energy efficiency.

이하, 하기 실시예를 통하여 본 발명을 좀 더 구체적으로 설명하지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.

실시예Example

실시예 전반에 걸쳐 수증기 개질 촉매를 충진한 개질 반응기, 물을 공급하는 펌프 및 수증기 발생장치, 미반응 수증기를 제거하기 위한 응축기, 반응기체를 분석하기 위한 분석장비로 구성된 장치를 사용하였다.Throughout the examples, a reformer reactor filled with a steam reforming catalyst, a pump for supplying water and a steam generator, a condenser for removing unreacted steam, and an analysis device for analyzing the reactant were used.

물은 해당 반응압력에 수증기로 존재하도록 가열하여, 수증기의 응축을 방지하기 위해 수증기 온도 이상으로 가열된 디메틸에테르 기체와 함께 개질 반응기로 공급된다. 개질 반응기에서 생성된 수소, 이산화탄소, 일산화탄소, 미량의 메탄 등을 포함한 합성가스는 디메틸에테르의 예열을 위한 열교환기를 거친 후, 저온으로 유지되는 응축기를 거쳐 미반응 수증기를 포함한 액체를 분리한 후, 실시간으로 분석되는 기체분석장비에 도입되어 분석되었다.The water is heated to the presence of steam at the reaction pressure and fed to the reforming reactor together with the dimethyl ether gas heated above the steam temperature to prevent condensation of the steam. Synthetic gas containing hydrogen, carbon dioxide, carbon monoxide, trace methane, etc. generated in the reforming reactor passes through a heat exchanger for preheating dimethyl ether, and after separating the liquid containing unreacted water vapor through a condenser kept at low temperature, It was introduced into the gas analyzer which is analyzed by.

실시예 1Example 1

니켈 함량 12중량%에 칼륨과 실리카를 조촉매로 함유한 마그네시아/알루미나 개질 촉매(이하, 촉매 A)하에서, 수증기 대 탄소비(S:C)를 1.5로 고정한 후, 반응온도에 따른 전환율과 선택도를 측정하여, 그 결과를 하기 표 3에 나타내었다.Under a magnesia / alumina modified catalyst containing 12% by weight of nickel and a silica as a cocatalyst (hereinafter referred to as catalyst A), the water vapor to carbon ratio (S: C) was fixed at 1.5, followed by the conversion and selection according to the reaction temperature. Figures were measured and the results are shown in Table 3 below.

S:C(steam to carbon ratio)S: C (steam to carbon ratio) 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 온도(℃)Temperature (℃) 500500 600600 700700 800800 830830 전환율(%)% Conversion 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 선택도(%)Selectivity (%) COCO 3.43.4 25.925.9 63.863.8 86.186.1 81.281.2 CO2 CO 2 38.038.0 33.533.5 16.516.5 8.08.0 11.111.1 CH4 CH 4 58.658.6 40.640.6 19.719.7 5.95.9 7.67.6 H2 H 2 29.029.0 56.156.1 82.182.1 94.494.4 94.194.1 생성물(몰%)건량(dry base) 기준Product (mol%) on dry base COCO 2.32.3 12.712.7 22.822.8 28.628.6 23.723.7 CO2 CO 2 25.725.7 16.516.5 5.95.9 2.62.6 3.23.2 H2 H 2 32.432.4 50.950.9 64.364.3 66.766.7 70.870.8 CH4 CH 4 39.639.6 19.919.9 7.07.0 2.02.0 2.22.2

상기 표 3으로부터 알 수 있는 바와 같이, 디메틸에테르는 500℃이하의 낮은 온도에서, 좀더 바람직하게는 선행실험에서 400℃이상의 온도에서 완전히 합성가스로 전환되었으며, 반응온도가 증가함에 따라 메탄의 함량이 줄어들며, 수소 함량 및 선택도가 높이 증가하였다.As can be seen from Table 3, the dimethyl ether is completely converted to the synthesis gas at a temperature of less than 500 ℃, more preferably at a temperature of 400 ℃ or more in the previous experiment, the content of methane increases as the reaction temperature increases Decreased, and the hydrogen content and selectivity increased.

실시예 2Example 2

상기 실시예 1의 촉매 A하에서, 반응온도를 800/830℃로 고정하고, 수증기 대 탄소비에 따른 전환율과 선택도를 측정하여, 그 결과를 하기 표 4에 나타내었다.Under catalyst A of Example 1, the reaction temperature was fixed at 800/830 ° C., and the conversion and selectivity according to the water vapor to carbon ratio were measured, and the results are shown in Table 4 below.

S:CS: C 1.51.5 22 2.52.5 33 1.51.5 22 2.52.5 33 온도(℃)Temperature (℃) 800800 800800 800800 800800 830830 830830 830830 830830 전환율(%)% Conversion 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 선택도(%)Selectivity (%) COCO 86.186.1 79.379.3 70.870.8 70.770.7 81.281.2 82.482.4 68.668.6 64.464.4 CO2 CO 2 8.08.0 17.017.0 28.128.1 28.128.1 11.111.1 14.714.7 30.230.2 35.235.2 CH4 CH 4 5.95.9 3.83.8 1.21.2 1.21.2 7.67.6 2.92.9 1.21.2 0.40.4 H2 H 2 94.494.4 96.896.8 99.299.2 99.299.2 94.194.1 97.897.8 99.299.2 99.799.7 생성물(몰%)건량 기준Product (mol%) dry matter basis COCO 28.628.6 24.424.4 18.118.1 17.817.8 23.723.7 22.522.5 17.617.6 16.816.8 CO2 CO 2 2.62.6 5.25.2 7.27.2 7.17.1 3.23.2 4.04.0 7.87.8 9.29.2 H2 H 2 66.766.7 69.269.2 74.474.4 74.874.8 70.870.8 72.772.7 74.374.3 74.074.0 CH4 CH 4 2.02.0 1.21.2 0.30.3 0.30.3 2.22.2 0.80.8 0.30.3 0.10.1

상기 표 4로부터 알 수 있는 바와 같이, 디메틸에테르는 상기 조건에서 완전히 합성가스로 전환되었고, 또한 디메틸에테르는 수증기 대 탄소비가 증가할수록 메탄 함량이 감소하고, 수소함량 및 선택도가 증가하여 반응이 활발히 일어나는 것을 확인할 수 있었다. 이외 일산화탄소 함량과 선택도는 감소하였는데, 이는 수증기 대 탄소비가 증가함에 따라, 수성가스 전환 반응을 통해 이산화탄소로 전환되기 때문이며, 따라서, 이산화탄소의 함량과 선택도는 상대적으로 증가하는 것을 확인할 수 있었다.As can be seen from Table 4, dimethyl ether was completely converted to syngas under the above conditions, and dimethyl ether was reacted by increasing methane content and increasing hydrogen content and selectivity with increasing steam to carbon ratio. I could confirm that it happened. In addition, the carbon monoxide content and selectivity decreased, since the water vapor-to-carbon ratio was increased, which is converted to carbon dioxide through a water gas conversion reaction, and thus, the content and selectivity of carbon dioxide were relatively increased.

실시예 3Example 3

니켈 함량 15중량%에 칼슘을 조촉매로 함유하는 개질 촉매(이하, 촉매 B)하에서, 반응온도를 800/830℃로 고정하고, 수증기 대 탄소비에 따른 전환율과 선택도를 측정하여, 그 결과를 하기 표 5에 나타내었다.Under a modified catalyst containing 15% by weight of nickel as a promoter as calcium (hereinafter referred to as catalyst B), the reaction temperature was fixed at 800/830 ° C, and the conversion and selectivity according to the water vapor to carbon ratio were measured. It is shown in Table 5 below.

S:CS: C 1.51.5 22 2.52.5 33 1.51.5 22 2.52.5 33 온도(℃)Temperature (℃) 800800 800800 800800 800800 830830 830830 830830 830830 전환율(%)% Conversion 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 100.0100.0 선택도(%)Selectivity (%) COCO 87.387.3 88.088.0 83.083.0 63.263.2 90.790.7 89.989.9 73.473.4 60.960.9 CO2 CO 2 4.04.0 5.35.3 14.814.8 36.236.2 4.34.3 7.27.2 26.226.2 38.938.9 CH4 CH 4 8.78.7 6.76.7 2.22.2 0.50.5 5.05.0 2.92.9 0.40.4 0.20.2 H2 H 2 92.092.0 94.694.6 98.398.3 99.699.6 96.396.3 97.897.8 99.799.7 99.899.8 생성물(몰%)건량 기준Product (mol%) dry matter basis COCO 29.029.0 26.326.3 23.523.5 16.616.6 25.525.5 25.025.0 20.820.8 16.016.0 CO2 CO 2 1.31.3 1.61.6 4.24.2 9.59.5 1.21.2 2.02.0 7.47.4 10.210.2 H2 H 2 66.866.8 70.170.1 71.771.7 73.773.7 71.971.9 72.272.2 71.671.6 73.773.7 CH4 CH 4 2.92.9 2.02.0 0.60.6 0.10.1 1.41.4 0.80.8 0.10.1 0.10.1

상기 표 5로부터 알 수 있는 바와 같이, 디메틸에테르는 완전히 합성가스로 전환되었으며, 메탄 함량이 거의 없음을 확인할 수 있었다. 수증기 대 탄소비에 따른 영향은 실시예 2와 동일하게 수증기 대 탄소비가 증가할수록 메탄 함량이 감소하고, 수소함량 및 선택도가 증가하여 반응이 활발히 일어났다.As can be seen from Table 5, the dimethyl ether was completely converted to the synthesis gas, it could be confirmed that almost no methane content. The effect of water vapor to carbon ratio was the same as that of Example 2, and as the water vapor to carbon ratio increased, the methane content decreased, the hydrogen content and selectivity increased, and the reaction occurred actively.

전술한 바와 같이, 본 발명에 따라 종래의 상용 개질 촉매, 즉 니켈을 주성분으로 하며 알칼리 금속 및 알칼리 토금속을 조촉매로 함유하는 개질 촉매를 사용하여 디메틸에테르로부터 합성가스로 완전 전환할 수 있었고, 이는 상용 니켈 촉매하에서 수증기 개질 반응기 장치에 큰 변경 없이 디메틸에테르를 원료로 사용한 것으로, 나프타 등의 기존 원료에 비교하여 수증기 개질 반응에 필요한 열량이 감축되어 운전비용을 절감시키고, 반응기 수명을 연장시키며, 생산성을 향상시킬 수 있다.As described above, according to the present invention, a conventional commercial reforming catalyst, that is, a reforming catalyst containing nickel as a main component and an alkali metal and an alkaline earth metal as a promoter, can be used to completely convert from dimethyl ether to syngas. It uses dimethyl ether as a raw material without any major changes in steam reforming reactor equipment under commercial nickel catalysts, and reduces the heat required for steam reforming reactions compared to conventional raw materials such as naphtha, thus reducing operating costs, extending reactor life, and improving productivity. Can improve.

Claims (4)

5 내지 40중량%의 니켈을 주성분으로 하고, 보조성분으로 알칼리 금속과 알칼리 토금속을 함유하는 개질 촉매하, 200 내지 900℃의 반응온도에서 디메틸에테르 또는 디메틸에테르 혼합원료를 수증기 개질하여 합성가스를 제조하는 방법.Synthesis gas was prepared by steam reforming dimethyl ether or dimethyl ether mixed raw materials at a reaction temperature of 200 to 900 ° C. under a reforming catalyst containing 5 to 40 wt% nickel as a main component and alkali metal and alkaline earth metal as auxiliary components. How to. 제1항에 있어서, 상기 수증기에 대해 디메틸에테르 중의 탄소의 몰비는 1: 0.5 내지 6인 것을 특징으로 하는 방법.The method of claim 1 wherein the molar ratio of carbon in dimethyl ether to water vapor is 1: 0.5 to 6. 제1항에 있어서, 상기 얻어진 합성가스의 주성분이 수소인 것을 특징으로 하는 방법.The method according to claim 1, wherein the main component of the obtained synthesis gas is hydrogen. 제1항에 있어서, 상기 디메틸에테르 혼합원료는 디메틸에테르를 1% 이상 함유하는 나프타, LPG, LNG, 메탄, 에탄, 프로판, 부탄, 메탄올, 및 에탄올로 이루어진 군으로부터 선택된 적어도 하나를 포함하는 것을 특징으로 하는 방법.The method of claim 1, wherein the dimethyl ether mixed raw material comprises at least one selected from the group consisting of naphtha, LPG, LNG, methane, ethane, propane, butane, methanol, and ethanol containing 1% or more of dimethyl ether. How to.
KR1020020049565A 2002-08-21 2002-08-21 Method for preparing synthesis gas from dimethyl ether KR20040017491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020049565A KR20040017491A (en) 2002-08-21 2002-08-21 Method for preparing synthesis gas from dimethyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020049565A KR20040017491A (en) 2002-08-21 2002-08-21 Method for preparing synthesis gas from dimethyl ether

Publications (1)

Publication Number Publication Date
KR20040017491A true KR20040017491A (en) 2004-02-27

Family

ID=37323029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020049565A KR20040017491A (en) 2002-08-21 2002-08-21 Method for preparing synthesis gas from dimethyl ether

Country Status (1)

Country Link
KR (1) KR20040017491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007574A (en) * 2004-07-20 2006-01-26 한국화학연구원 Preparation of hydrogen for membrane reactor
WO2015194876A1 (en) * 2014-06-19 2015-12-23 한국에너지기술연구원 Catalyst for dimethyl ether steam reforming reaction and water gas shift reaction, and method for preparing syngas using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154303A (en) * 1979-05-18 1980-12-01 Toyo Eng Corp Method and apparatus for steam-reforming hydrocarbon
JPH01148343A (en) * 1987-12-02 1989-06-09 Res Dev Corp Of Japan Catalyst for production of synthesis gas
KR950024803A (en) * 1994-02-26 1995-09-15 강박광 Nickel-supported catalyst for hydrocarbon reforming and preparation method thereof
JPH09118501A (en) * 1995-07-21 1997-05-06 Haldor Topsoee As Preparation of hydrogen rich gas
JPH10174870A (en) * 1996-12-18 1998-06-30 Nkk Corp Catalyst for production of hydrogen and production of hydrogen
KR19990068056A (en) * 1998-01-21 1999-08-25 지롤라 죠지오 PROCESS FOR PREPARATlON OF HYDROGEN-RICH GAS
JPH11300205A (en) * 1998-04-17 1999-11-02 Nkk Corp Catalyst for production of synthetic gas and production of synthetic gas
KR100373620B1 (en) * 1994-12-15 2003-06-09 비피 코포레이션 노쓰 아메리카 인코포레이티드 Process for producing hydrogen and carbon oxides from dimethyl ether

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154303A (en) * 1979-05-18 1980-12-01 Toyo Eng Corp Method and apparatus for steam-reforming hydrocarbon
JPH01148343A (en) * 1987-12-02 1989-06-09 Res Dev Corp Of Japan Catalyst for production of synthesis gas
KR950024803A (en) * 1994-02-26 1995-09-15 강박광 Nickel-supported catalyst for hydrocarbon reforming and preparation method thereof
KR100373620B1 (en) * 1994-12-15 2003-06-09 비피 코포레이션 노쓰 아메리카 인코포레이티드 Process for producing hydrogen and carbon oxides from dimethyl ether
JPH09118501A (en) * 1995-07-21 1997-05-06 Haldor Topsoee As Preparation of hydrogen rich gas
JPH10174870A (en) * 1996-12-18 1998-06-30 Nkk Corp Catalyst for production of hydrogen and production of hydrogen
KR19990068056A (en) * 1998-01-21 1999-08-25 지롤라 죠지오 PROCESS FOR PREPARATlON OF HYDROGEN-RICH GAS
JPH11300205A (en) * 1998-04-17 1999-11-02 Nkk Corp Catalyst for production of synthetic gas and production of synthetic gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007574A (en) * 2004-07-20 2006-01-26 한국화학연구원 Preparation of hydrogen for membrane reactor
WO2015194876A1 (en) * 2014-06-19 2015-12-23 한국에너지기술연구원 Catalyst for dimethyl ether steam reforming reaction and water gas shift reaction, and method for preparing syngas using same

Similar Documents

Publication Publication Date Title
EP2167420B1 (en) Conversion of carbon dioxide to methanol using bi-reforming of methane or natural gas
US8198338B2 (en) Process for producing liquid fuel from carbon dioxide and water
AU2010234506B2 (en) Rendering natural gas as an environmentally carbon dioxide neutral fuel and a regenerative carbon source
AU2010234500B2 (en) Rendering coal as an environmentally carbon dioxide neutral fuel and a regenerative carbon source
US8697759B1 (en) Efficient, self sufficient production of methanol from a methane source via oxidative bi-reforming
KR100373620B1 (en) Process for producing hydrogen and carbon oxides from dimethyl ether
US8461218B2 (en) Rendering petroleum oil as an environmentally carbon dioxide neutral source material for fuels, derived products and as a regenerative carbon source
WO2009065352A1 (en) Integrated coal-to-liquids process
CA3171759A1 (en) Production of hydrocarbons
KR20040017491A (en) Method for preparing synthesis gas from dimethyl ether
KR20060002904A (en) Process for the preparation of a hydrogen-rich stream
RU2458966C1 (en) Method of processing organic material (versions)
WO2023187147A1 (en) Conversion of carbon dioxide to gasoline using e-smr

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application