KR20040016644A - Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same - Google Patents

Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same Download PDF

Info

Publication number
KR20040016644A
KR20040016644A KR1020020048918A KR20020048918A KR20040016644A KR 20040016644 A KR20040016644 A KR 20040016644A KR 1020020048918 A KR1020020048918 A KR 1020020048918A KR 20020048918 A KR20020048918 A KR 20020048918A KR 20040016644 A KR20040016644 A KR 20040016644A
Authority
KR
South Korea
Prior art keywords
thin film
cerium
mixed liquid
semiconductor light
emitting device
Prior art date
Application number
KR1020020048918A
Other languages
Korean (ko)
Inventor
최원철
Original Assignee
주식회사 다산 씨.앤드.아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다산 씨.앤드.아이 filed Critical 주식회사 다산 씨.앤드.아이
Priority to KR1020020048918A priority Critical patent/KR20040016644A/en
Publication of KR20040016644A publication Critical patent/KR20040016644A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: A cerium-silicate thin film for a semiconductor light-emitting apparatus using a mixed liquid is provided to form a cerium-silicate thin film on a substrate and simplify a fabricating process by adopting the cerium-silicate thin film in a blue light emitting apparatus used to be fabricated by using expensive gallium nitride. CONSTITUTION: A cerium-containing liquid and a silicon-containing liquid are homogenously mixed to fabricate a mixed liquid(S10). The mixed liquid is deposited on the substrate to form a thin film(S12). A rapid thermal process is performed on the deposited thin film within a constant temperature scope(S14).

Description

혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막 및 그 제조방법 {Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same}Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same}

본 발명은 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막 및 그 제조방법에 관한 것으로, 보다 상세하게는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 혼합한 혼합액상원료를 이용하여 박막형성이 가능하도록한 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막 및 그 제조방법에 관한 것이다.The present invention relates to a cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid raw material and a method for manufacturing the same, and more specifically, using a mixed liquid raw material in which a liquid raw material in which cerium is dissolved and a liquid raw material in which silicon is dissolved are mixed. The present invention relates to a cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid raw material capable of forming a thin film and a method of manufacturing the same.

종래의 청색 발광소자의 제조에 주로 이용되어진 질화갈륨(GaN)은 3.39eV의 직접천이형 밴드갭을 갖는 광대역반도체이고, 상온에서 a=3.189Å c=5.185Å의 격자상수를 갖으며, 청색 발광소자를 비롯하여 다양한 광전소자와 보호박막 등의 응용을 목적으로 많은 연구가 진행되고 있다.Gallium nitride (GaN), which is mainly used in the manufacture of a conventional blue light emitting device, is a broadband semiconductor having a direct transition bandgap of 3.39 eV, has a lattice constant of a = 3.189 Å c = 5.185 에서 at room temperature, and emits blue light. Many researches are being conducted for the purpose of application of various photoelectric devices and protective thin films, including devices.

또한, 질화갈륨은 높은 용융점, 화학적 안정, 물리적으로 높은 경도, 방사능(radiation)에 대한 높은 저항력 등 여러 가지 장점을 갖고 있으나, 양질의 질화갈륨 박막을 성장시킬 수 없다는 문제로 인하여 크게 발전하지 못하고 있는 실정이다.In addition, gallium nitride has various advantages such as high melting point, chemical stability, physically high hardness, and high resistance to radiation, but has not been greatly developed due to the inability to grow high quality gallium nitride thin film. It is true.

양질의 질화갈륨 박막 성장을 위해서는 고품위 질화갈륨 단결정 기판이 필요하게 되는데, 질화갈륨은 융점이 2400℃ 정도이고, 5족 질소의 분압이 3족보다 훨씬 크기 때문에 질화갈륨 단결정 기판을 성장시키기 위해서는 40,000기압의 질소압력이 필요하게 된다.High-quality gallium nitride single crystal substrates are required for the growth of high quality gallium nitride thin films. Since gallium nitride has a melting point of about 2400 ° C and a partial pressure of Group 5 nitrogen is greater than Group 3, it is necessary to grow 40,000 atm to grow gallium nitride single crystal substrates. Nitrogen pressure is required.

이에 따라, Si, GaAs, Inp와 같은 반도체 단결정 성장 기술로는 질화갈륨 단결정 제조가 불가능하여, 이를 이용한 질화갈륨 단결정 기판의 확보가 불가능하고, 질화갈륨과 비슷한 격자상수와 열팽창계수를 갖는 물질이 존재하지 않아, 양질의 단결정 박막성장을 적용한 소자의 제조가 어렵다.Accordingly, it is impossible to manufacture gallium nitride single crystals using semiconductor single crystal growth techniques such as Si, GaAs, and Inp. Therefore, it is impossible to secure a gallium nitride single crystal substrate using the same, and there is a material having a lattice constant and thermal expansion coefficient similar to that of gallium nitride. Therefore, it is difficult to manufacture a device to which high quality single crystal thin film growth is applied.

질화갈륨 박막의 성장에는 격자 부정합도와 열팽창계수 부정합도가 큰 사파이어(sapphire)와 같은 이종기판을 주로 사용하나, 질화갈륨 박막과 기판 사이에격자상수와 열팽창계수의 차이가 크므로, 고성능 질화갈륨 박막을 얻기가 어려우며, 마그네슘(Mg)이 도핑된 p-형 질화갈륨 박막의 경우 반응기내의 여러 수소원에 기인하여 박막 내에 Mg-H 복합체를 형성하여 반절연체적인 특성이 있어 고성능 p-형 질화갈륨 박막을 얻는데 문제점이 있다.For the growth of gallium nitride thin films, dissimilar substrates such as sapphire with large lattice mismatch and thermal expansion mismatch are mainly used.However, the difference in lattice constant and coefficient of thermal expansion between gallium nitride thin film and substrate is large. P-type gallium nitride thin film doped with magnesium (Mg) is difficult to obtain, and due to the various hydrogen sources in the reactor, Mg-H composites are formed in the thin film to have a semi-insulator characteristic, which is a high performance p-type gallium nitride thin film There is a problem in getting.

전술한 바와 같이, 질화갈륨과 사파이어 기판은 제조가 어렵고, 제조공정이 복잡할 뿐만 아니라, 원가가 비싸 경제적으로도 문제점이 있다.As described above, gallium nitride and sapphire substrates are difficult to manufacture, the manufacturing process is complicated, and the cost is expensive, there is also a problem economically.

따라서, 본 발명은 이러한 종래의 문제점을 해결하기 위한 것으로써, 본 발명의 목적은 실리콘 기판을 사용하여 세륨-실리케이트 박막을 성장시킴과 함께 보다 간단한 반도체 발광장치 제조공정을 제공하는데 있다.Accordingly, an object of the present invention is to provide a simpler semiconductor light emitting device manufacturing process while growing a cerium-silicate thin film using a silicon substrate.

본 발명의 다른 목적과 특징들은 이하에 서술되는 바람직한 실시예를 통하여 보다 명확하게 이해될 것이다.Other objects and features of the present invention will be more clearly understood through the preferred embodiments described below.

도 1은 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법을 설명하기 위한 플로우차트이다.1 is a flowchart illustrating a method of manufacturing a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

도 2는 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 혼합박막 형성을 보인 개념도이다.2 is a conceptual diagram showing the formation of a mixed thin film of a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

도 3a 내지 도 3d는 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막 제조방법의 실시예에 따른 결과를 보인 그래프이다.3A to 3D are graphs illustrating results of an embodiment of a method of manufacturing a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 고루 섞어 혼합액상원료를 제조하고, 혼합 액상원료를 기판에 박막 증착하며, 박막 증착된 것을 일정 온도구간에서 급속 열처리를 행하여 제조되는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막이 제공된다.Mixed liquid raw material prepared by mixing the liquid raw material in which the cerium is dissolved with the liquid raw material in which the silicon is dissolved, and depositing the mixed liquid raw material on the substrate, and rapidly depositing the thin film deposited on the substrate at a predetermined temperature range. A cerium-silicate thin film for semiconductor light emitting device is provided.

또한, 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 고루 섞어혼합액상원료를 제조하는 단계와, 혼합 액상원료를 기판에 박막 증착하는 단계와,박막 증착된 것을 일정 온도구간에서 급속 열처리를 행하는 단계를 포함하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법이 제공된다.In addition, the step of preparing a mixed liquid raw material by mixing the liquid raw material in which the cerium is dissolved and the liquid raw material in which the silicon is dissolved, the step of thin film deposition of the mixed liquid raw material on the substrate, and rapid heat treatment of the thin film deposited in a certain temperature range A method for producing a cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid raw material comprising the step of performing.

혼합 액상원료는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 각각 몰비 1:0.98의 비율로 혼합하고, 혼합 액상원료는 반응을 활발하게 하기 위한 물과, 반응의 안정을 위한 착화제 및 용매를 포함하며, 기판은 실리콘기판 또는 실리콘 산화막 기판을 사용한다.The mixed liquid raw material mixes the liquid raw material in which the cerium is dissolved and the liquid raw material in which the silicon is dissolved in a ratio of 1: 0.98, respectively, and the mixed liquid raw material is water for activating the reaction, a complexing agent for stabilizing the reaction, The solvent is used, and the substrate is a silicon substrate or a silicon oxide substrate.

박막 증착은 회전증착법에 의하여 이루어지고, 급속 열처리는 900℃의 온도에서 이루어지며, 열처리시간은 1분 이상이다.Thin film deposition is carried out by a rotary deposition method, rapid heat treatment is carried out at a temperature of 900 ℃, heat treatment time is more than 1 minute.

이하, 본 발명의 실시예를 첨부된 도면을 참조하여 자세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법을 설명하기 위한 플로우차트이다.1 is a flowchart illustrating a method of manufacturing a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 혼합하여 혼합 액상원료를 제조한다(단계 S10). 이때, Ce(OCH2CH2OCH3)3 1몰, Si(OC2H5)4 0.98몰 내지 1.1몰의 비율로 혼합하는데, 혼합시 용매(CH3OCH2CH2OH)와 물(H20 3몰)을 넣어주어 가수분해와 축중합반응을 활발하게 한 후, 어느 정도 반응이 활발해지면 솔루션의 안정을 위해 착화제(CH3COCH2COCH3 2몰)를 넣어준다.Cerium is dissolved in the liquid raw material and silicon is dissolved in the liquid raw material to prepare a mixed liquid raw material (step S10). At this time, 1 mole of Ce (OCH2CH2OCH3) 3 and 0.98 mole to 1.1 mole of Si (OC2H5) 4 are mixed, and during the mixing, the solvent (CH3OCH2CH2OH) and water (H20 3 mole) are added to facilitate the hydrolysis and the polycondensation reaction. After the reaction is activated to some extent, a complexing agent (2 mol of CH 3 COCH 2 COCH 3) is added to stabilize the solution.

혼합 액상원료를 스핀코터(spin coater)를 사용하여 실리콘 기판에 코팅하는방법으로 박막을 형성하며(단계 S12), 코팅 직후의 시료들은 혼합 비율에 따라 박막상태가 다르게 나타나는데, 원료가 몰비로 각각 1:1과 1:1.1의 비율을 갖는 시료는 박막에 많은 입자들이 뭉쳐있는 현상이 나타나고, 1:0.98의 비율을 갖는 시료는 깨끗하고 균일한 박막이 형성된다.A thin film is formed by coating a mixed liquid raw material on a silicon substrate using a spin coater (step S12), and the samples immediately after coating have different thin film states depending on the mixing ratio. Samples with a ratio of 1: 1 and 1: 1.1 show a large number of particles in the thin film. Samples with a ratio of 1: 0.98 form a clean and uniform film.

또한, 코팅 직후의 시료에서는 옐로우(550nm) 영역의 강한 상온 광 여기(PL; Photoluminescence)가 관측되었으며, 이러한 옐로우 영역의 발광은 박막 속에 남아있는 산소 등 여러 가지 성분들의 화학적 결합에 의한 것으로 판단된다.In addition, in the sample immediately after coating, strong room temperature photoexcitation (PL) in the yellow (550 nm) region was observed, and the emission of the yellow region was determined by chemical bonding of various components such as oxygen remaining in the thin film.

박막 형성 후, 일정범위의 온도(600℃ 내지 1100℃의 온도구간)로 급속 열처리를 행하며(단계 S14), 열처리를 행한 결과 옐로우 영역의 발광은 없어지고 바이올렛(400nm)영역의 상온 광 발광현상이 얻어진다. 열처리 공정까지 마치면 발광현상을 갖는 반도체 발광장치용 세륨-실리케이트 박막이 제조된다(단계 S16).After the thin film is formed, rapid heat treatment is performed at a predetermined range of temperature (temperature range of 600 ° C. to 1100 ° C.) (step S14). As a result of the heat treatment, light emission of the yellow region disappears and room temperature photoluminescence of the violet (400 nm) region occurs. Obtained. After the heat treatment process, a cerium-silicate thin film for a semiconductor light emitting device having a luminescence is produced (step S16).

도 2는 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 혼합박막 형성을 보인 개념도이다.2 is a conceptual diagram showing the formation of a mixed thin film of a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

바람직하게, 박막 형성방법 중의 하나인 액상원료를 이용하는 스핀코터를 사용하여 실리콘 기판에 코팅하는 방법으로 혼합 박막을 형성할 수 있으며, 일반적으로 스핀코터를 사용한 코팅은 증착, 스핀-업(spin-up), 스핀-오프(spin-off), 증발의 단계로 이루어진다.Preferably, a mixed thin film may be formed by coating a silicon substrate using a spin coater using a liquid raw material, which is one of thin film forming methods. In general, a coating using a spin coater is deposited and spin-up. ), Spin-off, and evaporation.

증착 단계에서 과량의 혼합 액상원료(20)를 기판(40)위에 올려놓으며, 이때 사용되는 기판(40)으로는 실리콘 기판(40) 또는 실리콘 산화막 기판(40)을 사용한다. 스핀-업 단계에서 모터의 회전에 의해 회전판(50)이 회전하게 되고, 원심력에의하여 혼합 액상원료(20)는 매우 빠른 속도로 퍼져나가며, 스핀-오프 단계에서 과량의 혼합 액상원료(20)가 주변으로 흐르게 되어 방울처럼 원심력 방향으로 떨어지게 된다.An excess amount of the mixed liquid raw material 20 is placed on the substrate 40 in the deposition step, and the substrate 40 used here uses a silicon substrate 40 or a silicon oxide substrate 40. The rotating plate 50 is rotated by the rotation of the motor in the spin-up step, and the mixed liquid raw material 20 spreads at a very high speed by the centrifugal force, and the excess mixed liquid raw material 20 is spun in the spin-off step. It flows around and falls like a drop in the direction of centrifugal force.

이때, 얇은 막의 필름일 경우 흐름에 대한 저항성이 커지고, 스핀-업, 스핀-오프 단계에서 연속적으로 일어난 증발에 의한 점도 증가로 인하여 혼합박막(30)의 두께가 얇아짐에 따라 스핀-오프 단계에 시편의 말단에서 발생하는 방울의 양이 감소하게 되며, 증발 단계에서 생성된 혼합박막(30)의 두께가 더욱 얇아지게 된다.At this time, in the case of a thin film, the resistance to flow increases, and as the thickness of the mixed thin film 30 becomes thin due to the increase in viscosity due to evaporation continuously occurring in the spin-up and spin-off steps, the spin-off step is performed. The amount of droplets generated at the ends of the specimens is reduced, and the thickness of the mixed thin film 30 generated in the evaporation step becomes thinner.

스핀코터를 이용한 박막 형성방법은 일반적으로 초기에는 혼합박막(30)의 두께가 균일하지 않더라도 증착, 스핀-업, 스핀-오프, 증발 단계를 거친 후 결과적으로는 균일한 두께의 혼합박막(30)을 얻을 수 있게 된다.In general, a thin film forming method using a spin coater is generally performed after the deposition, spin-up, spin-off, and evaporation steps even though the thickness of the mixed thin film 30 is not uniform. You will get

도 3a 내지 도 3d는 본 발명에 따른 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막 제조방법의 실시예에 따른 결과를 보인 그래프이다.3A to 3D are graphs illustrating results of an embodiment of a method of manufacturing a cerium-silicate thin film for a semiconductor light emitting device using the mixed liquid material according to the present invention.

각 신호들(101 내지 118)의 열처리 온도는 표 1과 같으며, 각 온도의 질소분위기에서 열처리하여 상온 광 여기를 측정한다.The heat treatment temperatures of the signals 101 to 118 are shown in Table 1, and are subjected to heat treatment in a nitrogen atmosphere at each temperature to measure room temperature optical excitation.

표1Table 1

도면부호Drawing 열처리온도(℃)Heat treatment temperature (℃) 도면부호Drawing 열처리온도(℃)Heat treatment temperature (℃) 도면부호Drawing 열처리온도(℃)Heat treatment temperature (℃) 101101 -- 107107 900900 113113 900900 102102 500500 108108 -- 114114 800800 103103 700700 109109 900900 115115 700700 104104 900900 110110 -- 116116 -- 105105 950950 111111 11001100 117117 900900 106106 11001100 112112 10001000 118118 10001000

도 3a는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 몰비로1:1의 비율이 되도록 혼합한 혼합 액상원료를 실리콘 기판 위에 증착한 후, 급속 열처리시 열처리 온도를 각각 달리하여 상온 광 여기를 측정한 신호들을 보인 그래프이다.Figure 3a is deposited on a silicon substrate mixed liquid raw material mixed with a liquid material in which the cerium melted and a liquid material in which the silicon is dissolved in a molar ratio of 1: 1: room temperature light by varying the heat treatment temperature during rapid heat treatment Here is a graph of the measured signals.

열처리 과정 전에는 매우 약한 옐로우 영역의 발광현상을 보였으나, 다양한 온도에서 열처리한 결과 1000℃와 900℃에서 같은 세기의 바이올렛영역 발광을 볼 수 있으며, 같은 900℃에서의 열처리에서도 열처리 시간이 길어질수록 발광의 세기가 커지는 것을 관측하였다.Before the heat-treatment process, light emission of very weak yellow region was observed, but as the result of heat treatment at various temperatures, violet light emission of the same intensity can be seen at 1000 ℃ and 900 ℃. The intensity of was observed to increase.

바람직하게, 열처리 시간은 1분 이상이 소요될 수 있다.Preferably, the heat treatment time may take more than 1 minute.

도 3b는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 몰비로 1:1의 비율이 되도록 혼합한 혼합 액상원료를 실리콘 산화막 기판 위에 증착한 후, 급속 열처리시 열처리 온도를 각각 달리하여 상온 광 여기를 측정한 신호들을 보인 것으로, 박막을 올리는 기판을 실리콘이 아닌 실리콘에 실리콘 산화막을 형성시킨 기판을 사용하였을 때의 상온 광 여기를 측정한 신호를 보인다.Figure 3b is a mixed liquid raw material mixed with a liquid material in which the cerium is dissolved and a liquid material in which the silicon is dissolved in a molar ratio of 1: 1 on the silicon oxide film substrate, and after the rapid heat treatment, the heat treatment temperature is different at room temperature The signals obtained by measuring photoexcitation are shown. The signals obtained by measuring room temperature photoexcitation are shown when a substrate on which a thin film is used is used instead of a substrate on which a silicon oxide film is formed.

상온에서의 발광파장 영역은 실리콘 기판을 사용하였을 때와 비슷하나, 그 세기가 약 10배 이상인 것으로 나타났으며, 열처리 온도가 900℃인 경우의 짧은 열처리 시간임에도 실리콘 기판을 사용하였을 경우보다 발광의 세기가 약 6배인 것으로 관측되었다.The emission wavelength region at room temperature is similar to that when using a silicon substrate, but the intensity is about 10 times or more. Even though the heat treatment temperature is shorter when the heat treatment temperature is 900 ° C, It was observed that the intensity was about six times.

도 3c는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 몰비로 1:1.1의 비율이 되도록 혼합한 혼합 액상원료를 실리콘 기판 위에 증착한 후, 급속 열처리시 온도를 각각 달리하여 상온 광 여기를 측정한 신호들을 보인 것으로, 열처리 단계 전의 시료에서 옐로우 영역의 상온 발광을 보였고, 900℃ 열처리에서도 같은 바이올렛영역의 신호를 확인하였으나, 신호의 위치가 약간 장파장 쪽으로 이동하였고, 반치 폭도 약 2배 가량 커진 것을 관측하였다.3c is a liquid liquid material in which cerium and a liquid material in which silicon is dissolved are mixed in a molar ratio of 1: 1.1 on a silicon substrate, and then deposited on a silicon substrate. The signals were measured, and the yellow region was emitted at room temperature in the sample before the heat treatment step, and the signal of the same violet region was confirmed even at 900 ° C. heat treatment, but the position of the signal was shifted to the longer wavelength, and the half width was about 2 times. Observed the larger one.

도 3d는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 몰비로 1:0.98의 비율이 되도록 혼합한 혼합 액상원료를 실리콘 기판 위에 증착한 후, 급속 열처리시 열처리 온도를 각각 달리하여 상온 광 여기를 측정한 신호들을 보인 것으로, 1:1의 비율을 갖는 시료에서 본 결과와 유사한 반응을 보였다.3d is a liquid liquid material in which a liquid material in which cerium is dissolved and a liquid material in which silicon is dissolved is deposited at a molar ratio of 1: 0.98 on a silicon substrate. The signals measured here were shown and showed a similar response to the results seen in the sample having a ratio of 1: 1.

종합적으로, 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 혼합시 혼합비율을 몰비로 각각 1:0.98의 비율을 갖도록 구성하여 혼합한 혼합 액상원료를 사용하는 것이 박막의 균질도 및 발광의 세기 등 여러 조건에서 바람직하며, 혼합비율이 1:0.98인 경우에도 실리콘 기판을 사용하는 것보다 실리콘 산화막 기판을 사용하는 것이 바람직하다.Overall, when mixing liquid material in which cerium is dissolved and liquid material in which silicon is dissolved, the mixed liquid material composed of the mixing ratio of molar ratio of 1: 0.98, respectively, is used. It is preferable under various conditions such as strength, and even when the mixing ratio is 1: 0.98, it is preferable to use a silicon oxide film substrate rather than a silicon substrate.

이상에서는 본 발명의 바람직한 실시예를 중심으로 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지의 변형이나 변경이 가능하다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허의 청구범위에 의해 정해져야 한다.Although the above has been described with reference to the preferred embodiment of the present invention, various modifications and changes are possible without departing from the scope of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification but should be defined by the claims of the patent.

이상에서 살펴본 바와 같이, 본 발명에 따른 혼합액상원료를 이용한 반도체발광장치용 세륨-실리케이트 박막 및 그 제조방법은 고가의 질화갈륨을 사용하여 제조하던 청색 발광장치에 세륨-실리케이트 박막을 적용함으로써, 실리콘 기판 위에 형성할 수 있음과 함께 간단한 제조공정을 제공하는 효과가 있다.As described above, the cerium-silicate thin film for semiconductor light emitting device using the mixed liquid material according to the present invention and a method of manufacturing the same by applying a cerium-silicate thin film to a blue light emitting device manufactured using expensive gallium nitride, In addition to being able to form on a substrate, there is an effect of providing a simple manufacturing process.

또한, 혼합 액상원료를 사용함으로써, 후속 열처리 온도를 비교적 낮은 온도인 900℃까지 낮출 수 있는 효과가 있다.In addition, by using a mixed liquid raw material, there is an effect that the subsequent heat treatment temperature can be lowered to a relatively low temperature of 900 ℃.

Claims (12)

세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 고루 섞어 혼합액상원료를 제조하고, 상기 혼합 액상원료를 기판에 박막 증착하며, 상기 박막 증착된 것을 일정 온도구간에서 급속 열처리를 행하여 제조되는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막.A mixed liquid material prepared by mixing a liquid raw material in which cerium is dissolved with a liquid raw material in which silicon is dissolved, and depositing the mixed liquid material on a substrate, and performing the rapid heat treatment on the thin film deposited at a predetermined temperature range. Cerium-silicate thin film for semiconductor light emitting device using liquid raw materials. 제 1 항에 있어서, 상기 혼합 액상원료는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 각각 몰비 1:0.98의 비율로 혼합한 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막.The cerium-based semiconductor light emitting device using a mixed liquid material according to claim 1, wherein the mixed liquid material is a mixture of a liquid material in which cerium is dissolved and a liquid material in which silicon is dissolved at a molar ratio of 1: 0.98. Silicate thin film. 제 1 항 또는 제 2 항에 있어서, 상기 혼합 액상원료는 반응을 활발하게 하기 위한 물과, 반응의 안정을 위한 착화제 및 용매를 포함하는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막과 그 제조방법.The cerium light emitting device of claim 1 or 2, wherein the mixed liquid raw material comprises water for activating the reaction, a complexing agent and a solvent for stabilizing the reaction. -Silicate thin film and its manufacturing method. 제 1 항에 있어서, 상기 기판은 실리콘기판 또는 실리콘 산화막 기판을 사용하는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막과 그 제조방법.2. The cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid material according to claim 1, wherein the substrate comprises a silicon substrate or a silicon oxide substrate. 제 1 항에 있어서, 상기 박막 증착은 회전증착법에 의하여 이루어지는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막과 그 제조방법.2. The cerium-silicate thin film for semiconductor light emitting device using a mixed liquid material according to claim 1, wherein the thin film is deposited by a rotary deposition method and a method of manufacturing the thin film. 제 1 항에 있어서, 상기 급속 열처리는 900℃에서 이루어지며, 상기 열처리시간은 1분 이상인 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막과 그 제조방법.The cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid material according to claim 1, wherein the rapid heat treatment is performed at 900 ° C, and the heat treatment time is 1 minute or more. 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 고루 섞어 혼합액상원료를 제조하는 단계;Preparing a mixed liquid raw material by mixing the liquid raw material in which the cerium is dissolved and the liquid raw material in which the silicon is dissolved; 상기 혼합 액상원료를 기판에 박막 증착하는 단계;Depositing a thin film of the mixed liquid material on a substrate; 상기 박막 증착된 것을 일정 온도구간에서 급속 열처리를 행하는 단계를 포함하는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법.The method of manufacturing a cerium-silicate thin film for a semiconductor light-emitting device using a mixed liquid material, characterized in that it comprises the step of performing a rapid heat treatment of the thin film deposited in a predetermined temperature section. 제 7 항에 있어서, 상기 혼합 액상원료는 세륨이 녹아있는 액체원료와 실리콘이 녹아있는 액체원료를 각각 몰비 1:0.98의 비율로 혼합한 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법.The cerium-based semiconductor light-emitting device using a mixed liquid material according to claim 7, wherein the mixed liquid material is a liquid material in which cerium is dissolved and a liquid material in which silicon is dissolved in a ratio of 1: 0.98. Method for producing a silicate thin film. 제 7 항 또는 제 8 항에 있어서, 상기 혼합 액상원료는 반응을 활발하게 하기 위한 물과, 반응의 안정을 위한 착화제 및 용매를 포함하는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법.The cerium light emitting device of claim 7 or 8, wherein the mixed liquid raw material includes water for activating the reaction, a complexing agent and a solvent for stabilizing the reaction. -Method of manufacturing the silicate thin film. 제 7 항에 있어서, 상기 기판은 실리콘기판 또는 실리콘 산화막 기판을 사용하는 것을 특징으로 하는 반도체 발광장치용 혼합액상원료를 이용한 세륨-실리케이트 박막의 제조방법.8. The method of manufacturing a cerium-silicate thin film using a mixed liquid phase raw material for a semiconductor light emitting device according to claim 7, wherein the substrate is a silicon substrate or a silicon oxide substrate. 제 7 항에 있어서, 상기 박막 증착은 회전증착법에 의하여 이루어지는 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법.8. The method of manufacturing a cerium-silicate thin film for a semiconductor light emitting device using a mixed liquid material according to claim 7, wherein the thin film deposition is performed by a rotary deposition method. 제 7 항에 있어서, 상기 급속 열처리는 900℃에서 이루어지며, 상기 열처리시간은 1분 이상인 것을 특징으로 하는 혼합액상원료를 이용한 반도체 발광장치용 세륨-실리케이트 박막의 제조방법.The method of claim 7, wherein the rapid heat treatment is performed at 900 ° C., and the heat treatment time is 1 minute or more. 9.
KR1020020048918A 2002-08-19 2002-08-19 Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same KR20040016644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020048918A KR20040016644A (en) 2002-08-19 2002-08-19 Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020048918A KR20040016644A (en) 2002-08-19 2002-08-19 Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same

Publications (1)

Publication Number Publication Date
KR20040016644A true KR20040016644A (en) 2004-02-25

Family

ID=37322577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020048918A KR20040016644A (en) 2002-08-19 2002-08-19 Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same

Country Status (1)

Country Link
KR (1) KR20040016644A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330380A (en) * 1994-06-14 1995-12-19 Nippon Sheet Glass Co Ltd Ultraviolet ray shielding glass
JPH09295891A (en) * 1996-04-30 1997-11-18 Rikagaku Kenkyusho Rare earth element-doped-silicon material and its production
JPH10292056A (en) * 1997-04-18 1998-11-04 Asahi Glass Co Ltd Fluororesin film
KR20010090952A (en) * 2000-04-08 2001-10-22 박호군 Light emitting material using cerium silicate and its manufacturaing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330380A (en) * 1994-06-14 1995-12-19 Nippon Sheet Glass Co Ltd Ultraviolet ray shielding glass
JPH09295891A (en) * 1996-04-30 1997-11-18 Rikagaku Kenkyusho Rare earth element-doped-silicon material and its production
JPH10292056A (en) * 1997-04-18 1998-11-04 Asahi Glass Co Ltd Fluororesin film
KR20010090952A (en) * 2000-04-08 2001-10-22 박호군 Light emitting material using cerium silicate and its manufacturaing method

Similar Documents

Publication Publication Date Title
Smith et al. Determination of wurtzite GaN lattice polarity based on surface reconstruction
US8142566B2 (en) Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate
US6933566B2 (en) Method of forming lattice-matched structure on silicon and structure formed thereby
FR2534068A1 (en) METHOD FOR MANUFACTURING A HETEROSTRUCTURE COMPRISING A HETEROEPITAXIC MATERIAL WITH MULTIPLE CONSTITUENTS
Shintani et al. Kinetics of the epitaxial growth of GaN using Ga, HCl and NH3
Perrière et al. Formation of GaAs nanocrystals by laser ablation
Pontes et al. Correlation between the surface morphology and structure and the photoluminescence of amorphous PbTiO3 thin films obtained by the chemical route
JP2014031300A (en) Gallium oxide substrate and manufacturing method of the same
Chen et al. Influence of nitrogen flow ratio on properties of c-axis oriented AlN films grown by RF magnetron sputtering
JP2009091217A (en) Gallium-aluminum oxide crystal film, method of manufacturing the same and semiconductor device using the same
JP4772271B2 (en) Method for producing a zinc oxide (ZnO) semiconductor having a wide band gap doped positively
Gao et al. Photoluminescence from Ge+-implanted SiO2 films on Si substrate and its mechanism
KR20040016644A (en) Cerium-silicate thin-film for semiconductor light-emitting devices using mixed liquid source and manufacturing method the same
JP2007073936A (en) SYNTHESIZING METHOD FOR SrCu2O2 PRECURSOR USED FOR SPIN COATING METHOD, AND FORMATION METHOD FOR P-TYPE THIN FILM UNDER LOW TEMPERATURE
Hsieh et al. Simultaneous occurrence of multiphases in the interfacial reactions of ultrahigh vacuum deposited Hf and Cr thin films on (111) Si
US20070269965A1 (en) Indium Nitride Layer production
Omichi et al. Growth of ZnO thin films exhibiting room-temperature ultraviolet emission by means of atmospheric pressure vapor-phase epitaxy
CN110668499B (en) Cerium-doped monolayer tungsten disulfide film and preparation method thereof
KR100356266B1 (en) Light emitting material using cerium silicate and its manufacturaing method
US5275843A (en) Manufacture of β-BaB2 O4 film by a sol-gel method
Hussain et al. Photoluminescence comparison of different substrates on AlN: Cr thin films for optoelectronic devices
RU2802302C1 (en) METHOD FOR MANUFACTURING HIGHLY CRYSTALLINE INORGANIC PEROVSKITE THIN FILMS CsPbBr3
JP2000273450A (en) Luminous material consisting essentially of silicon and nitrogen, its production and luminous element using the same luminous material
Sanoodo et al. Vapor–liquid–solid growth of 4H-SiC single crystal films with extremely low carrier densities in chemical vapor deposition with a Pt–Si alloy flux and X-ray topography analysis of their dislocation propagation behaviors
KR101676186B1 (en) Semiconductor Material Containing The Fe2SiO4, And Preparation Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application