KR20040012337A - A driving control method of inverter air- conditioner - Google Patents

A driving control method of inverter air- conditioner Download PDF

Info

Publication number
KR20040012337A
KR20040012337A KR1020020045876A KR20020045876A KR20040012337A KR 20040012337 A KR20040012337 A KR 20040012337A KR 1020020045876 A KR1020020045876 A KR 1020020045876A KR 20020045876 A KR20020045876 A KR 20020045876A KR 20040012337 A KR20040012337 A KR 20040012337A
Authority
KR
South Korea
Prior art keywords
expansion valve
compressor
opening value
refrigerant
air conditioner
Prior art date
Application number
KR1020020045876A
Other languages
Korean (ko)
Other versions
KR100868344B1 (en
Inventor
이근만
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020020045876A priority Critical patent/KR100868344B1/en
Publication of KR20040012337A publication Critical patent/KR20040012337A/en
Application granted granted Critical
Publication of KR100868344B1 publication Critical patent/KR100868344B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor

Abstract

PURPOSE: A method for controlling driving of an inverter air conditioner is provided to minimize time needed for reaching reference opening degree of an expansion valve by controlling the expansion valve to move from maximum opening degree to the reference opening degree at initial driving. CONSTITUTION: A method includes the steps of: a step(200) in which compressor is driven as power is impressed to an air conditioner; a step(210) in which an expansion valve is opened by maximum opening degree simultaneously with driving of the compressor to reduce discharge pressure due to driving of the compressor; and a step(230,240,250,260,270,280) in which opening degree of the expansion valve is gradually reduced at preset intervals to reach reference opening degree. The method includes a determining step whether standard driving condition or over-load driving condition is satisfied depending on surrounding temperature of an indoor unit; and a step opening the expansion valve more than opening degree of the expansion valve for the standard driving condition if the over-load driving condition is satisfied.

Description

인버터공기조화기의 운전제어방법{A driving control method of inverter air- conditioner}A driving control method of inverter air conditioner

본 발명은 인버터공기조화기의 운전제어방법에 관한 것으로, 더욱 상세하게는 인버터공기조화기의 구동이 시작된 후, 팽창밸브의 개도값을 제어하는 인버터공기조화기의 운전제어방법에 관한 것이다.The present invention relates to an operation control method of an inverter air conditioner, and more particularly, to an operation control method of an inverter air conditioner for controlling an opening value of an expansion valve after driving of an inverter air conditioner is started.

일반적으로 공기조화기는 사용자 요구에 의해서 난방 사이클 및 냉방 사이클을 구동하고, 상기 난방 사이클의 운전에 의해서 추운 겨울에 실내를 따뜻하게 조성하며, 상기 냉방 사이클의 운전에 의해서 더운 여름에 실내를 시원하게 조성한다. 또한 공기조화기는 실내의 습도를 조절하며, 실내의 공기를 쾌적한 청정상태로 조절한다.In general, an air conditioner drives a heating cycle and a cooling cycle according to a user's request, creates a warm room in a cold winter by operation of the heating cycle, and cools a room in a hot summer by the operation of the cooling cycle. In addition, the air conditioner controls the humidity in the room, and controls the air in the room to a comfortable clean state.

이와 같이 구성되는 공기조화기의 순환 사이클은, 실내측의 열교환기가 응축기의 기능을 담당할 때 난방 사이클로 구성되고, 실내측의 열교환기가 증발기의 기능을 담당할 때 냉방사이클을 구성하게 된다.The circulation cycle of the air conditioner configured as described above consists of a heating cycle when the indoor heat exchanger functions as a condenser, and constitutes a cooling cycle when the indoor heat exchanger functions as an evaporator.

도 1은 일반적인 공기조화기의 냉/난방 사이클의 간략도이다.1 is a schematic diagram of a cooling / heating cycle of a general air conditioner.

상기 난방 사이클에 의한 난방 운전은, 먼저 압축기(3)에서 냉매를 압축한다. 압축된 냉매는 실내 열교환기(1)로 전달된다. 이때, 실내 열교환기(1)에 흐르는 냉매가 실내 측으로 열을 방출하여, 실내측으로 따뜻한 바람이 토출된다. 그리고 상기 실내 열교환기(1)를 통과한 냉매는 팽창밸브(4)를 통해서 실외 열교환기(2)로 흡입된다. 이때, 상기 실외 열교환기(2)가 증발 동작을 수행하여 차가운 바람을 실외로 토출시킨다.In the heating operation by the heating cycle, the compressor 3 first compresses the refrigerant. The compressed refrigerant is delivered to the indoor heat exchanger (1). At this time, the refrigerant flowing in the indoor heat exchanger 1 discharges heat to the indoor side, and warm wind is discharged to the indoor side. And the refrigerant passing through the indoor heat exchanger (1) is sucked into the outdoor heat exchanger (2) through the expansion valve (4). At this time, the outdoor heat exchanger (2) performs the evaporation operation to discharge the cold wind to the outside.

한편, 냉방사이클에 의한 냉방 운전은, 먼저 압축기(3)에서 냉매를 압축한다. 상기 압축된 냉매는 실외 열교환기(2)로 전달된다. 실외 열교환기(2)는 전달된 냉매를 응축하고, 응축된 냉매를 팽창밸브(4)를 통해서 실내 열교환기(1)로 전달시킨다. 따라서 실내 열교환기(1)가 구동됨에 따라, 냉매가 실내 공기의 열을 흡수하여, 실내측으로 차가운 바람이 토출된다.On the other hand, in the cooling operation by a cooling cycle, the compressor 3 first compresses a refrigerant. The compressed refrigerant is delivered to the outdoor heat exchanger (2). The outdoor heat exchanger 2 condenses the delivered refrigerant and delivers the condensed refrigerant to the indoor heat exchanger 1 through the expansion valve 4. Therefore, as the indoor heat exchanger 1 is driven, the refrigerant absorbs heat of indoor air, and cold wind is discharged to the indoor side.

이때, 상기 팽창밸브(4)는 실내 열교환기(1)와 실외 열교환기(2) 사이에 연결되어, 실외 열교환기(2)에 액화된 고압의 액냉매를 감압하여 실내 열교환기(1)에서 증발하기 쉬운 상태로 조정하고 일정한 비율로 냉매가 흐르도록 제어한다.At this time, the expansion valve (4) is connected between the indoor heat exchanger (1) and the outdoor heat exchanger (2), by reducing the high pressure liquid refrigerant liquefied in the outdoor heat exchanger (2) in the indoor heat exchanger (1) Adjust to a state that is easy to evaporate and control the refrigerant to flow at a constant rate.

상기 팽창밸브(4)가 구동하는데 있어서, 팽창밸브(4)의 개도는 다음과 같이 제어된다.In driving the expansion valve 4, the opening degree of the expansion valve 4 is controlled as follows.

도 2는 종래 기술에 따른 인버터공기조화기의 팽창밸브(4)의 개도 상태도이다.2 is an open state diagram of the expansion valve 4 of the inverter air conditioner according to the prior art.

인버터공기조화기로 전원이 인가되면, 압축기(3)가 구동을 시작하여 냉매를 압축한다. 압축된 냉매는 실외 열교환기(2)로 전달되고, 실외 열교환기(2)로 전달된 냉매는 팽창밸브(4)에 전달된다. 팽창밸브(4)는 압축된 냉매가 일정한 양으로 실내 열교환기(1)로 공급되도록 개도값을 제어한다.When power is applied to the inverter air conditioner, the compressor 3 starts driving to compress the refrigerant. The compressed refrigerant is delivered to the outdoor heat exchanger 2, and the refrigerant delivered to the outdoor heat exchanger 2 is delivered to the expansion valve 4. The expansion valve 4 controls the opening value so that the compressed refrigerant is supplied to the indoor heat exchanger 1 in a constant amount.

즉, 도면에 도시된 바와 같이, 인버터공기조화기가 초기 구동시에는, 40초 동안 압축기(3)의 운전주파수가 25HZ로 운전하고, 동시에 압축기(3)의 구동으로 인해 압축된 냉매가 실외 열교환기(2)를 통과한 후 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)는 40초 동안 0.3×pb의 개도값 또는 36펄스값으로 기동제어되어 열리게 된다.That is, as shown in the drawing, when the inverter air conditioner is initially driven, the operating frequency of the compressor 3 is operated at 25HZ for 40 seconds, and at the same time, the refrigerant compressed by the drive of the compressor 3 is an outdoor heat exchanger. After passing through (2), it is supplied to the expansion valve (4). At this time, the expansion valve (4) is opened by starting control to the opening value or 36 pulse value of 0.3 × pb for 40 seconds.

상기 팽창밸브(4)의 개도값이 적게 열리는 초기 구동시에는, 압축기(3)의 운전주파수에 따른 냉매의 공급이 팽창밸브(4)의 개도값에 따른 상태보다 상대적으로 높아, 팽창밸브(4)로 고온고압의 냉매가 공급된다. 이에 따라 냉매를 압축하는 압축기(3)의 압력이 상대적으로 증가한다. 압축기(3)의 압력증가에 따라 그에 해당하는 부하가 증가하게 된다.At the time of initial driving in which the opening value of the expansion valve 4 is small, the supply of refrigerant according to the operating frequency of the compressor 3 is relatively higher than the state according to the opening value of the expansion valve 4, and thus the expansion valve 4 ) Is supplied with a high temperature and high pressure refrigerant. This increases the pressure of the compressor 3 which compresses the refrigerant relatively. As the pressure of the compressor 3 increases, the corresponding load increases.

그리고 40초가 경과하면, 60초 동안 압축기(3)는 다음과 같은 운전주파수 식으로 제어된다.After 40 seconds have elapsed, the compressor 3 is controlled in the following operating frequency formula for 60 seconds.

식 1) Equation 1)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)의 개도값은 초기 기동시 보다 더 많이 열리게 된다. 상기 팽창밸브(4)의 개도값은 60초 동안 0.7×pb의 펄스로 기동제어되어 열리게 된다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve (4) is opened more than during the initial startup. The opening value of the expansion valve 4 is opened by a start control with a pulse of 0.7 x pb for 60 seconds.

그리고 60초가 경과하면, 압축기(3)의 운전주파수는 전 단계보다 더 많이 상승하고, 팽창밸브(4)의 개도값도 더 많이 열리게 된다. 즉, 압축기(3)는 다음과 같은 운전주파수 식으로 구동한다.After 60 seconds, the operating frequency of the compressor 3 rises more than the previous stage, and the opening value of the expansion valve 4 opens more. That is, the compressor 3 is driven by the following operating frequency equation.

식 2) Equation 2)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)의 개도값도 전 단계보다 더 많이 열리게 된다. 즉, 상기 팽창밸브(4)의 개도값은 0.9×Pb의 펄스로 60초 동안 기동제어되어 열리게 된다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve 4 is also opened more than the previous step. That is, the opening value of the expansion valve 4 is opened by the start control for 60 seconds with a pulse of 0.9 × Pb.

그리고 60초가 경과하면, 압축기(3)의 운전주파수는 전 단계보다 더 많이 상승하여 기준주파수(Fb)에 도달하고, 압축기(3)는 기준주파수로 계속 구동된다. 또한, 팽창밸브(4)의 개도값도 전 단계보다 더 많이 열려 기준 개도값(1.0×Pb)에 도달하게 된다.When 60 seconds have elapsed, the operating frequency of the compressor 3 increases more than the previous stage to reach the reference frequency Fb, and the compressor 3 continues to be driven at the reference frequency. In addition, the opening value of the expansion valve 4 also opens more than the previous step to reach the reference opening value (1.0 × Pb).

그 결과 기준주파수로 압축기(3)가 구동됨과 동시에 압축된 냉매가 팽창밸브(4)로 유입될 때, 상기 팽창밸브(4)의 개도값이 기준 개도값으로 열림에 따라 안정적으로 냉매의 유출입이 조절될 수 있도록 한다.As a result, when the compressor 3 is driven at the reference frequency and the compressed refrigerant flows into the expansion valve 4, the inflow and outflow of the refrigerant is stably established as the opening value of the expansion valve 4 opens to the reference opening value. Allow it to be adjusted.

그리고 팽창밸브(4)가 기준 개도값에 도달한 후, 실내배관온도와 실외배관온도를 각각 감지하여 10분간 1분마다 팽창밸브(4)의 개도값을 제어한다. 즉, 상기 실내배관온도와 실외배관온도의 온도차가 기설정된 온도차보다 크면 팽창밸브(4)의 개도값을 기준 개도값에서 줄이고, 실내배관온도와 실내배관온도의 온도차가 기설정된 온도차보다 작으면 팽창밸브(4)의 개도값을 기준 개도값에서 크게 하여 냉매의 양을 증가시킨다.After the expansion valve 4 reaches the reference opening value, each of the indoor and outdoor piping temperatures is sensed to control the opening value of the expansion valve 4 every 10 minutes. That is, when the temperature difference between the indoor pipe temperature and the outdoor pipe temperature is greater than the preset temperature difference, the opening value of the expansion valve 4 is reduced from the reference opening value, and when the temperature difference between the indoor pipe temperature and the indoor pipe temperature is smaller than the preset temperature difference, the expansion is performed. The amount of refrigerant is increased by increasing the opening value of the valve 4 from the reference opening value.

상기와 같이 팽창밸브(4)가 기준개도값이 도달한 후, 10분동안 1분마다 기준개도값을 조절하여 제품이 안정적으로 구동된다고 판단되면, 4분마다 기준개도값을 상기에서 언급한 바와 같이 동일하게 실내배관온도와 실외배관온도값의 온도차에 따라 제어한다.After the expansion valve 4 reaches the standard opening value as described above, if it is determined that the product is driven stably by adjusting the standard opening value every minute for 10 minutes, the reference opening value is measured every four minutes as described above. Similarly, it controls according to the temperature difference between indoor piping temperature and outdoor piping temperature value.

그러나 초기 기동시 압축기(3)의 운전주파수가 최소 운전주파수에서 점차 상승하고, 그 결과 기준 주파수로 압축기(3)가 구동되어 냉매가 열교환기로 공급됨에 있어서, 초기 기동에서부터 냉매를 조절하기 위한 팽창밸브(4)의 개도값도 최소 개도값에서 점차 커짐에 따라, 다음과 같은 문제점이 발생하였다.However, in the initial start-up, the operating frequency of the compressor 3 gradually increases from the minimum operating frequency, and as a result, the compressor 3 is driven at the reference frequency so that the refrigerant is supplied to the heat exchanger. As the opening degree value of (4) also gradually increased from the minimum opening value, the following problems occurred.

공기조화기의 초기 기동시에 압축기(3)가 압축한 냉매가 토출되어 배관을 통해 흐르는데 있어서, 팽창밸브(4)의 개도값이 작기 때문에 냉매의 토출압력이 증가하여, 그 결과 제품의 부하가 증가하게 된다. 이에 따라 제품의 부품소손 및 제품정지가 발생될 수 있다.In the initial start-up of the air conditioner, the refrigerant compressed by the compressor 3 is discharged and flows through the pipe, and the discharge pressure of the refrigerant is increased because the opening value of the expansion valve 4 is small, resulting in an increase in the load of the product. Done. As a result, parts burnout and product stoppage may occur.

따라서 본 발명의 목적은 초기 구동시 팽창밸브가 최대개도값에서 기준개도값으로 도달하도록 제어하여 기준개도의 도달시간을 최소화시키는 인버터공기조화기의 운전제어방법을 제공함에 있다.Accordingly, an object of the present invention is to provide an operation control method of an inverter air conditioner that minimizes the arrival time of a reference opening by controlling the expansion valve to reach the reference opening value at the maximum opening value during initial driving.

도 1은 일반적인 공기조화기의 냉/난방 사이클.1 is a cooling / heating cycle of a typical air conditioner.

도 2는 종래 기술에 따른 인버터공기조화기의 팽창밸브의 개도각 제어 상태도.Figure 2 is an opening angle control state diagram of the expansion valve of the inverter air conditioner according to the prior art.

도 3은 본 발명에 따른 인버터공기조화기의 팽창밸브의 개도각 제어 상태도.Figure 3 is an opening angle control state diagram of the expansion valve of the inverter air conditioner according to the present invention.

도 4는 본 발명에 따른 인버터공기조화기가 팽창밸브의 개도각을 조절하기 위한 동작제어흐름도.4 is an operation control flow chart for adjusting the opening angle of the expansion valve of the inverter air conditioner according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 실내 열교환기2 : 실외 열교환기1: indoor heat exchanger 2: outdoor heat exchanger

3 : 압축기4 : 팽창밸브3: compressor 4: expansion valve

상기 목적을 달성하기 위한 본 발명에 따른 인버터공기조화기의 운전제어방법은 실내기와 실외기로 구성된 인버터공기조화기에 있어서, 제품에 전원이 인가됨에 따라, 압축기가 구동되는 단계와; 상기 압축기의 구동으로 인한 토출압력을 저감시키기 위해, 상기 압축기가 구동됨과 동시에 팽창밸브가 최대개도값으로 열리는 단계와; 상기 단계에서 기설정된 소정시간씩 단계적으로 팽창밸브의 개도값이 작아져, 기준 개도값에 도달하는 단계를 포함하여 구성된다.Operation control method of the inverter air conditioner according to the present invention for achieving the above object, the inverter air conditioner consisting of an indoor unit and an outdoor unit, the power is applied to the product, the compressor is driven; Opening the expansion valve at the maximum opening value at the same time the compressor is driven to reduce the discharge pressure due to the drive of the compressor; The opening degree value of the expansion valve decreases step by step for a predetermined time, and the reference opening value is configured.

이하 본 발명에 따른 인버터공기조화기의 운전제어방법에 대해 상세하게 살펴보면 다음과 같다.Hereinafter, the operation control method of the inverter air conditioner according to the present invention will be described in detail.

도 3은 본 발명에 따른 인버터공기조화기의 팽창밸브의 개도 상태도이다.3 is an open state diagram of the expansion valve of the inverter air conditioner according to the present invention.

인버터공기조화기로 전원이 인가되면, 압축기(3)가 구동을 시작하여 냉매를 압축한다. 압축된 냉매는 실외 열교환기(2)로 전달되고, 실외 열교환기(2)로 전달된 냉매는 팽창밸브(4)에 전달된다. 팽창밸브(4)는 압축된 냉매가 일정한 양으로 실내 열교환기(1)로 공급되도록 개도값을 제어한다.When power is applied to the inverter air conditioner, the compressor 3 starts driving to compress the refrigerant. The compressed refrigerant is delivered to the outdoor heat exchanger 2, and the refrigerant delivered to the outdoor heat exchanger 2 is delivered to the expansion valve 4. The expansion valve 4 controls the opening value so that the compressed refrigerant is supplied to the indoor heat exchanger 1 in a constant amount.

즉, 도면에 도시된 바와 같이, 인버터공기조화기가 초기 구동시에는, 40초동안 압축기(3)의 운전주파수가 25HZ로 운전하고, 동시에 압축기(3)의 구동으로 인해 압축된 냉매가 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)는 30초 동안 최대로 열린 상태에서 냉매를 통과시킨다.That is, as shown in the figure, when the inverter air conditioner is initially driven, the operating frequency of the compressor 3 is operated at 25HZ for 40 seconds, and at the same time, the refrigerant compressed by the drive of the compressor 3 is expanded with an expansion valve ( 4) is supplied. At this time, the expansion valve (4) passes through the refrigerant in the maximum open state for 30 seconds.

상기 팽창밸브(4)의 개도값이 최대인 초기 구동시에는, 압축기(3)의 운전주파수에 따른 냉매가 공급되어도 팽창밸브(4)가 최대 개도값으로 열려져, 팽창밸브(4)로 고온고압의 냉매가 안정적으로 공급된다. 또한, 냉매를 압축하는 압축기(3)의 압력이 증가하지 않는다.In the initial driving at which the opening value of the expansion valve 4 is maximum, the expansion valve 4 is opened to the maximum opening value even when the refrigerant according to the operating frequency of the compressor 3 is supplied, so that the expansion valve 4 has a high temperature and high pressure. Coolant is stably supplied. In addition, the pressure of the compressor 3 for compressing the refrigerant does not increase.

한편 압축기(3)의 구동시간이 40초가 경과하면, 60초 동안 압축기(3)는 다음과 같은 운전주파수 식으로 제어된다.On the other hand, when the driving time of the compressor 3 has elapsed 40 seconds, the compressor 3 is controlled by the following operating frequency equation for 60 seconds.

식 1) Equation 1)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)의 개도값은 초기 기동시 개도값보다 더 작다. 상기 팽창밸브(4)의 개도값은 70초 동안 1.5×pb의 개도값으로 도달하도록 닫히면서 냉매를 배출한다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve 4 is smaller than the opening value at the initial start. The opening value of the expansion valve 4 is closed to reach the opening value of 1.5 x pb for 70 seconds while discharging the refrigerant.

그리고 압축기의 구동시간이 60초를 경과하면, 압축기(3)의 운전주파수는 전 단계보다 더 많이 상승하지만, 팽창밸브(4)의 개도값은 더 작은 개도값을 진행된다. 즉, 압축기(3)는 다음과 같은 운전주파수 식으로 구동한다.When the driving time of the compressor has passed 60 seconds, the operating frequency of the compressor 3 increases more than the previous stage, but the opening value of the expansion valve 4 proceeds to a smaller opening value. That is, the compressor 3 is driven by the following operating frequency equation.

식 2) Equation 2)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기팽창밸브(4)의 개도값은 전 단계보다 더 적은 개도값이 된다. 즉, 상기 팽창밸브(4)의 개도값은 1.2×Pb의 개도값으로 60초 동안 닫히면서 냉매를 배출한다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve 4 is smaller than the previous step. That is, the opening value of the expansion valve 4 is closed for 60 seconds at an opening value of 1.2 x Pb to discharge the refrigerant.

그리고 60초가 경과하면, 압축기(3)의 운전주파수는 전 단계보다 더 많이 상승하여 기준주파수(Fb)에 도달하고, 상기 기준주파수로 계속 구동된다. 그리고, 팽창밸브(4)의 개도값은 전 단계보다 더 적게 열려 기준 개도값(1.0×Pb)에 도달하게 된다.When 60 seconds have elapsed, the operating frequency of the compressor 3 rises more than the previous stage, reaches the reference frequency Fb, and continues to operate at the reference frequency. Then, the opening value of the expansion valve 4 is opened less than the previous step to reach the reference opening value (1.0 × Pb).

상기와 같이 기준주파수로 압축기(3)가 구동됨과 동시에 압축된 냉매가 팽창밸브(4)로 유입될 때, 상기 팽창밸브(4)의 개도값이 기준 개도값에 도달함에 따라 안정적으로 냉매의 유출입이 조절될 수 있도록 한다.As described above, when the compressor 3 is driven at the reference frequency and the compressed refrigerant flows into the expansion valve 4, the coolant flows out stably as the opening value of the expansion valve 4 reaches the reference opening value. This can be adjusted.

그리고 팽창밸브(4)가 기준 개도값에 도달한 후, 실내배관온도와 실외배관온도를 각각 감지하여 10분간 1분마다 팽창밸브(4)의 개도값을 제어한다. 즉, 상기 실내배관온도와 실외배관온도의 온도차가 기설정된 온도차보다 크면 팽창밸브(4)의 개도값을 기준 개도값에서 줄이고, 실내배관온도와 실외배관온도의 온도차가 기설정된 온도차보다 작으면 팽창밸브(4)의 개도값을 기준 개도값에서 크게 하여 냉매의 양을 증가시킨다.After the expansion valve 4 reaches the reference opening value, each of the indoor and outdoor piping temperatures is sensed to control the opening value of the expansion valve 4 every 10 minutes. That is, if the temperature difference between the indoor pipe temperature and the outdoor pipe temperature is greater than the preset temperature difference, the opening value of the expansion valve 4 is reduced from the reference opening value, and if the temperature difference between the indoor pipe temperature and the outdoor pipe temperature is smaller than the preset temperature difference, the expansion is performed. The amount of refrigerant is increased by increasing the opening value of the valve 4 from the reference opening value.

상기와 같이 팽창밸브(4)가 기준개도값에 도달한 후, 10분동안 1분마다 기준개도값을 조절하여 제품이 안정적으로 구동된다고 판단되면, 4분마다 기준개도값을 상기에서 언급한 바와 같이 동일하게 실내배관온도와 실외배관온도값의 온도차에 따라 제어한다.After the expansion valve 4 reaches the reference opening value as described above, if it is determined that the product is driven stably by adjusting the reference opening value every minute for 10 minutes, the reference opening value is measured every four minutes as described above. Similarly, it controls according to the temperature difference between indoor piping temperature and outdoor piping temperature value.

이때, 상기와 같이 표준운전조건인지여부를 판단하는 판단기준은 다음과 같다.At this time, the criteria for determining whether the standard operating conditions as described above are as follows.

실내기 본체에 실내흡입온도센서가 장착되어지고, 상기 실내흡입온도센서를 통해서 주변온도를 측정하게 된다. 그리고 측정된 온도신호가 제어부(도시하지 않음)로 전달되면, 이에 따라 제어부로 전달된 주변온도가 43도 미만이면 표준운전으로 구동하도록 제어하고, 제어부로 전달된 주변온도가 43도 이상이면 과부하 운전으로 구동하도록 제어한다.An indoor suction temperature sensor is mounted on the indoor unit main body, and the ambient temperature is measured through the indoor suction temperature sensor. When the measured temperature signal is transmitted to the controller (not shown), if the ambient temperature transmitted to the controller is less than 43 degrees, the controller operates to operate in standard operation. If the ambient temperature transmitted to the controller is 43 degrees or higher, the overload operation is performed. Control to drive.

이하 과부하 운전조건에서 운전되는 과정에 대해 살펴보면 다음과 같다.Hereinafter, the process of operating under an overload operation condition will be described.

과부하 운전조건에서는 냉매량이 실내 열교환기(1)에 더욱 많이 공급되어, 열교환된 시원한 공기가 실내 공간으로 토출되어 실내 온도가 더욱 빠르게 내려가도록 진행하기 위해, 팽창밸브(4)의 개도값을 표준운전조건의 개도값보다 큰 개도값을 적용한다. 즉, 압축기(3)가 구동하여 압축된 냉매는 실외 열교환기(2)로 전달되고, 실외 열교환기(2)로 전달된 냉매는 팽창밸브(4)에 전달된다. 팽창밸브(4)는 압축된 냉매가 일정한 양으로 실내 열교환기(1)로 공급되도록 개도값을 제어한다.In the overload operation condition, the amount of refrigerant is supplied to the indoor heat exchanger 1 more, so that the heat exchanged cool air is discharged to the indoor space so that the room temperature can be lowered faster. An opening value greater than the opening value of the condition is applied. That is, the refrigerant compressed by the compressor 3 is delivered to the outdoor heat exchanger 2, and the refrigerant delivered to the outdoor heat exchanger 2 is delivered to the expansion valve 4. The expansion valve 4 controls the opening value so that the compressed refrigerant is supplied to the indoor heat exchanger 1 in a constant amount.

도면에 도시된 바와 같이, 인버터공기조화기가 초기 구동시에는, 40초 동안 압축기(3)의 운전주파수가 25HZ로 운전하고, 동시에 압축기(3)의 구동으로 인해 압축된 냉매가 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)는 30초 동안 최대로 열린 상태이다.As shown in the figure, when the inverter air conditioner is initially driven, the operating frequency of the compressor 3 is operated at 25 HZ for 40 seconds, and at the same time, the refrigerant compressed by the drive of the compressor 3 is expanded by the expansion valve 4. Is supplied. At this time, the expansion valve (4) is in the maximum open state for 30 seconds.

상기 팽창밸브(4)의 개도값이 최대인 초기 구동시에는, 압축기(3)의 운전주파수에 따른 고온고압의 냉매가 안정적으로 공급되고, 또한, 냉매를 압축하는 압축기(3)의 압력이 증가하는 것이 방지된다.At the time of initial driving at which the opening value of the expansion valve 4 is maximum, the high temperature and high pressure refrigerant according to the operating frequency of the compressor 3 is stably supplied, and the pressure of the compressor 3 for compressing the refrigerant increases. Is prevented.

한편 압축기(3)는 40초가 경과하면, 압축기(3)는 60초 동안 다음과 같은 운전주파수 식으로 제어된다.On the other hand, when the compressor 3 has passed 40 seconds, the compressor 3 is controlled by the following operating frequency equation for 60 seconds.

식 1) Equation 1)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기 팽창밸브(4)의 개도값은 초기 기동시 개도값보다 더 작다. 상기 팽창밸브(4)의 개도값은 70초 동안 2.0×pb의 개도값으로 도달하도록 기동제어되면서 열리게 된다. 이는 표준조건에서보다 과부하 운전조건에서 팽창밸브(4)의 개도값이 더 큰 값으로 적용됨으로서, 압축된 냉매가 실외 열교환기(2)를 거쳐 팽창밸브(4)를 통과하여 실내 열교환기(1)로 유입됨에 따라 발생되는 부하증가를 줄일 수 있다. 또한, 이로 인해서 더욱 빠른 시간 안에 실내공기를 시원하게 조성하여 표준온도 조건으로 인버터공기조화기가 구동하도록 제어할 수 있다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve 4 is smaller than the opening value at the initial start. The opening value of the expansion valve 4 is opened while being controlled to start to reach an opening value of 2.0 x pb for 70 seconds. This is because the opening value of the expansion valve 4 is larger in the overload operation condition than in the standard condition, so that the compressed refrigerant passes through the expansion valve 4 through the outdoor heat exchanger 2 and the indoor heat exchanger 1 It can reduce the increase in load caused by the flow into. In addition, it is possible to control the inverter air conditioner to operate under standard temperature conditions by making the indoor air cooler in a faster time.

그리고 60초가 경과하면, 압축기(3)의 운전주파수는 전 단계보다 더 많이 상승하지만, 팽창밸브(4)의 개도값은 더 작은 개도값으로 진행된다. 즉, 압축기(3)는 다음과 같은 운전주파수 식으로 구동한다.After 60 seconds, the operating frequency of the compressor 3 increases more than the previous stage, but the opening value of the expansion valve 4 proceeds to a smaller opening value. That is, the compressor 3 is driven by the following operating frequency equation.

식 2) Equation 2)

상기와 같은 운전주파수로 압축기(3)가 60초 동안 구동하고, 동시에 압축기(3) 구동으로 인해서 압축된 냉매는 팽창밸브(4)로 공급된다. 이때, 상기팽창밸브(4)의 개도값은 전 단계보다 더 적은 개도값이 된다. 즉, 상기 팽창밸브(4)의 개도값은 1.5×Pb의 개도값으로 110초 동안 기동제어되면서 열리게 된다. 이때, 상기 팽창밸브(4)의 개도값은 표준조건에서보다 과부하 운전조건에서 큰 값으로 적용된다. 이에 따라 압축된 냉매가 실외 열교환기(2)를 거쳐 팽창밸브(4)를 통과하여 실내 열교환기(1)로 유입됨에 따라 더욱 빠른 시간내에 실내 공기를 시원하게 조성할 수 있다.The compressor 3 is driven for 60 seconds at the operation frequency as described above, and at the same time, the refrigerant compressed by the compressor 3 is supplied to the expansion valve 4. At this time, the opening value of the expansion valve 4 is smaller than the previous step. That is, the opening value of the expansion valve (4) is opened while the start control for 110 seconds to the opening value of 1.5 × Pb. At this time, the opening value of the expansion valve (4) is applied to a larger value in the overload operating conditions than in the standard conditions. Accordingly, as the compressed refrigerant flows into the indoor heat exchanger 1 through the expansion valve 4 through the outdoor heat exchanger 2, the indoor air can be coolly formed more quickly.

상기와 같이 기준주파수로 압축기(3)가 구동됨과 동시에 압축된 냉매가 팽창밸브(4)로 유입될 때, 상기 팽창밸브(4)의 개도값이 기준 개도값으로 열림에 따라 안정적으로 냉매의 유출입이 조절될 수 있도록 한다.As described above, when the compressor 3 is driven at the reference frequency and the compressed refrigerant flows into the expansion valve 4, the opening and closing value of the expansion valve 4 is stably opened and opened as the reference opening value. This can be adjusted.

그리고 팽창밸브(4)가 기준 개도값에 도달한 후, 실내배관온도와 실외배관온도를 각각 감지하여 10분간 1분마다 팽창밸브(4)의 개도값을 제어한다. 즉, 상기 실내배관온도와 실외배관온도의 온도차가 기설정된 온도차보다 크면 팽창밸브(4)의 개도값을 기준 개도값에서 줄이고, 실내배관온도와 실외배관온도의 온도차가 기설정된 온도차보다 작으면 팽창밸브(4)의 개도값을 기준 개도값에서 크게 하여 배관을 통해서 흐르는 냉매의 양을 증가시킨다.After the expansion valve 4 reaches the reference opening value, each of the indoor and outdoor piping temperatures is sensed to control the opening value of the expansion valve 4 every 10 minutes. That is, if the temperature difference between the indoor pipe temperature and the outdoor pipe temperature is greater than the preset temperature difference, the opening value of the expansion valve 4 is reduced from the reference opening value, and if the temperature difference between the indoor pipe temperature and the outdoor pipe temperature is smaller than the preset temperature difference, the expansion is performed. The opening value of the valve 4 is made larger than the reference opening value to increase the amount of refrigerant flowing through the pipe.

상기와 같이 팽창밸브(4)가 기준개도값에 도달한 후, 10분동안 1분마다 기준개도값을 조절하여 제품이 안정적으로 구동된다고 판단되면, 4분마다 기준개도값을 상기에서 언급한 바와 같이 동일하게 실내배관온도와 실외배관온도값의 온도차에 따라 제어한다.After the expansion valve 4 reaches the reference opening value as described above, if it is determined that the product is driven stably by adjusting the reference opening value every minute for 10 minutes, the reference opening value is measured every four minutes as described above. Similarly, it controls according to the temperature difference between indoor piping temperature and outdoor piping temperature value.

도 4는 본 발명에 따른 인버터공기조화기가 팽창밸브의 개도값을 조절하는동작제어흐름도이다.4 is an operation control flow chart of the inverter air conditioner according to the present invention to adjust the opening value of the expansion valve.

도면에 도시된 바와 같이, 표준상태에서 팽창밸브(4)의 개도값 제어는 다음과 같이 이루어진다.As shown in the figure, the opening value control of the expansion valve 4 in the standard state is performed as follows.

제품에 전원이 인가되고 압축기(3)가 구동되어(제 200 단계) 냉매가 압축되면, 압축된 냉매는 실외 열교환기(2)로 전달된다. 실외 열교환기(2)는 전달된 냉매를 응축하고, 응축된 냉매는 팽창밸브(4)를 통해서 실내 열교환기(1)로 전달시킨다. 그리고 실내공기가 실내 열교환기(1)를 통과하여 열을 빼앗겨 실내측으로 차가운 바람이 토출된다.When the product is powered and the compressor 3 is driven (step 200), and the refrigerant is compressed, the compressed refrigerant is delivered to the outdoor heat exchanger (2). The outdoor heat exchanger 2 condenses the delivered refrigerant, and the condensed refrigerant is transferred to the indoor heat exchanger 1 through the expansion valve 4. And the indoor air passes through the indoor heat exchanger (1) to take heat away and the cold wind is discharged to the indoor side.

이때, 압축기(3)는 최소 운전주파수로 구동하고, 또한 실외 열교환기(2)에서 실내 열교환기(1)로 냉매의 유동을 제어하기 위해서 팽창밸브(4)가 최소 개도값으로 열리도록 제어된다(제 210 단계).At this time, the compressor 3 is driven to the minimum operating frequency, and the expansion valve 4 is controlled to open to the minimum opening value in order to control the flow of the refrigerant from the outdoor heat exchanger 2 to the indoor heat exchanger 1. (Step 210).

이와 같이 최소 운전주파수로 압축기(3)가 구동되고, 실외 열교환기(2)를 통과한 냉매가 실내 열교환기(1)로 공급되도록 팽창밸브(4)의 개도값을 최소로 한 후, 40초 경과하면(제 220 단계), 압축기(3)의 운전주파수가 제 1 운전주파수로 상승하는 반면에 팽창밸브(4)의 개도값은 제 1 단계 내려가도록 제어된다(제 230 단계).In this way, the compressor 3 is driven at the minimum operating frequency, and the opening value of the expansion valve 4 is minimized so that the refrigerant passing through the outdoor heat exchanger 2 is supplied to the indoor heat exchanger 1. When the elapsed time (step 220), the operating frequency of the compressor 3 rises to the first operating frequency while the opening value of the expansion valve 4 is controlled to be lowered to the first step (step 230).

제 1 운전주파수로 압축기(3)가 구동되고, 실외 열교환기(2)를 통과한 냉매가 실내 열교환기(1)로 공급하기 위한 팽창밸브(4)의 개도값을 줄인 후, 60 초를 경과하면(제 240 단계), 압축기(3)의 운전주파수를 제 2 운전주파수로 상승하고, 반면 팽창밸브(4)의 개도값은 제 2 단계 내려가도록 제어한다(제 250 단계).After the compressor 3 is driven at the first operating frequency and the refrigerant passing through the outdoor heat exchanger 2 reduces the opening value of the expansion valve 4 for supplying the indoor heat exchanger 1, 60 seconds have elapsed. The lower surface (step 240), the operating frequency of the compressor 3 is raised to the second operating frequency, while the opening value of the expansion valve 4 is controlled to be lowered to the second stage (250).

제 250 단계의 조건에서 압축기(3)와 팽창밸브(4)의 구동이 60초 경과하면(제 260 단계), 압축기(3)는 운전주파수에 도달하여 구동되고, 팽창밸브(4)는 기준개도값으로 열림으로서 안정적으로 냉매를 실내 열교환기(1)로 공급한다. 제 270 단계의 조건으로 압축기(3)와 팽창밸브(4)의 구동이 50초동안 구동한다(제 280 단계).When the operation of the compressor 3 and the expansion valve 4 has elapsed for 60 seconds under the condition of the 250th step (step 260), the compressor 3 reaches the operating frequency and is driven, and the expansion valve 4 is operated at the reference opening degree. By opening at a value, the refrigerant is stably supplied to the indoor heat exchanger (1). Under the condition of the step 270, the drive of the compressor 3 and the expansion valve 4 is driven for 50 seconds (step 280).

이와 같이 초기 구동시 팽창밸브(4)가 최대로 열린 상태에서 기준 개도값으로 점진적으로 닫힘으로서, 압축기(3)의 구동으로 압축된 냉매가 팽창밸브(4)를 통과할 때 발생되는 압력에 따른 부하증가를 방지하였다.In this way, when the expansion valve 4 is gradually opened to the reference opening value in the state of initial opening, the pressure generated when the refrigerant compressed by the driving of the compressor 3 passes through the expansion valve 4 is increased. The increase in load was prevented.

이상 살펴본 바와 같이 본 발명은 압축기(3)가 구동하는 기동 초기에 팽창밸브(4)의 개도값이 최대로 넓게 열린 후, 단계적으로 팽창밸브(4)의 개도값이 점차 좁아져 팽창밸브(4)가 기준 개도값에 도달하도록 제어하는 것을 기본적인 기술적 사상으로 한다.As described above, according to the present invention, after the opening value of the expansion valve 4 is opened to the widest at the initial stage of operation of the compressor 3, the opening value of the expansion valve 4 is gradually narrowed gradually so that the expansion valve 4 It is a basic technical idea to control so that) reaches a reference opening value.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The rights of the present invention are not limited to the embodiments described above, but are defined by what is stated in the claims, and it is obvious that those skilled in the present invention can make various modifications and adaptations within the scope of the rights described in the claims. Do.

따라서 본 발명에 따른 인버터공기조화기의 운전제어방법으로 다음과 같은 효과를 기대할 수 있다.Therefore, the following effects can be expected as the operation control method of the inverter air conditioner according to the present invention.

초기 기동시 팽창밸브가 최대로 열려 냉매가 유동되도록 하고, 시간이 경과함에 따라 팽창밸브의 개도값을 점진적으로 줄여 닫히도록 하여, 결과적으로 팽창밸브가 기준개도값에 도달하도록 제어한다.The expansion valve is opened to the maximum at initial start-up to allow the refrigerant to flow, and as time passes, the opening value of the expansion valve is gradually reduced to close, thereby controlling the expansion valve to reach the reference opening value.

이와 같이 팽창밸브가 동작함으로 인해서, 팽창밸브가 점진적으로 닫혀 기준개도값에 도달함으로 인해서, 압축기가 구동되어 냉매가 토출되어 팽창밸브로 공급되는 압력이 크지 않아, 결과적으로 부하 증가를 막을 수 있다. 또한, 부하증가로 인한 부품 소손 및 제품 정지를 미연에 방지할 수 있다.As a result of the operation of the expansion valve, the expansion valve is gradually closed to reach the reference opening value, so that the compressor is driven to discharge the refrigerant and the pressure supplied to the expansion valve is not large, resulting in an increase in load. In addition, it is possible to prevent component burnout and product stoppage due to increased load.

Claims (3)

실내기와 실외기로 구성된 인버터공기조화기에 있어서,In the inverter air conditioner composed of the indoor unit and the outdoor unit, 제품에 전원이 인가됨에 따라, 압축기가 구동되는 단계와;Driving the compressor as power is applied to the product; 상기 압축기의 구동으로 인한 토출압력을 저감시키기 위해, 상기 압축기가 구동됨과 동시에 팽창밸브가 최대개도값으로 열리는 단계와;Opening the expansion valve at the maximum opening value at the same time the compressor is driven to reduce the discharge pressure due to the drive of the compressor; 상기 단계에서 기설정된 소정시간씩 단계적으로 팽창밸브의 개도값이 작아져, 기준 개도값에 도달하는 단계를 포함하여 구성되는 인버터공기조화기의 운전제어방법.And the opening value of the expansion valve decreases step by step at a predetermined time, and the reference opening value is reached. 제 1 항에 있어서,The method of claim 1, 실내기의 주변온도를 측정하여 소정온도 기준값에 따라, 표준운전조건 또는 과부하 운전조건인지 여부를 판단하는 단계와;Measuring the ambient temperature of the indoor unit to determine whether it is a standard operation condition or an overload operation condition according to a predetermined temperature reference value; 상기 판단에 따라 과부하 운전조건이면, 표준운전조건의 팽창밸브의 개도값보다 과부하 운전조건의 팽창밸브의 개도값을 더 크게 여는 것을 특징으로 하는 인버터공기조화기의 운전제어방법.And, if the overload operation condition is determined according to the judgment, opens the opening value of the expansion valve under the overload operation condition more than the opening value of the expansion valve under the standard operation condition. 제 2 항에 있어서,The method of claim 2, 초기구동시 압축기는 최소 운전주파수로 구동하고, 점진적으로 기준운전주파수에 도달하도록 상승하는 것을 특징으로 하는 인버터공기조화기의 운전제어방법.Compressor is driven at the minimum operating frequency during the initial drive, the operation control method of the inverter air conditioner, characterized in that the rising gradually to reach the reference operating frequency.
KR1020020045876A 2002-08-02 2002-08-02 A driving control method of inverter air- conditioner KR100868344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020045876A KR100868344B1 (en) 2002-08-02 2002-08-02 A driving control method of inverter air- conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020045876A KR100868344B1 (en) 2002-08-02 2002-08-02 A driving control method of inverter air- conditioner

Publications (2)

Publication Number Publication Date
KR20040012337A true KR20040012337A (en) 2004-02-11
KR100868344B1 KR100868344B1 (en) 2008-11-13

Family

ID=37320330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020045876A KR100868344B1 (en) 2002-08-02 2002-08-02 A driving control method of inverter air- conditioner

Country Status (1)

Country Link
KR (1) KR100868344B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197465A (en) * 2014-08-06 2014-12-10 芜湖美智空调设备有限公司 Control method of electronic expansion valve of air conditioner
CN104913459A (en) * 2015-06-25 2015-09-16 山东格瑞德集团有限公司 Cooling air condition coolant flux real-time control method and apparatus thereof
CN110542191A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Operation control method, operation control device, air conditioner, and storage medium
CN114216230A (en) * 2021-11-30 2022-03-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045451B1 (en) * 2004-01-15 2011-06-30 엘지전자 주식회사 A multi type air conditioner and method of controlling the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783522A (en) * 1993-09-10 1995-03-28 Mitsubishi Heavy Ind Ltd Controlling method for air conditioner
JP4411758B2 (en) * 2000-08-28 2010-02-10 ダイキン工業株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197465A (en) * 2014-08-06 2014-12-10 芜湖美智空调设备有限公司 Control method of electronic expansion valve of air conditioner
CN104913459A (en) * 2015-06-25 2015-09-16 山东格瑞德集团有限公司 Cooling air condition coolant flux real-time control method and apparatus thereof
CN110542191A (en) * 2019-09-12 2019-12-06 广东美的制冷设备有限公司 Operation control method, operation control device, air conditioner, and storage medium
CN110542191B (en) * 2019-09-12 2021-08-31 广东美的制冷设备有限公司 Operation control method, operation control device, air conditioner, and storage medium
CN114216230A (en) * 2021-11-30 2022-03-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
KR100868344B1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP3972860B2 (en) Refrigeration equipment
WO2009119023A1 (en) Freezing apparatus
EP0553892A2 (en) Dual-evaporator, dual-fan refrigerator with independent temperature controls
CN110332654A (en) Air-conditioning system and air-conditioning system defrosting control method
US5056328A (en) Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US20120117995A1 (en) Energy Saving Device And Method For Cooling And Heating Apparatus
JP4290480B2 (en) Temperature control method
KR101689724B1 (en) Air conditioner and control method thereof
WO2021223530A1 (en) Control method for inverter air conditioner
KR100868344B1 (en) A driving control method of inverter air- conditioner
KR101558503B1 (en) Air conditioner
KR20040012348A (en) A driving control method of inverter air- conditioner
JP2003106615A (en) Air conditioner
JP2017067318A (en) Air conditioner
JP3651536B2 (en) Control method of air conditioner
JP3864266B2 (en) Refrigeration equipment
KR20070066585A (en) Air-conditioner and method for the same
JPS63135742A (en) Air conditioner
KR100637672B1 (en) Control method of air conditioner
KR100487779B1 (en) A control method of air conditioner
KR100234094B1 (en) Air conditioner and control method therefor
KR100557758B1 (en) Method of controlling air conditioner
KR200270444Y1 (en) The apparatus for controlling a flow of refrigerant electronically
KR100286545B1 (en) Method for controlling operation of compressor for air conditioner
JP2006336923A (en) Air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee