KR20040006935A - Preparation of biocompatable film using chitosan and hydroxyapatite - Google Patents

Preparation of biocompatable film using chitosan and hydroxyapatite Download PDF

Info

Publication number
KR20040006935A
KR20040006935A KR1020020041541A KR20020041541A KR20040006935A KR 20040006935 A KR20040006935 A KR 20040006935A KR 1020020041541 A KR1020020041541 A KR 1020020041541A KR 20020041541 A KR20020041541 A KR 20020041541A KR 20040006935 A KR20040006935 A KR 20040006935A
Authority
KR
South Korea
Prior art keywords
chitosan
film
apatite hydroxide
nanoparticles
apatite
Prior art date
Application number
KR1020020041541A
Other languages
Korean (ko)
Other versions
KR100482439B1 (en
Inventor
좌용호
정용식
소용대
최충열
이수복
김원근
민우기
박병기
Original Assignee
좌용호
정용식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 좌용호, 정용식 filed Critical 좌용호
Priority to KR10-2002-0041541A priority Critical patent/KR100482439B1/en
Publication of KR20040006935A publication Critical patent/KR20040006935A/en
Application granted granted Critical
Publication of KR100482439B1 publication Critical patent/KR100482439B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: A method for making a biocompatible film using chitosan and hydroxyapatite is provided to obtain a biocompatible film having excellent transparency, physical properties, biocompatibility and anti-bacterial property. CONSTITUTION: The method for making a biocompatible film comprises the steps of: (a) forming a chitosan complex that contains nanoparticles of hydroxyapatite; (b) adding a polycarboxylic acid to the complex obtained from the step (a); and molding hydroxyapatite nanoparticles-containing chitosan film from the mixture obtained from the step (b). If desired, the method further comprises the step of treating the film obtained from the step (c) with an acetic anhydride-containing lower alcohol to provide a hydroxyapatite nanoparticles-containing chitin film.

Description

키토산과 수산화아파타이트를 이용한 생체친화성 필름의 제조방법 {Preparation of biocompatable film using chitosan and hydroxyapatite}Preparation method of biocompatible film using chitosan and apatite hydroxide {Preparation of biocompatable film using chitosan and hydroxyapatite}

본 발명은 수산화아파타이트와 키토산을 이용하여 생체친화성, 항균성, 투명성 등이 우수한 필름을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a film having excellent biocompatibility, antimicrobial activity, transparency, etc. using apatite hydroxide and chitosan.

수산화아파타이트는 칼슘 포스페이트계 세라믹으로, 인체의 뼈를 구성하는 주성분으로 골 전도성, 생체 활성, 생체 친화성, 단백질 흡착성, 항균성 등이 우수하여 정형외과나 치의학 분야의 골 대체제로 사용되어 오고 있다. 그러나, 수산화아파타이트는 너무 딱딱하고 부서지기 쉬워 성형가공이 어렵고, 이식된 부분으로부터 쉽게 떨어져 나오는 문제점을 갖고 있다.Apatite hydroxide is a calcium phosphate-based ceramic, and has been used as a bone substitute in orthopedics and dentistry because of its excellent bone conductivity, bioactivity, biocompatibility, protein adsorption, and antibacterial activity as a main component of human bone. However, the hydroxide apatite is too hard and brittle, difficult to form, and has a problem of easily falling away from the implanted portion.

키토산은 주로 해양에서 서식하는 갑각류의 껍질로부터 얻은 키틴을 탈아세틸화하여 얻을 수 있고, 그 생산량도 연간 1000억 톤 정도의 무한한 생물자원으로 인체에 무해한 천연고분자로 항균성, 항곰팡이성, 생분해성, 생체친화성, 응집작용, 중금속 흡착작용 등 많은 기능을 갖고 있으며, 키토산은 글루코사민 피라노제(glucosamine pyranose)환 1개당 1개의 아미노기와 2개의 히드록시기가 존재하고 있어 주로 중금속 흡착제로 사용되어지고 있다.Chitosan can be obtained by deacetylating chitin obtained from the shells of shellfish inhabiting the ocean, and its production is 100 billion tons of infinite biological resources per year. It is a natural polymer that is harmless to human body. It is antibacterial, antifungal, biodegradable, It has many functions such as biocompatibility, coagulation, and heavy metal adsorption, and chitosan is mainly used as a heavy metal adsorbent because one amino group and two hydroxy groups exist per glucosamine pyranose ring.

따라서 수산화아파타이트의 투명성 및 물리적인 단점을 보완할 수 있는 수산화아파타이트/ 키토산 복합소재의 개발에 대한 관심이 증대되고 있으며 의료용필름, 코팅재등으로의 활용이 기대된다.Therefore, interest in the development of the apatite hydroxide / chitosan composite material that can compensate for the transparency and physical disadvantages of the apatite is expected to be used as a medical film, coating material.

기존의 제조방법으로는 수산화칼슘, 인산, 키토산, 초산등을 첨가하여 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하였으나 제조단계에서 결정되는 수산화아파타이트와 키토산의 비율을 변경할 수 없고 일단 제조된 상기 복합체는 다른 형태로의 변형이 불가능하였으며 이렇게 제조된 수산화아파타이트 나노입자를 함유하는 키토산 복합체에 초산을 첨가시키고, 다시 건조하여 필름을 제조하게 되면 필름 표면에 수산화아파타이트 입자가 고르게 분산되어 있지 않고 응집되어 투명성이 저하되고 인장강도와 같은 물리적 특성이 저하되어 의료용필름이나 코팅재로의 활용이 불가능하였다.Conventional methods for preparing chitosan composites containing calcium hydroxide, phosphoric acid, chitosan, acetic acid, and the like containing apatite hydroxide nanoparticles, but the ratio of apatite hydroxide and chitosan determined at the manufacturing stage cannot be changed. When the acetic acid was added to the chitosan composite containing the apatite hydroxide nanoparticles prepared as described above, and dried again to prepare a film, the apatite hydroxide particles were not evenly dispersed on the surface of the film and were aggregated to provide transparency. Due to the deterioration and the deterioration of physical properties such as tensile strength, it was not possible to use it as a medical film or coating material.

따라서 본 발명은 상기한 바와 같은 선행기술의 제반 문제점을 해소할 수 있는 키토산과 수산화아파타이트를 이용한 생체친화성 필름의 제조방법을 제공하는 것을 기술적 과제로 한다.Therefore, the present invention is to provide a method for producing a bio-compatible film using chitosan and hydroxide apatite that can solve all the problems of the prior art as described above.

상기한 과제를 해결하기 위하여 본 발명자는 초산 용액으로 키토산을 용해시켜 키토산 용액을 제조하고 상기의 키토산 용액을 인산 용액과 혼합한 후 수산화칼슘(Ca(OH)2)현탁액에 적하시키고 교반하여 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하고, 상기 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 건조시켜 폴리카르복시산 수용액에 용해시켰다.In order to solve the above problems, the present inventors prepare a chitosan solution by dissolving chitosan in an acetic acid solution and mixing the chitosan solution with a phosphoric acid solution, and then dropping the mixture into a calcium hydroxide (Ca (OH) 2 ) suspension and stirring to apatite nanoparticles. A chitosan composite containing particles was prepared, and the chitosan composite containing the apatite hydroxide nanoparticles was dried and dissolved in an aqueous polycarboxylic acid solution.

상기와 같이 수산화아파타이트 나노입자를 함유하는 키토산 복합체에 첨가된 폴리카르복시산은 상기 키토산 복합체상에서 이온화되며 카르복시기는 키토산의 이온화된 아미노기와 이온결합을 형성할 수 있고, 동시에 수산화아파타이트 표면의 칼슘 이온에 대해서 포스페이트 이온보다 친화력이 높은 카르복시산 이온의 이온교환이 발생하고, 그 결과 폴리카르복시산 이온의 한 개의 카르복시기가 수산화아파타이트의 한 개의 칼슘 좌석과 비교적 약한 결합을 형성하는 방식인 모노덴테이트(monodentate)방식과 두 개의 카르복시기가 두 개의 칼슘 좌석과 강력한 킬레이트를 형성하는 바이덴테이트(bidentate)방식으로 결합하여 키토산 지지체 상의 수산화아파타이트 나노입자들의 결정성장을 방지함으로써 나노입자가 응집되지 않고 고른 분산상태를 유지하게 되어 투명성, 항균성, 생체친화성 및 물리적특성이 우수한 키토산과 수산화아파타이트를 이용한 생체친화성 필름을 제조할 수 있는 것을 알게 되어 본 발명을 완성한 것이다.The polycarboxylic acid added to the chitosan complex containing the apatite hydroxide nanoparticles as described above is ionized on the chitosan complex, and the carboxyl group can form an ionic bond with the ionized amino group of chitosan, and at the same time phosphate to calcium ions on the surface of the apatite hydroxide Ion exchange of carboxylic acid ions with higher affinity than ions occurs, resulting in a monodentate and two forms in which one carboxyl group of polycarboxylic acid ions forms a relatively weak bond with one calcium seat of apatite hydroxide The carboxyl group combines with two calcium seats in a bidentate manner to form a strong chelate to prevent crystal growth of the hydroxyapatite hydroxide nanoparticles on the chitosan support, thereby maintaining an even dispersion of the nanoparticles. The present invention was completed by knowing that a biocompatible film using chitosan and apatite hydroxide having excellent transparency, antimicrobial properties, biocompatibility, and physical properties can be prepared.

도 1은 구연산을 첨가하여 제조한 수산화아파타이트 나노입자-함유 키토산 필름의 영상현미경 사진이다.FIG. 1 is an image micrograph of apatite hydroxide nanoparticle-containing chitosan film prepared by adding citric acid.

도 2는 수산화아파타이트 나노입자-함유 키토산필름의 x-선 회절 곡선을 나타낸 도면이다.FIG. 2 is a diagram showing an x-ray diffraction curve of an apatite hydroxide nanoparticle-containing chitosan film.

도 3은 구연산을 첨가하여 제조한 수산화아파타이트 나노입자-함유 키토산필름의 투과형 전자현미경 사진이다.FIG. 3 is a transmission electron microscope photograph of an apatite hydroxide nanoparticle-containing chitosan film prepared by adding citric acid. FIG.

도 4는 구연산을 첨가하지 않고 제조한 수산화아파타이트 나노입자-함유 키토산필름의 연상현미경 사진이다.FIG. 4 is an associative microscope photograph of an apatite hydroxide nanoparticle-containing chitosan film prepared without adding citric acid.

도 5는 수산화아파타이트를 함유하지 않은 키토산 필름의 x-선 회절 곡선을 나타낸 도면이다.FIG. 5 is a diagram showing an x-ray diffraction curve of a chitosan film containing no apatite hydroxide.

그러므로 본 발명에 의하면 수산화아파타이트와 키토산을 이용하여 생체친화성 필름을 제조하는 방법에 있어서, (a) 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하는 공정,(b) 공정 a에서 얻어진 복합체에 폴리카르복시산을 첨가하는 공정, 및 (c) 공정 b에서 얻어진 혼합물로 수산화아파타이트 나노입자-함유 키토산 필름을 성형하는 공정을 포함하는 것을 특징으로 하는 생체친화성 필름의 제조방법이 제공된다.Therefore, according to the present invention, in the method for producing a biocompatible film using apatite hydroxide and chitosan, (a) preparing a chitosan composite containing apatite hydroxide nanoparticles, (b) a poly to the composite obtained in step a There is provided a process for producing a biocompatible film comprising the step of adding a carboxylic acid, and (c) molding the apatite hydroxide nanoparticle-containing chitosan film with the mixture obtained in step b.

이하 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 키토산과 수산화아파타이트를 이용한 생체친화성 필름의 제조방법에 의하여 제조되는 생체친화성 필름은 수산화아파타이트(Ca10(PO4)6(OH)2) 나노입자와 키토산으로 주 구성되는데 상기 생체친화성 필름을 제조하는 바람직한 방법으로는 다음과 같다.The biocompatible film prepared by the method of preparing a biocompatible film using chitosan and apatite hydroxide is mainly composed of apatite hydroxide (Ca 10 (PO 4 ) 6 (OH) 2 ) nanoparticles and chitosan. As a preferable method of manufacturing an affinity film, it is as follows.

초산 용액으로 키토산을 용해시켜 키토산 용액을 제조하고 상기의 키토산 용액을 인산 용액과 혼합하는데 이렇게 얻어진 키토산/인산혼합액을 수산화칼슘(Ca(OH)2)현탁액에 적하시키게 되면 인산과 수산화칼슘이 반응하여 수산화아파타이트가 합성된다. 최종적으로 얻어진 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 교반·숙성시킨 뒤 여과하고 수 차례 수세 후 농축하였다. 상기 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 건조시키지 않고 키토산 만을 초산수용액에 용해시킨 키토산 용액을 일정 비율 혼합하여 수산화아파타이트와 키토산의 중량비를 조절할 수 있다. 상기 방법으로 제조한 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 건조시키게 되면 매우 단단한 성형체를 얻을 수 있으나, 건조시킨 혼합물에 존재하는 키토산은 초산 수용액에 용해되지 않아 이 상태로는 필름으로의 제조가 불가능하다.After dissolving the chitosan in acetic acid solution thereby preparing a chitosan solution, and added dropwise to the thus obtained chitosan / acid mixture solution to the chitosan solution is to mix with the phosphoric acid solution to calcium hydroxide (Ca (OH) 2) suspension to the phosphoric acid and calcium hydroxide reaction hydroxide apatite Is synthesized. The chitosan composite containing the finally obtained apatite hydroxide nanoparticles was stirred and aged, filtered, and washed several times and concentrated. The weight ratio of apatite hydroxide and chitosan can be adjusted by mixing a chitosan solution in which only chitosan is dissolved in acetic acid solution without drying the chitosan complex containing the apatite hydroxide nanoparticles. When the chitosan composite containing the apatite hydroxide nanoparticles prepared by the above method is dried, a very hard molded product can be obtained, but the chitosan present in the dried mixture is not dissolved in an acetic acid aqueous solution, and thus it is impossible to produce a film. Do.

본 발명에서는 상기와 같이 제조한 수산화아파타이트 나노입자 함유 키토산 복합체에 폴리카르복시산을 수산화아파타이트 중량에 대해서 첨가하여 건조시켜 수산화아파타이트 나노입자-함유 키토산 필름을 제조할 수 있으며 이때 폴리카르복시산으로는 구연산, 부탄테트라카르복시산, 사과산등을 사용할 수 있다. 또한 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 일반적인 방법으로 건조시키지않고 슬러리 상태에서 동결건조하는 경우에는 미세한 분말 형태로 제조할 수 있어 상기 폴리카르복시산 수용액에 더욱 쉽게 용해되어 필름의 제조공정을 더욱 용이하게 할 수 있으며 제조되는 필름의 투명도와 물리적특성이 우수하게 된다. 또한 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하지 않고 키토산을 초산용액에 용해시키고 인산용액과 혼합한 후 수산화칼슘에 상기 혼합액을 적하시켜 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하여 필름을 제조할 수 있다.In the present invention, polycarboxylic acid is added to the apatite hydroxide nanoparticle-containing chitosan composite prepared as described above with respect to the weight of the apatite hydroxide and dried to prepare a hydroxideite apatite nanoparticle-containing chitosan film, wherein the polycarboxylic acid is citric acid and butanetetra. Carboxylic acid, malic acid, etc. can be used. In addition, if the chitosan composite containing the apatite hydroxide nanoparticles are lyophilized in a slurry state without drying in a general manner, it can be prepared in a fine powder form so that it is more easily dissolved in the aqueous polycarboxylic acid solution to facilitate the manufacturing process of the film. And the transparency and physical properties of the film to be produced is excellent. In addition, a chitosan composite containing apatite hydroxide nanoparticles is prepared by dissolving chitosan in acetic acid solution and mixing the phosphoric acid solution without dropping the chitosan composite containing apatite hydroxide nanoparticles, and then dropping the mixture into calcium hydroxide. Can be.

첨가된 폴리카르복시산은 수산화아파타이트 나노입자를 함유하는 키토산 복합체상에서 이온화된다. 상기 복합체의 수용액상에서 카르복시기는 키토산의 이온화된 아미노기와 이온결합을 형성할 수 있고, 동시에 수산화아파타이트 표면의 칼슘 이온에 대해서 포스페이트 이온보다 친화력이 높은 카르복시산 이온의 이온교환이 발생한다. 폴리카르복시산 이온의 한 개의 카르복시기가 수산화아파타이트의 한 개의 칼슘 좌석과 비교적 약한 결합을 형성하는 방식인 모노덴테이트(monodentate)방식 이나 두 개의 카르복시기가 두 개의 칼슘 좌석과 강력한 킬레이트를 형성하는 바이덴테이트(bidentate)방식 중 적어도 어느 한 방식으로 결합함으로서 키토산 지지체 상의 수산화아파타이트 나노입자들의 결정성장을 방지함으로써 고른 분산상태를 유지시키게 된다.The added polycarboxylic acid is ionized on the chitosan complex containing apatite hydroxide nanoparticles. In the aqueous solution of the complex, the carboxyl group may form an ionic bond with the ionized amino group of chitosan, and at the same time, ion exchange of carboxylic acid ions having a higher affinity than phosphate ions occurs for calcium ions on the surface of the apatite hydroxide. Monodentate method, in which one carboxyl group of polycarboxylic acid ions forms a relatively weak bond with one calcium seat of apatite hydroxide, or bidentate, in which two carboxyl groups form two calcium seats and a strong chelate. By binding in at least one of the bidentate method to maintain the evenly dispersed state by preventing the crystal growth of the hydroxyapatite hydroxide nanoparticles on the chitosan support.

또한 상기 제조된 수산화아파타이트 나노입자-함유 키토산 필름을 무수 초산을 함유한 저급알콜로 처리하여 수산화아파타이트 나노입자-함유 키틴 필름을 제조할 수 있다. 상기 저급알콜로서는 메탄올 , 에탄올 , 프로판올등을 사용할수 있다.무수 초산을 함유한 저급알콜로 상기 수산화아파타이트 나노입자-함유 필름을 처리하게 되면 키토산의 아미노기에 아세틸화가 이루어져 키틴으로의 변형이 가능하다.In addition, the apatite hydroxide nanoparticles-containing chitosan film prepared above may be treated with a lower alcohol containing acetic anhydride to prepare apatite hydroxide nanoparticles-containing chitin film. As the lower alcohol, methanol, ethanol, propanol, or the like can be used. [0038] The lower alcohol containing anhydrous acetic acid can be treated with the apatite hydroxide nanoparticle-containing film to acetylate the amino group of chitosan, thereby allowing the transformation into chitin.

이하 본 발명은 후술할 실시예 및 비교예를 통하여 상세하게 설명하기로 하나 본 발명은 하기한 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples to be described below, but the present invention is not limited to the following Examples.

[실시예 1]Example 1

2.5g의 키토산, 1.5g의 초산, 5.9g의 인산을 200 ml의 물에 용해시켜 혼합액을 제조한 후 7.4g의 수산화칼슘 현탁액에 상기 혼합액을 적하시키고, 이 때 고속으로 pH 9 ±0.2가 될 때까지 반응 온도는 25℃에서 상기 현탁액을 24시간 동안 지속적으로 교반하여 중량비 80:20의 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하고, 제조된 복합체를 증류수로 수세한 후 동결건조하여 분말로 제조한다. 제조된 분말 5g과 키토산 12.3 g을 초산 6g을 함유하는 650 ml의 물에 용해시켜 수산화아파타이트와 키토산이 중량비 30:70의 비율로 균일하게 혼합된 나노입자를 함유하는 복합체 수용액을 제조하고, 용액에 함유된 수산화아파타이트 중량에 대해 30 중량부의 구연산을 첨가하여, 페트리 디쉬에 붓고 30℃에서 24시간 건조하여 필름을 제조하였고, 필름에 함유된 초산 및 구연산을 중화 및 제거하기 위하여 5% 수산화나트륨(NaOH)용액으로 처리 후 수세·재건조(30℃, 24 h)하였다. 제조된 필름을 영상현미경으로 관찰하여 도 1에 나타내었고, 엑스선(x-ray)으로 측정하여 도 2에 나타내었다. 또한 투과형 전자현미경으로 측정하여 도 3에 나타내었다.2.5 g of chitosan, 1.5 g of acetic acid, and 5.9 g of phosphoric acid were dissolved in 200 ml of water to prepare a mixture, and the mixture was added dropwise to 7.4 g of calcium hydroxide suspension, at which time the pH was 9 ± 0.2 at high speed. Until the reaction temperature is continuously stirred for 24 hours at 25 ℃ to prepare a chitosan composite containing a weight ratio of 80:20 apatite hydroxide nanoparticles, washed with distilled water and then lyophilized to prepare a powder do. 5 g of the prepared powder and 12.3 g of chitosan were dissolved in 650 ml of water containing 6 g of acetic acid to prepare a composite aqueous solution containing nanoparticles in which apatite hydroxide and chitosan were uniformly mixed in a weight ratio of 30:70. 30 parts by weight of citric acid was added to the weight of the contained apatite, poured into a petri dish and dried at 30 ° C. for 24 hours to prepare a film. 5% sodium hydroxide (NaOH) was used to neutralize and remove acetic acid and citric acid contained in the film. The solution was washed with water, and then dried (30 ° C, 24 h). The prepared film was observed in an image microscope and shown in FIG. 1, and measured by X-ray (x-ray) and shown in FIG. 2. In addition, it is shown in Figure 3 by measuring with a transmission electron microscope.

[비교예 1]Comparative Example 1

필름 제조시 구연산이 첨가되지 않는 것을 제외하고는 실시예 1과 동일한 방법으로 실시하여 영상현미경으로 관찰하여 도 4에 나타내었다.Except that citric acid is not added during film production, the same procedure as in Example 1 was carried out using an image microscope to show in FIG. 4.

[비교예 2]Comparative Example 2

2중량부의 초산 및 2중량부의 키토산을 함유한 나노입자를 함유하는 키토산 복합체를 제조하여 페트리 디쉬에 붓고, 30℃에서 24시간 건조하여 필름을 제조하였고, 필름에 함유된 초산을 중화 및 제거하기 위하여 5 % 수산화나트륨(NaOH)용액으로 처리 후 수세 건조 키토산 필름을 제조하였다. 제조된 필름을 엑스선(x-ray)으로 측정하여 도 5에 나타내었다.A chitosan composite containing 2 parts by weight of acetic acid and 2 parts by weight of chitosan was prepared, poured into a petri dish, dried at 30 ° C. for 24 hours to prepare a film, and to neutralize and remove acetic acid contained in the film. After washing with 5% sodium hydroxide (NaOH) solution, a water-washed dry chitosan film was prepared. The prepared film was measured by x-ray (x-ray) and is shown in FIG. 5.

*하기한 도 1의 사진은 구연산을 첨가한 경우로서 수산화아파타이트 입자가 보이지 않는 필름의 형상을 보여주고 있으나 도 4를 보면 구연산을 첨가하지 않았을 경우 수산화아파타이트 나노 입자가 응집되어 있는 모습을 알 수 있으며, 도 2에서의 수산화아파타이트 나노입자-함유 필름에는 도 5의 수산화아파타이트를 함유하지 않은 키토산 필름과는 달리 수산화아파타이트의 전형적인 엑스-선 회절 곡선이 나타나고 있다. 도 3에서는 구연산을 첨가하여 제조한 수산화아파타이트 나노입자-함유 필름에는 폭 15내지 20 nm 길이 100 내지 150nm의 수산화아파타이트 입자가 포함되어 있는 것을 알 수 있고 이러한 크기는 가시광선의 파장영역인 380∼780 nm 보다 매우 작기 때문에 투명한 필름의 제조가 가능하다.* The photograph of FIG. 1 shows the shape of the film in which the apatite hydroxide particles are not seen when citric acid is added, but when the citric acid is not added, the apatite hydroxide nanoparticles are aggregated. In Fig. 2, the apatite hydroxide nanoparticle-containing film shows a typical X-ray diffraction curve of apatite hydroxide, unlike a chitosan film containing no apatite hydroxide in Fig. 5. In FIG. 3, it can be seen that the apatite hydroxide nanoparticle-containing film prepared by adding citric acid includes apatite hydroxide particles having a width of 15 to 20 nm and a length of 100 to 150 nm, and the size is 380 to 780 nm, which is a wavelength range of visible light. As it is much smaller, it is possible to produce transparent films.

상기에서 설명한 바와 같이 본 발명의 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 폴리카르복시산으로 처리하여 필름을 제조하는 경우에는 수산화아파타이트 나노입자의 응집을 방지함으로써 가시광선의 파장영역보다 크기가 작은 나노입자의 분산을 균일하게 함으로써 투명하고 물리적 특성, 생체친화성 및 항균성이 우수한 키토산과 수산화아파타이트를 이용한 생체친화성 필름을 제공할 수 있으며 이는 의료용필름이나 코팅재의 분야에 널리 사용될 수 있는 유용한 발명이다.As described above, when the film is prepared by treating the chitosan composite containing the apatite hydroxide nanoparticles of the present invention with polycarboxylic acid, the nanoparticles having a smaller size than the wavelength range of visible light are prevented by preventing agglomeration of the apatite hydroxide nanoparticles. By uniformly providing a biocompatible film using a transparent chitosan and apatite hydroxide having excellent physical properties, biocompatibility and antibacterial properties, which is a useful invention that can be widely used in the field of medical films and coating materials.

Claims (4)

수산화아파타이트와 키토산을 이용하여 생체친화성 필름을 제조하는 방법에 있어서, 다음의 공정을 포함하는 것을 특징으로 하는 생체친화성 필름의 제조방법:A method of producing a biocompatible film using apatite hydroxide and chitosan, the method comprising the steps of: (a) 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하는 공정,(a) preparing a chitosan composite containing apatite hydroxide nanoparticles, (b) 공정 a에서 얻어진 복합체에 폴리카르복시산을 첨가하는 공정, 및(b) adding polycarboxylic acid to the composite obtained in step a, and (c) 공정 b에서 얻어진 혼합물로 수산화아파타이트 나노입자-함유 키토산 필름을 성형하는 공정.(c) A step of molding the apatite hydroxide nanoparticle-containing chitosan film from the mixture obtained in step b. 제 1 항에 있어서, 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 동결건조한 후 폴리카르복시산을 첨가하는 공정을 포함하는 것을 특징으로 하는 생체친화성 필름의 제조방법.The method of claim 1, further comprising a step of lyophilizing the chitosan composite containing the apatite hydroxide nanoparticles and then adding polycarboxylic acid. 제 1 항에 있어서, 공정(c) 에서 얻어진 수산화아파타이트 나노입자-함유 키토산 필름을 무수초산-함유 저급알코올로 처리하여 수산화아파타이트 나노입자-함유 키틴 필름을 제조하는 공정을 더 포함하는 것을 특징으로 하는 생체친화성 필름의 제조방법.The process of claim 1, further comprising the step of treating the apatite hydroxide nanoparticle-containing chitosan film obtained in step (c) with anhydrous acetic acid-containing lower alcohol to prepare the apatite hydroxide nanoparticle-containing chitin film. Method of producing a biocompatible film. 제 1 항에 있어서, 키토산을 초산용액에 용해시키고 인산용액과 혼합한 후 수산화칼슘에 상기 혼합액을 적하시켜 수산화아파타이트 나노입자를 함유하는 키토산 복합체를 제조하는 공정을 포함하는 것을 특징으로 하는 생체친화성 필름의 제조방법.2. The biocompatible film according to claim 1, comprising the step of dissolving chitosan in acetic acid solution, mixing with phosphoric acid solution, and then dropping the mixture into calcium hydroxide to produce a chitosan composite containing apatite hydroxide nanoparticles. Manufacturing method.
KR10-2002-0041541A 2002-07-16 2002-07-16 Preparation of biocompatable film using chitosan and hydroxyapatite KR100482439B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0041541A KR100482439B1 (en) 2002-07-16 2002-07-16 Preparation of biocompatable film using chitosan and hydroxyapatite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0041541A KR100482439B1 (en) 2002-07-16 2002-07-16 Preparation of biocompatable film using chitosan and hydroxyapatite

Publications (2)

Publication Number Publication Date
KR20040006935A true KR20040006935A (en) 2004-01-24
KR100482439B1 KR100482439B1 (en) 2005-04-14

Family

ID=37316783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0041541A KR100482439B1 (en) 2002-07-16 2002-07-16 Preparation of biocompatable film using chitosan and hydroxyapatite

Country Status (1)

Country Link
KR (1) KR100482439B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902040B1 (en) * 2007-06-26 2009-06-15 중앙대학교 산학협력단 Manufacturing method of palmitoyl chitosan and chitosan film containing it
KR101038699B1 (en) * 2009-02-09 2011-06-02 연세대학교 산학협력단 Bio-affinity oxide layer film and method for manufacturing the same
KR101113308B1 (en) * 2009-06-09 2012-02-24 부산대학교 산학협력단 manufacturing method of composite film by polymeric repulsion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100941730B1 (en) 2007-11-20 2010-02-11 한국세라믹기술원 Organic-inorganic hybrid scaffolds with surface-immobilized nano-hydroxyapatite and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902040B1 (en) * 2007-06-26 2009-06-15 중앙대학교 산학협력단 Manufacturing method of palmitoyl chitosan and chitosan film containing it
KR101038699B1 (en) * 2009-02-09 2011-06-02 연세대학교 산학협력단 Bio-affinity oxide layer film and method for manufacturing the same
KR101113308B1 (en) * 2009-06-09 2012-02-24 부산대학교 산학협력단 manufacturing method of composite film by polymeric repulsion

Also Published As

Publication number Publication date
KR100482439B1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
Varadavenkatesan et al. Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings
Shakir et al. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering
Jayakumar et al. Chemistry and applications of phosphorylated chitin and chitosan
Bueno et al. Synthesis and characterization of xanthan–hydroxyapatite nanocomposites for cellular uptake
Padmanabhan et al. New core-shell hydroxyapatite/Gum-Acacia nanocomposites for drug delivery and tissue engineering applications
Chen et al. A novel nanocomposite for bone tissue engineering based on chitosan–silk sericin/hydroxyapatite: biomimetic synthesis and its cytocompatibility
Salama et al. Bioactive cellulose grafted soy protein isolate towards biomimetic calcium phosphate mineralization
Tithito et al. Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly (methyl methacrylate) for bone tissue engineering
Kumar et al. Hydroxyapatite: a versatile bioceramic for tissue engineering application
Medvecky Microstructure and properties of polyhydroxybutyrate-chitosan-nanohydroxyapatite composite scaffolds
Jariya et al. Development of a novel smart carrier for drug delivery: Ciprofloxacin loaded vaterite/reduced graphene oxide/PCL composite coating on TiO2 nanotube coated titanium
CN114315338B (en) Si 3 N 4 /CPP composite ceramic material and preparation method and application thereof
Giretova et al. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response
Shi et al. Fabrication, properties, and biomedical applications of calcium-containing cellulose-based composites
KR100482439B1 (en) Preparation of biocompatable film using chitosan and hydroxyapatite
Sukhodub et al. Nanocomposite apatite-biopolymer materials and coatings for biomedical applications
Sridevi et al. Valorization of biowaste derived nanophase yttrium substituted hydroxyapatite/citrate cellulose/opuntia mucilage biocomposite: A template assisted synthesis for potential biomedical applications
KR100787526B1 (en) Synthesis of spherical shaped hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate nano powders depending on the ph by microwave assisted process
Poovendran et al. Amalgamation and characterization of porous hydroxyapatite bio ceramics at two various temperatures
Shi et al. Synthesis and characterization of an injectable rifampicin-loaded chitosan/hydroxyapatite bone cement for drug delivery
KR20090092903A (en) Manufacturing method for nanoparticles of hydroxyapatite and hydroxyapatite nanoparticles
Romanov et al. Nanotextures of composites based on the interaction between hydroxyapatite and cellulose Gluconacetobacter xylinus
Wu et al. Effects of cooling conditions and chitosan coating on the properties of porous calcium phosphate granules produced from hard clam shells
CN1242818C (en) Degradable composite support frame and its preparing process
Medvecky et al. Osteogenic potential and properties of injectable silk fibroin/tetracalcium phosphate/monetite composite powder biocement systems

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee