KR200362988Y1 - The air-conditioning and heating system used geothermal - Google Patents

The air-conditioning and heating system used geothermal Download PDF

Info

Publication number
KR200362988Y1
KR200362988Y1 KR20-2004-0015408U KR20040015408U KR200362988Y1 KR 200362988 Y1 KR200362988 Y1 KR 200362988Y1 KR 20040015408 U KR20040015408 U KR 20040015408U KR 200362988 Y1 KR200362988 Y1 KR 200362988Y1
Authority
KR
South Korea
Prior art keywords
heat
temperature
geothermal
evaporator
heating
Prior art date
Application number
KR20-2004-0015408U
Other languages
Korean (ko)
Inventor
박용정
홍택
손종호
Original Assignee
주식회사공간코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사공간코리아 filed Critical 주식회사공간코리아
Priority to KR20-2004-0015408U priority Critical patent/KR200362988Y1/en
Application granted granted Critical
Publication of KR200362988Y1 publication Critical patent/KR200362988Y1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D12/00Other central heating systems
    • F24D12/02Other central heating systems having more than one heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Abstract

본 고안은 무공해 천정에너지원인 지열(地熱)을 이용한 시설원예용 축열식 냉난방 장치에 관한 것으로,The present invention relates to a regenerative air-conditioning and heating device for horticulture using geothermal heat, which is a pollution-free ceiling energy source.

더욱 자세히는 태양의 토양의 의한 축열과 지중열을 히트펌프장치를 이용하여 채열하고, 증발기를 통하여 수송한 후, 압축하여 열매체의 온도를 사용가능한 정도로 올려서, 응축기를 통해 축열조에 모은 후, 송풍기를 이용하여 온실내부를 난방하거나,More specifically, the heat and ground heat generated by the solar soil is collected using a heat pump apparatus, transported through an evaporator, compressed, and heated to a usable temperature, and collected in a heat storage tank through a condenser. To heat the inside of the greenhouse,

반대로, 응축열을 토양으로 방열하여 온도를 내린 후, 증발기를 통하여 수송하고, 이를 축열조에 모아, 송풍기를 이용하여 온실내부를 냉방하는 양방향 히트펌프장치으로, 지열을 이용한 시설원예 냉난방 장치에 관한 것이다.On the contrary, the heat dissipation of condensation heat to the soil, the temperature is lowered, transported through an evaporator, collected in a heat storage tank, and a two-way heat pump device for cooling the inside of the greenhouse using a blower.

Description

지열을 이용한 시설원예 냉난방 장치{The air-conditioning and heating system used geothermal}Air-conditioning and heating system used geothermal

본 고안은 100% 지열만으로 냉난방하여 시설원예가 가능하도록 하는 것으로, 토양으로부터 채열한 열을 양방항 지열원 히프펌프장치에 의하여, 겨울철에는 온도를 올려 하우스 내 난방을 하고 여름철에는 온도를 내려 저온작물 재배를 위해 냉방을 하는 시설원예 냉난방 장치에 관한 것이다.The present invention is to heat and heat with only 100% geothermal heat, so that horticulture is possible. The heat generated from the soil is heated by a two-way geothermal source pump, heating up the house in winter and lowering the temperature in summer. The present invention relates to a horticulture air-conditioning and heating device for cooling for cultivation.

일반적으로 시설원예 하우스에서 작물 재배 시에는 기온, 햇빛, 이산화탄소 등과 같은 지상부의 환경은 물론, 토양내의 수분, 양분, 산소 및 적정온도유지 등 토양내의 환경도 중요하다. 이에 시설작물이 잘 성장가능 하도록 최적의 환경을 조성하기 위한 온풍기, 이산화탄소발생기, 관수시설 등과 같은 장비는 다수 개발되어 사용되어 오고 있으나, 연료로는 주로 화석연료를 사용하고 있고 전량 수입에 의존하고 있는 상황이어서 원유의 가격변동에 따라 농가의 부담이 상당한 실정인데 비해, 연료를 절약할 수 있는 방법이나 대체에너지에 대한 개발은 미흡한 실정이다.In general, when cultivating crops in a horticultural house, the environment in the soil such as temperature, sunlight, carbon dioxide, and the like, as well as the moisture, nutrients, oxygen and proper temperature in the soil are important. Therefore, a number of equipments such as a hot air fan, a carbon dioxide generator, and an irrigation facility have been developed and used to create an optimal environment for plant crops to grow well. However, fossil fuels are mainly used as fuels, and the total amount depends on imports. As a result, the burden on farms due to the price fluctuation of crude oil is considerable, but there is insufficient development of a method for saving fuel or alternative energy.

실제적으로 2002년을 기준으로 국내의 시설원예의 난방연료의 95%를 경유로 사용하고, 중유는 4%, 기타 1% 정도 사용하고 있으며, 난방비가 시설작물경영비의 30~37%를 차지하는데 일본은 20%, 네델란드는 14~15%, 이스라엘은 10%인데 비하면 우리나라 시설원예의 난방비 점유율이 매우 높다.Actually, as of 2002, 95% of the heating fuel of domestic horticulture is used as diesel, heavy oil is used by 4% and other 1%, and heating costs account for 30 ~ 37% of facility crop management costs. Silver is 20%, Netherlands is 14-15%, and Israel is 10%.

2001년 농촌진흥청 통계자료에 의하면 국내 대부분 지역의 유리온실 및 비닐하우스는 난방유에 의한 연소발열을 대부분 이용하고 있으며, 난방유의 연소열량은 실제 유효열량과는 차이가 있어 보일러 몸체에서의 손실, 배기가스 손실, 기타 열 손실 등을 고려할 때 공급할 수 있는 열에너지는 약 75~85%정도로서, 경유의 발열량을 8,700㎉/ℓ 정도로 보면 실제 이용하는 열량은 7,360㎉/ℓ에 불과하여 비효율적이다.According to statistics from the Rural Development Administration in 2001, most glass greenhouses and vinyl houses in Korea mostly use the heat generated by the heating oil, and the heat of combustion of the heating oil is different from the actual heat of heat. When considering the loss and other heat loss, the heat energy that can be supplied is about 75 ~ 85%, and the heat quantity of diesel oil is about 8,700㎉ / ℓ, which is inefficient because the actual heat is only 7,360㎉ / ℓ.

덧붙여, 현대인들의 건강에 대한 관심은 갈수록 고조되고 있고 농산물을 선택하는 기준 또한 엄격해져만 가고 있는 상황에서, 무공해농산물을 재배하기 위해서는 화석연료를 사용하는 것은 불합리한 점이 있다. 이에 무공해 자연대체에너지가 필수적이지만 아직까지는 특별한 대체품은 없는 상태이고, 태양과 풍력, 지열을 활용하여 보조열원으로 사용하는 정도가 현실이다.In addition, there is an unreasonable use of fossil fuels for growing non-polluting agricultural products, as the concern for the health of modern people is increasing and the criteria for selecting agricultural products are becoming more stringent. Pollution-free natural alternative energy is essential, but there are no special alternatives yet, and the reality is that it uses solar, wind power, and geothermal heat as an auxiliary heat source.

이에 무공해 천정에너지인 태양, 풍력, 지열 등을 보조열원으로 이용하는 것에 그치지 말고, 대체에너지로서 100% 주열원으로 이용할 수 있는 방법에 대한 개발이 절실히 요구되고 있는 실정이다.Therefore, the development of a method that can be used as a primary heat source 100% as an alternative energy source, instead of using the solar energy, wind power, geothermal energy, and the like, as non-polluting ceiling energy, is urgently required.

이에 본 고안에서는 상기와 같은 문제점을 해결하기 위하여 태양축열과 지중열을 열원으로 시설원예 냉난방 장치를 구축함에 있어, 지중열교환기(10)와 히트펌프장치(20)과 축열조(30)를 중요 장치부로 하고, 지중온도변화를 분석하여 열적특성을 파악하고; 지중열교환기(10)를 적합한 위치에 매립하고; 상기 지중열교환기로지열과 태양축열을 동시에 효과적으로 회수하고; 히트펌프장치(20)을 이용하여 지중으로부터 열을 끌어와; 축열조(30)에 열을 저장시키고; 송풍기(40)로 냉난방을 하는 것에 그 기술적 과제를 두고 창안된 것이다.In this invention, in order to solve the above problems in building a facility horticulture air-conditioning system using solar heat and geothermal heat as a heat source, the underground heat exchanger 10, the heat pump device 20 and the heat storage tank 30 is an important device Determine the thermal characteristics by analyzing ground temperature changes; Embedding the underground heat exchanger (10) in a suitable location; Efficiently recovering geothermal heat and solar heat storage with the underground heat exchanger; Draw heat from the ground using the heat pump apparatus 20; Heat is stored in the heat storage tank 30; It is created with the technical problem to heat and cool with the blower (40).

도 1은 본 고안에 따른 냉난방 장치의 원리를 개략적으로 나타낸 도면1 is a view schematically showing the principle of the heating and cooling device according to the present invention

도 2는 토양의 깊이 변화에 따른 온도변화를 나타낸 그래프2 is a graph showing the temperature change according to the change in the depth of the soil

도 3은 본 고안의 실험에 의한 야간의 토양온도를 나타낸 그래프3 is a graph showing the soil temperature at night by the experiment of the present invention

도 4는 본 고안의 실험에 의한 주간의 토양온도를 나타낸 그래프4 is a graph showing the soil temperature during the day by the experiment of the present invention

■ 도면의 주요부분에 사용된 주요부호의 설명 ■■ Explanation of the major symbols used in the main parts of the drawings ■

10 : 지중열교환기 20 : 히트펌프장치10: underground heat exchanger 20: heat pump device

21 : 증발기 22 : 사방밸브21: Evaporator 22: Four-way valve

23 : 팽창밸브 24 : 압축기23 expansion valve 24 compressor

25 : 응축기 30 : 축열조25: condenser 30: heat storage tank

40 : 송풍기 50 : 측정장치40: blower 50: measuring device

60 : 배관60: piping

도 1은 본 고안에 따른 냉난방 장치의 원리를 개략적으로 나타낸 도면이고, 도 2는 토양의 깊이 변화에 따른 온도변화를 나타낸 그래프이며, 도 3은 본 고안의 실험에 의한 야간의 토양온도를 나타낸 그래프이고, 도 4는 본 고안의 실험에 의한 주간의 토양온도를 나타낸 그래프로서, 본 고안을 자세히 설명하면 다음과 같다.1 is a view schematically showing the principle of the heating and cooling device according to the present invention, Figure 2 is a graph showing the temperature change according to the change in the depth of the soil, Figure 3 is a graph showing the soil temperature at night by the experiment of the present invention And, Figure 4 is a graph showing the soil temperature of the day by the experiment of the present invention, the present invention will be described in detail as follows.

우선 지열에 대해 설명하면, 지열이라 함은 지구의 토양, 암석 등이 갖고 있는 열에너지를 말한다. 지열에너지원의 특성은 지중에 분포하고, 연중 에너지자원상태의 변화가 적고, 국내 모든 곳에 존재하며 분포의 큰 차이가 없다. 지열은 이용에 따라 일정시간동안 열원상태 변화가 있을 수 있지만 아무리 많은 양을 이용하더라도 영속적으로 고갈될 위험은 없다. 또한 지열은 지구중심부로 갈수록 뜨거워지는데, 지중으로 일정깊이에 도달하면 연중온도의 변화가 거의 없는 부동층이 존재한다(도 2). 하절기는 지온이 대기온도보다 낮기 때문에 냉방용 에너지원으로 사용할 수 있고, 동절기에는 대기온도보다 높기 때문에 난방용 에너지원으로 사용할 수 있다.First, geothermal heat is described, geothermal refers to the thermal energy of the earth's soil, rocks, and the like. The characteristics of geothermal energy sources are distributed in the ground, there is little change in the state of energy resources throughout the year, and they exist everywhere in Korea and there is no big difference in the distribution. Geothermal heat can be changed for a certain period of time depending on the use, but no matter how much it is used, there is no risk of permanent depletion. In addition, geothermal heat is getting hotter toward the center of the earth, when there reaches a certain depth into the underground there is a passivation layer with little change in year-round temperature (Fig. 2). In summer, since geothermal is lower than atmospheric temperature, it can be used as a cooling energy source, and in winter, it can be used as heating energy source because it is higher than atmospheric temperature.

지열에너지는 청정에너지이며, 그 양이 방대하고, 안정적이고 지속적인 열원으로 저밀도 에너지를 무한정 함유하고 있어 자연대체에너지로서 매우 적합하다.Geothermal energy is clean energy, and its quantity is huge, and it is very suitable as natural alternative energy because it contains infinitely low density energy as a stable and continuous heat source.

이러한 지열을 이용한 시설원예 냉난방 장치를 도 1에 의하여 살펴보면,Looking at the facility horticulture air-conditioning device using the geothermal heat according to Figure 1,

1. 지열과의 열전달을 수행하는 지중열교환기(10)는 지표에서 1m 내외의 깊이에서 매립하고, 상기 지중열교환기(10)는 지중의 열적특성을 기본으로 태양의 토양에 대한 축열과 지중열을 동시에 효과적으로 회수하도록 한다.1. Underground heat exchanger 10 that performs heat transfer with geothermal heat is buried at a depth of about 1m from the surface, the ground heat exchanger 10 is the heat storage and geothermal heat for the soil of the sun based on the thermal properties of the ground At the same time effectively recover.

2. 히트펌프장치(20)을 통해 지중으로부터 열을 수송하여 열매체의 온도를 사용가능한 정도로 올린다. 히트펌프장치(20)의 구성은 증발기(21), 사방밸브(22), 팽창밸브(23), 압축기(24), 응축기(25)로서 양방 열수송이 가능한데,2. Heat is transferred from the ground through the heat pump device 20 to raise the temperature of the heat medium to an acceptable level. The heat pump device 20 is configured as an evaporator 21, a four-way valve 22, an expansion valve 23, a compressor 24, and a condenser 25.

난방의 경우, 지열을 증발기(21)를 통하여 채열하고 수송한 후 압축하여 열매체의 온도를 사용가능한 정도로 올려서 응축기(25)에서 응축한다. 이때 증발기 측에 측정장치(50)를 부착하여 증발기 입출구 지중온도를 측정한다.In the case of heating, the geothermal heat is collected through the evaporator 21, transported and then compressed to condense in the condenser 25 by raising the temperature of the heat medium to an acceptable level. At this time, by attaching the measuring device 50 on the evaporator side to measure the evaporator inlet and underground temperature.

냉방의 경우는 반대로, 응축기(25)의 열을 토양으로 방열하여 열매체의 온도를 사용가능한 정도로 내려서 압축기(24)를 거쳐 증발기(21)에 모이게 된다.In the case of cooling, on the contrary, the heat of the condenser 25 is radiated to the soil to lower the temperature of the heat medium to the extent possible to be collected in the evaporator 21 via the compressor 24.

3. 상기 히트펌프장치(20)을 거친 지열에너지는 응축기(25) 또는 증발기(21)에서 배관(60)을 통해 축열조(30)에 모인다.3. The geothermal energy passing through the heat pump device 20 is collected in the heat storage tank 30 through the pipe 60 in the condenser 25 or the evaporator 21.

4. 상기 축열조(30)에 모인 지열에너지가 배관(60)을 타고 하우스 에 도달하면 송풍기(40)를 통하여 냉난방이 된다.4. When the geothermal energy collected in the heat storage tank 30 reaches the house via the pipe 60, it is cooled and heated through the blower 40.

상기 1에 지중열교환기(10)는 보통 지표면으로부터 50~60㎝ 보다 깊게 되면지온의 일변동은 없으며, 50㎝이상에서 1m 내외로 매립하면 가장 적당하다.The ground heat exchanger 10 in the above 1 is usually more than 50 ~ 60 cm deep from the ground surface there is no fluctuation of the geothermal, it is most suitable to be buried in about 1m or more at 50 cm or more.

일반적인 지중열교환기(10)는 겨울철에 노출된 토양의 표면이 내부보다 온도가 차갑기 때문에 훨씬 깊이 매립해야 하지만, 시설원예의 경우에는 토양의 표면이 태양에 의해 축열되는 복사열로 인해 토양 내부보다 온도가 높고 토양표면의 축열이 내부로 전달되기 때문에, 표면을 최대한 이용하기 위하여 상기와 같은 1m 내외의 깊이로 매립하는 것이 바람직하다. 반면, 너무 얇게 매립하면 열을 끌어오면서 토양의 온도가 낮아져 작물성장에 영향을 줄 수 있다. 매립형태는 밀폐수평형이 적당하며 설치비가 적게들고, 유지보수비가 적게 들며 환경오염에 효율적인 장점이 있다.In general, the ground heat exchanger (10) should be buried much deeper because the surface of the soil exposed to the winter is colder than the inside, but in the case of facility horticulture, the temperature of the soil surface is higher than the inside of the soil due to the radiant heat that is accumulated by the sun. Since the heat accumulation of the soil surface is high and transferred to the inside, it is preferable to bury it to a depth of about 1m as described above in order to make full use of the surface. Too thin a landfill, on the other hand, can attract heat and lower the soil temperature, which can affect crop growth. Landfill type has the advantages of suitable closed horizontal type, low installation cost, low maintenance cost, and efficient environmental pollution.

히트펌프장치(20)은 기존에는 난방용으로만 사용되었으나 본 고안에서는 냉방으로도 사용되고 양방 열수송이 가능하며, 난방용량은 65㎾ 이상으로서 연속운전이 아닌 일정주기로 작동하는 것인데, 일정시간 취출하고 지열순환수의 입구온도가 일정온도 이하로 내려가면 정지했다가 다시 일정온도까지 승온이 되면 작동한다. 또한 히트펌프장치(20)의 사이클을 해석하기 위해서 냉매유량계를 설치하고 각 열교환기 입출구와 압축기 입출구에 온도센서와 압력센서 등 측정장치(50)를 부착한다.The heat pump device 20 was previously used only for heating, but in the present invention, it is also used for cooling and heat transfer is possible, and the heating capacity is 65㎾ or more, which operates at a constant cycle, not continuous operation. It stops when the inlet temperature of the water drops below a certain temperature, and then operates when the temperature reaches a certain temperature again. In addition, in order to analyze the cycle of the heat pump device 20, a coolant flow meter is installed, and a measuring device 50 such as a temperature sensor and a pressure sensor is attached to each of the heat exchanger inlet and outlet and the compressor inlet and outlet.

축열조(30)는 지열원히트펌프(20)와 서로 열적 완충역활을 하며, 축열조(30)의 열매(熱媒)는 물을 사용하는데 물의 온도와 그 하강 폭은 적당하게 설정가능 하다.The heat storage tank 30 serves as a thermal buffer with the geothermal source heat pump 20, and the fruit of the heat storage tank 30 uses water, but the temperature and the falling width of the water can be appropriately set.

다음은 본 고안에 의한 일 실시예로서 비닐하우스내에서 작물을 오이로 하여실제 실험한 것이며, 25일 정도 히트펌프장치(20)을 자동 가동시킨 후, 그 결과데이터를 20일간 취득하여 데이터분석을 한 것이다.The following is an example of the actual experiment using the crop as a cucumber in a plastic house as an embodiment of the present invention, and after automatically operating the heat pump apparatus 20 for about 25 days, the result data is acquired for 20 days and the data is analyzed. It is.

실내설정온도는 15±1℃로 하였으며, 일출이후에 비닐하우스의 일사투과량이 많아 실내온도가 급격히 상승(20℃이상)하나 대체로 외기 온도의 영향 없이 비교적 일정한 실내온도를 유지하였다. 온도설정 유지를 위하여 주기적인 난방을 하였는데, 1회 난방시간은 1~2분 정도이었고 난방을 멈추고 다음 난방시기까지 시간은 초기에 20분 정도였다가 점차 주기가 짧아서 5분 간격으로 난방열이 공급되었다. 이 때 난방중이라도 히트펌프(20)가 가동될 때는 축열조(30)의 온도가 상승하였는데 이는 난방부하량보다 채열량이 많기 때문이다. 난방시기가 아닐 때 축열조(30)의 온도상승구배는 난방시기일 때의 하강구배보다 크게 나타났는데, 이는 하루 전체를 볼 때 소모열보다 축열속도가 빠르다는 것을 의미하며 소모되었던 열량을 충분히 확보할 수 있다는 것을 보여준다.The room temperature was set to 15 ± 1 ℃. After sunrise, the room temperature increased sharply (more than 20 ℃) due to the large amount of solar radiation. However, the room temperature was relatively constant without the influence of outside temperature. Periodic heating was performed to maintain the temperature setting. The heating time was once 1 ~ 2 minutes, the heating time was stopped and the time until the next heating time was about 20 minutes at the beginning. . At this time, even when heating, when the heat pump 20 is operated, the temperature of the heat storage tank 30 is increased because the amount of heat generated is greater than the heating load. When the heating period is not heating temperature gradient of the heat storage tank (30) was larger than the falling gradient when the heating period, which means that the heat storage rate is faster than the heat consumed throughout the day, and enough heat to be consumed Shows that you can.

난방초기의 온도변화가 많은데 이는 난방종료부터 재난방까지 시간이 비교적 길다는 의미로, 이는 축열조로부터 나가는 열량이 작고 작은 소모열량에 대해 히트펌프의 짧은 가동시간이라도 축열조의 온도가 회복되었기 때문이다. 증발기(21)를 통과하는 지열수 입출구 온도차이는 평균 2.2℃정도로 유지하고, 냉매의 유량 또한 비교적 일정하게 유지하였다.The initial temperature of heating is large, which means that the time from heating termination to reheating is relatively long, because the heat from the heat storage tank is small and the temperature of the heat storage tank is restored even with a short operating time of the heat pump for small heat consumption. The temperature difference between the geothermal water inlet and outlet through the evaporator 21 was maintained at about 2.2 ° C on average, and the flow rate of the refrigerant was also kept relatively constant.

지중열교환기(10)로 채열을 하는 동안 중요하게 고려되어야 할 것이 토양의 온도이다. 토양의 표면온도는 일사에 영향을 많이 받기 때문에 하루 중에도 온도변화 폭이 크게 나타난다. 도 3에서 보듯이 온실내부와 외기측의 토양깊이에 따른 온도구배는 외표면의 온도를 제외하면 반대의 성향을 나타냄을 볼 수 있다. 동절기 외기온도는 토양속의 온도보다 낮기 때문에 깊이에 대한 온도구배는 양의 값을 가지고 온실내부의 온도는 토양의 온도보다 높기 때문에 깊이에 대한 온도구배는 음을 갑을 가진다.The temperature of the soil that needs to be taken into account during the heat with the underground heat exchanger (10). The surface temperature of the soil is affected by insolation, so the temperature change is great even during the day. As shown in Figure 3, the temperature gradient according to the depth of the soil inside and outside the greenhouse can be seen to exhibit the opposite tendency except for the temperature of the outer surface. Since the outside temperature in winter is lower than the temperature in the soil, the temperature gradient for the depth has a positive value, and the temperature gradient for the depth has a negative value because the temperature in the greenhouse is higher than the soil temperature.

도 4는 도 3보다 12시간 지난 일사량이 가장 많은 일출이후의 시간에서 토양의 온도분포를 나타낸 것이다. 외기측 지온을 제외하고 12시간동안 온도변화가 현저히 변화하는 깊이는 0.2m이며 이후의 깊이에서는 12시간동안의 영향은 매우 작고, 지표로 0.3m까지는 기존 난방유 사용온실과 시험온실의 토양의 온도가 비슷하게 나타났는데, 이는 지표 0.3m이내에서는 지중열교환기의 영향이 거의 없음을 알 수 있다.Figure 4 shows the temperature distribution of the soil at the time since sunrise with the largest amount of insolation 12 hours before FIG. Except for the outside air temperature, the depth of change of temperature change for 12 hours is 0.2m, and the effect of 12 hours is very small at the depth afterwards, and the surface temperature of existing heating oil used and test greenhouse is up to 0.3m. Similarly, it can be seen that there is little effect of underground heat exchanger within 0.3m of the surface.

상기 실험에 의하면 오이가 제대로 성장하기에 아무런 지장이 없이 온도유지를 효율적으로 할 수 있었고, 또한 공기의 오염 없이 청정한 환경에서 깨끗하게 오이재배가 가능하였으며,According to the above experiment, it was possible to efficiently maintain the temperature without any problem for the cucumbers to grow properly, and to cultivate the cucumbers in a clean environment without contamination of air.

에너지 절감면을 평가해 보면 경유를 사용할 때보다 축열식 지열원냉난방 장치의 경우가 73.9% 까지 절감되는 효과를 보였다.When evaluating the energy savings, the heat storage type of heat storage air-conditioning system was reduced by 73.9% compared with diesel.

이상에서 자세히 설명한 바와 같이 본 고안 지열을 이용한 시설원예 냉난방 장치를 통하여,As described in detail above, through the horticulture air-conditioning and heating device using the present invention geothermal,

지열과 태양축열만을 100% 에너지원으로 이용함으로서 기존의 화석연료를 사용하는 것보다 70% 이상의 에너지 절감 효과가 있어 연료비 절감으로 인해 농산물에 대한 가격경쟁력 확보에 따른 농가소득이 증대되고, 경유나 등유 등 석유연료와는 달리 친환경 에너지의 실용화로서 온실가스 및 매연이 전혀 없으므로 환경오염의 문제가 없으며, 여름철에는 냉방으로 저온작물로 대체가 가능하고, 성능저하가 거의 없어 수명이 반영구적일 뿐 아니라, 유지보수 비용이 저렴하며, 온실이 청결하고, 친환경적 무공해 작물재배로 품질이 향상되고 생산에 효율적일 뿐 아니라, 무공해 청정대체에너지로서의 그 응용 이용분야가 무한한 등 그 효과가 다대한 고안이라 하겠다.By using only geothermal and solar heat as 100% energy sources, it saves more than 70% of energy compared to using fossil fuels, which reduces farming costs and increases farm income by securing price competitiveness for agricultural products. Unlike petroleum fuels, there is no problem of environmental pollution because there is no greenhouse gas and soot as practical use of eco-friendly energy, and it can be replaced by low-temperature crops by cooling in summer, and it has almost no deterioration in performance, so its life is semi-permanent. The cost of maintenance is low, the greenhouse is clean, environment-friendly, no pollution, cultivation is not only improved quality and efficient production, but also the endless use of the field as a clean alternative energy, the effect is a great design.

Claims (5)

시설원예 냉난방 장치에 있어서,In the facility horticulture air conditioning unit, 지중온도변화를 분석하여 열적특성을 파악하여 적합한 위치에 매립 되며, 지열과 태양축열을 동시에 회수하는 지중열교환기(10)와;An underground heat exchanger (10) for retrieving the thermal characteristics and analyzing the thermal characteristics to be embedded at an appropriate location, and simultaneously recovering the geothermal heat and solar heat storage; 지중으로부터 열을 끌어오는 역할을 하는 히트펌프장치(20)와;A heat pump device 20 which draws heat from the ground; 상기 열을 응축시켜두는 축열조(30)와;A heat storage tank 30 for condensing the heat; 축열조(30)내 열매체를 이동시키기 위한 배관(60)과;A pipe 60 for moving the heat medium in the heat storage tank 30; 송풍기(40)로 구성된 것을 포함하는 지열을 이용한 시설원예 냉난방 장치Facility horticulture cooling and heating device using geothermal heat including a blower 40 제 1항에 있어서,The method of claim 1, 지중열교환기(10)는 지표로부터 50㎝이상 1m 내외로 매립하는 것을 포함하는 지열을 이용한 시설원예 냉난방 장치Ground heat exchanger (10) is a horticulture air-conditioning and heating device using geothermal heat, including landfilling more than 50 cm 1m from the surface 제 1항에 있어서,The method of claim 1, 히프펌프장치(20)은 양방 열수송으로 증발기(21), 사방밸브(22), 팽창밸브(23), 압축기(24), 응축기(25)로 구성하여, 난방 시 지열을 증발기(21)를 통하여 채열하고 수송한 후 압축하여 열매체의 온도를 사용가능한 정도로 올려서응축기(25)에서 응축하는 것을 포함하는 지열을 이용한 시설원예 냉난방 장치The bottom pump apparatus 20 is composed of an evaporator 21, a four-way valve 22, an expansion valve 23, a compressor 24, a condenser 25 by both heat transport, and the geothermal heat evaporator 21 during heating. Facility horticulture air-conditioning and heating equipment using geothermal heat that includes condensation in the condenser 25 by heating and transporting and compressing to raise the temperature of the heat medium to the extent possible 제 1항에 있어서,The method of claim 1, 히트펌프장치(20)은 양방 열수송으로 증발기(21), 사방밸브(22), 팽창밸브(23), 압축기(24), 응축기(25)로 구성하여, 냉방 시 응축기(25)의 열을 토양으로 방열하여 열매체의 온도를 사용가능한 정도로 내려 압축기(24)를 거쳐 증발기(21)를 통하게 하여 냉방 가능토록 하는 것을 포함하는 지열을 이용한 시설원예 냉난방 장치The heat pump device 20 is composed of an evaporator 21, a four-way valve 22, an expansion valve 23, a compressor 24, a condenser 25 by both heat transport, and heats the condenser 25 during cooling. Facility horticulture air-conditioning and heating device using geothermal heat, including heat dissipation into the soil to lower the temperature of the heat medium to an acceptable level, and to allow cooling through the evaporator 21 through the compressor 24. 제 3, 4항에 있어서,The method according to claim 3, 4, 히트펌프장치(20)은 각 구성요소들의 사이클을 해석하기 위해서 냉매유량계를 설치하고 증발기(21), 응축기(25), 압축기(24)의 입출구에 온도센서와 압력센서 등의 측정장치(50)가 각각 구성되는 것을 포함하는 지열을 이용한 시설원예 냉난방 장치Heat pump device 20 is installed in the refrigerant flowmeter to analyze the cycle of each component and measuring device 50 such as temperature sensor and pressure sensor at the inlet and outlet of the evaporator 21, condenser 25, compressor 24 Facility horticulture air conditioning equipment using geothermal heat comprising each
KR20-2004-0015408U 2004-06-02 2004-06-02 The air-conditioning and heating system used geothermal KR200362988Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20-2004-0015408U KR200362988Y1 (en) 2004-06-02 2004-06-02 The air-conditioning and heating system used geothermal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20-2004-0015408U KR200362988Y1 (en) 2004-06-02 2004-06-02 The air-conditioning and heating system used geothermal

Publications (1)

Publication Number Publication Date
KR200362988Y1 true KR200362988Y1 (en) 2004-09-22

Family

ID=49350400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20-2004-0015408U KR200362988Y1 (en) 2004-06-02 2004-06-02 The air-conditioning and heating system used geothermal

Country Status (1)

Country Link
KR (1) KR200362988Y1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865139B1 (en) * 2007-07-24 2008-10-24 제인상사(주) Air-conditioning heat pump
KR100934094B1 (en) 2009-09-21 2009-12-24 대영지에스 주식회사 Control apparatus of air temperature in green house
KR101436440B1 (en) 2012-10-16 2014-09-03 (주)양협 Greenhouse and hydroponic cultivation for axis column expression heat pump airconditioning, heating system
KR20150057825A (en) * 2013-11-20 2015-05-28 주식회사 탑솔 Greenhouse heat pump system of capable heating and cooling and dehumidifying
KR101855146B1 (en) * 2018-01-17 2018-05-04 서종완 Vinyl house heating system using vinyl house-linked electricity production system
KR101889800B1 (en) * 2018-04-10 2018-08-20 서종완 Vinyl house heating system using solar heat vacuum tube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865139B1 (en) * 2007-07-24 2008-10-24 제인상사(주) Air-conditioning heat pump
KR100934094B1 (en) 2009-09-21 2009-12-24 대영지에스 주식회사 Control apparatus of air temperature in green house
KR101436440B1 (en) 2012-10-16 2014-09-03 (주)양협 Greenhouse and hydroponic cultivation for axis column expression heat pump airconditioning, heating system
KR20150057825A (en) * 2013-11-20 2015-05-28 주식회사 탑솔 Greenhouse heat pump system of capable heating and cooling and dehumidifying
KR101578085B1 (en) 2013-11-20 2015-12-16 주식회사 탑솔 Greenhouse heat pump system of capable heating and cooling and dehumidifying
KR101855146B1 (en) * 2018-01-17 2018-05-04 서종완 Vinyl house heating system using vinyl house-linked electricity production system
KR101889800B1 (en) * 2018-04-10 2018-08-20 서종완 Vinyl house heating system using solar heat vacuum tube

Similar Documents

Publication Publication Date Title
Cuce et al. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review
Hassanien et al. The evacuated tube solar collector assisted heat pump for heating greenhouses
KR100915701B1 (en) Airconditioning apparatus of house using earth heat-heat pump
CN204014640U (en) Realize the energy-saving heating system that cold district green house solanaceous vegetables is produced
CN103430795B (en) Facility agriculture heat pump system
Bakos et al. Greenhouse heating using geothermal energy
CN102986479A (en) System for comprehensively utilizing energy sources in greenhouse
CN201319779Y (en) Hot-cold regulating device for ground source greenhouse
EP2199696A1 (en) A kind of active thermoregulation system without motivity and the method thereof
CN202435897U (en) Energy integrated utilization system in greenhouse
Belov et al. Evaluation of the effectiveness of a helio-greenhouse with soil heating
CN204206850U (en) A kind of air collector
CN202635230U (en) Greenhouse cold and heat exchange system with deep-buried ground source heat pump
CN108731305A (en) Multi-source phase-change accumulation energy heat pump system
CN103314838A (en) Thermal storage and supply system and application of thermal storage and supply system on water culture
KR200362988Y1 (en) The air-conditioning and heating system used geothermal
CN111108983A (en) Heat storage and release system and method for sunlight greenhouse
CN202018140U (en) Temperature controlled integrated application system for renewable energy source combination device and agricultural production
Bazgaou et al. Efficiency assessment of a solar heating cooling system applied to the greenhouse microclimate
Turgut et al. Aquifer thermal energy storage application in greenhouse climatization
CN204540244U (en) Ground source heat pump type plant factor system
CN108617348B (en) Capillary system applied to greenhouse
Yousefi et al. Economic and environmental feasibility study of greenhouse heating and cooling using geothermal heat pump in northwest Iran
Jensen Energy Alternatives and Conservation for Greenhouses1
Sun et al. Research on a new technology integrated low-cost, near-zero-energy solar greenhouse

Legal Events

Date Code Title Description
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20121214

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131014

Year of fee payment: 10

EXPY Expiration of term