KR200362500Y1 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
KR200362500Y1
KR200362500Y1 KR20-2004-0018682U KR20040018682U KR200362500Y1 KR 200362500 Y1 KR200362500 Y1 KR 200362500Y1 KR 20040018682 U KR20040018682 U KR 20040018682U KR 200362500 Y1 KR200362500 Y1 KR 200362500Y1
Authority
KR
South Korea
Prior art keywords
exhaust gas
heat exchanger
heat exchange
exhaust
engine
Prior art date
Application number
KR20-2004-0018682U
Other languages
Korean (ko)
Inventor
천용기
Original Assignee
천용기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 천용기 filed Critical 천용기
Priority to KR20-2004-0018682U priority Critical patent/KR200362500Y1/en
Application granted granted Critical
Publication of KR200362500Y1 publication Critical patent/KR200362500Y1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/001Gas flow channels or gas chambers being at least partly formed in the structural parts of the engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • F01N3/043Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
    • F01N3/046Exhaust manifolds with cooling jacket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

효율적인 열교환과 열교환과정에서의 손실을 최소화하여 열회수율을 높인 열병합발전시스템이 개시되어 있다. 개시된 시스템은 배기관(7) 끝부분의 제1배가스열교환기(10), 엔진냉각수 순환배관(6) 중간에 개재된 엔진냉각수열교환기(20), 배기관(7) 중간에 개재된 제2배가스열교환기(30), 배기다기관 겸용 제3배가스열교환기(40), 각 열교환기를 차례로 경유하는 열교환수관(8), 그리고 온수탱크(50)를 포함하여, 배가스와 엔진냉각수의 각 물리적 특성과 온도변화에 대응하여 단계적인 열교환을 수행하고, 각 열교환과정에서의 열전달능력을 최대한 보장하고 손실을 최소화한 최적의 열교환조건으로 구현되어, 열손실이 극히 적고 높은 열회수율로 종합 에너지 이용효율 극대화한다.A cogeneration system has been disclosed that increases heat recovery by efficient heat exchange and minimizes losses during heat exchange. The disclosed system includes an engine coolant heat exchanger 20 interposed between a first exhaust gas heat exchanger 10 at an end of an exhaust pipe 7, an engine coolant circulation pipe 6, and a second exhaust gas heat exchange interposed between an exhaust pipe 7. Physical characteristics and temperature changes of the exhaust gas and the engine coolant, including the gas 30, the third exhaust gas heat exchanger 40 for the exhaust manifold, the heat exchange water pipe 8 through each heat exchanger, and the hot water tank 50, respectively. In order to perform the heat exchange step by step, and to ensure the maximum heat transfer capacity in each heat exchange process and to implement the optimal heat exchange conditions with minimal loss, the heat loss is extremely low and the heat recovery rate maximizes the overall energy utilization efficiency.

Description

열병합발전시스템{Cogeneration system}Cogeneration System {Cogeneration system}

본 고안은 열병합발전시스템에 관한 것으로, 특히 효율적인 열교환과 열교환과정에서의 손실을 최소화하여 열회수율을 높인 열병합발전시스템에 관한 것이다.The present invention relates to a cogeneration system, and more particularly, to a cogeneration system having a high heat recovery rate by minimizing losses during an efficient heat exchange and heat exchange process.

1차 에너지인 화석연료는 점차 고갈되어가는데 수요는 오히려 늘고 있어 그 수급불균형이 점차 심화되고 있으며, 이를 해결하는 방안의 하나로 에너지 이용효율이 높은 열병합발전시스템이 대안으로 제시되고 있다. 열병합발전시스템은 하나의 에너지원으로부터 전력과 열을 동시에 생산하는 시스템으로 에너지 이용효율이 기존 발전만 하는 화력발전시스템에 비해 훨씬 높다. 구체적으로, 화력발전시스템의 경우 발전효율이 약 40%이고 송전손실을 감안하면 종합효율은 35%정도에 불과하다. 발전시의 배열(엔진 배가스열 및 냉각수열 등)은 발전에 소요되는 열량에 비해 1.5~2배정도 발생되는데, 열병합발전시스템에 의하면, 그 배열을 회수하여 냉·난방 등에 이용하므로써 종합 에너지 이용효율을 70%이상으로 높일 수 있는 것이다.Fossil fuel, the primary energy, is gradually being depleted, but demand is increasing, and the supply and demand imbalance is intensifying. As a way to solve this problem, a cogeneration system with high energy use efficiency is proposed as an alternative. The cogeneration system produces power and heat simultaneously from a single energy source, and its energy use efficiency is much higher than that of a conventional thermal power generation system. Specifically, in the case of thermal power generation system, the power generation efficiency is about 40%, and considering the transmission loss, the overall efficiency is only about 35%. The heat generation (engine exhaust gas heat and cooling water heat) is generated 1.5 ~ 2 times as much as the heat required for power generation. According to the cogeneration system, the energy efficiency is improved by recovering the heat and using it for cooling and heating. It can be increased to more than 70%.

등록특허 10-0149466에는 가스엔진을 사용하며, 가스엔진의 냉각자켓에 배열회수배관과 이를 열원으로 하여 자연순환하는 열매배관을 포함하여, 소위 히트펌프식 냉난방공기조화 기능을 하는 시스템이 제안되어 있다.In Patent No. 10-0149466, a system that uses a gas engine, including a heat recovery pipe and a heat pipe circulating naturally by using it as a heat source in a cooling jacket of a gas engine, has been proposed a system that functions as a heat pump type of heating and cooling air conditioning. .

등록특허 10-0411764에는 엔진 배기관 끝부분을 열원으로 하여 물을 1차 가열하는 1차가열조(1차배가스열교환기), 1차가열조와 엔진 사이의 배기관 시작부분을 열원으로 하여 1차 가열된 물을 2차가열하는 2차가열조(2차배가스열교환기)를 포함하여 온수를 공급하는 시스템이 제안되어 있다.Patent No. 10-0411764 discloses a primary heating tank (primary exhaust gas heat exchanger) for heating water first by using the end portion of an engine exhaust pipe as a heat source, and primary heated water using a starting portion of an exhaust pipe between the primary heating tank and the engine as a heat source. A system for supplying hot water has been proposed, including a secondary heating tank (secondary exhaust gas heat exchanger) for secondary heating.

공개특허 2000-0058568에는 내연기관에 직결된 발전기, 내연기관의 배출가스로 구동되는 가스터빈 발전기, 내연기관의 냉각수를 배출가스와 열교환시켜 포화온도로 가열한 후 증발기와 과열기로 초임계압까지 상승시킨 과열증기로 구동되는 증기터빈 발전기를 포함하는 시스템이 제안되어 있다.In Patent Application Publication No. 2000-0058568, a generator directly connected to an internal combustion engine, a gas turbine generator driven by an exhaust gas of an internal combustion engine, and a cooling water of an internal combustion engine are heated to a saturation temperature by heat exchange with the exhaust gas, and then raised to a supercritical pressure with an evaporator and a superheater. A system including a steam turbine generator driven by superheated steam has been proposed.

공개특허공보 2001-0000614에는 발전부하 감소와 회전력 증가로 발전량을 향상시키기 위해 다차터빈축과 발전기 사이에 설치된 유압변속제어장치를 포함하는 시스템이 제안되어 있다.Korean Patent Laid-Open Publication No. 2001-0000614 proposes a system including a hydraulic transmission control device installed between a multi-turbine shaft and a generator in order to improve power generation by reducing power generation load and increasing torque.

공개특허 2002-0005826에는 가스터빈발전기, 이 가스터빈발전기에서 배출되는 배가스로 고온고압의 증기를 발생시키는 폐열회수보일러와 이 폐열회수보일에서 발생한 증기를 이용하여 냉난방 작동유체 열교환기 및 흡수식 냉동기를 포함하는 시스템이 제안되어 있다.Patent Publication 2002-0005826 includes a gas turbine generator, a waste heat recovery boiler for generating high-temperature, high-pressure steam as exhaust gas discharged from the gas turbine generator, and a cooling / heating working fluid heat exchanger and an absorption chiller using steam generated from the waste heat recovery boiler. A system is proposed.

종래에도 전술한 바와 같은 다양한 방식의 엔진 배열 회수방안이 제안되어 왔으나, 엔진배가스와 엔진냉각수 및 열교환수의 흐름이 최적화되지 못하고, 또한 각 열교환정에서의 손실 등이 고려되지 않고 있어서, 열회수율을 높이는데 한계가 있었고, 자체 손실 등에 의해 회수되지 못하고 버려지는 열량의 최대 손실이 30%정도로 여전히 높다.Conventionally, various methods of recovering the engine arrangement as described above have been proposed, but the flow of the engine exhaust gas, the engine coolant, and the heat exchange water is not optimized, and the loss in each heat exchange well is not taken into consideration. There was a limit to increase, and the maximum loss of calories that can not be recovered by self loss is still high, about 30%.

본 고안의 목적은, 보다 경제적인 에너지 이용을 도모하기 위하여, 엔진 배열회수 라인을 최적화하고, 회수라인상의 열교환과정에서의 열전달능력을 최대한 보장하고 손실을 최소화하여 보다 더 열회수율을 높인 열병합발전시스템을 제공하는 것이다.The purpose of the present invention is to optimize the engine heat recovery line, to ensure the maximum heat transfer capacity during the heat exchange process on the recovery line, and to minimize the loss in order to achieve more economical energy use, the cogeneration system with higher heat recovery rate. To provide.

도 1은 본 고안에 따른 열병합발전시스템의 전체 열교환 계통도.1 is a whole heat exchange system diagram of the cogeneration system according to the present invention.

도 2는 본 고안에 따른 열병합발전시스템에 사용된 배가스용 열교환기의 개요도.Figure 2 is a schematic diagram of the heat exchanger for the exhaust gas used in the cogeneration system according to the present invention.

도 3은 본 고안에 따른 열병합발전시스템에 사용된 엔진냉각수용 열교환기의 개요도.Figure 3 is a schematic diagram of the heat exchanger for the engine coolant used in the cogeneration system according to the present invention.

도 4a 내지 4c는 본 고안에 따른 열병합발전시스템에 사용된 배기다기관 겸용 배가스열교환기의 각 방향 단면도.Figure 4a to 4c is a cross-sectional view in each direction of the exhaust manifold combined exhaust gas heat exchanger used in the cogeneration system according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 엔진 2 : 발전기1: engine 2: generator

6 : 엔진냉각수 순환배관 7 : 배기관6: engine coolant circulation pipe 7: exhaust pipe

8 : 열교환수관 10,20,30,40 : 열교환기8: heat exchanger pipe 10,20,30,40: heat exchanger

50 : 온수탱크50: hot water tank

상기 목적을 달성하는 본 고안에 따른 열병합발전시스템은, 연료로서 디젤이나 액화천연가스 또는 액화석유가스를 연소하여 축동력을 발생하는 엔진, 이 엔진에 직결된 발전기, 엔진 냉각을 위한 워터자켓과 냉각수 순환배관, 엔진의 배기다기관 및 배기관을 포함하는 것에 있어서, 상기 엔진의 배기관 끝부분을 열원으로 하여 물을 가열하는 제1배가스열교환기, 상기 워터자켓의 엔진냉각수 순환배관을 열원으로 하여 상기 제1배가스열교환기에서 1차 가열된 물을 가열하는 엔진냉각수열교환기, 상기 엔진의 배기관 중간부분을 열원으로 하여 상기 엔진냉각수열교환기에서 2차 가열된 물을 가열하는 제2배가스열교환기, 상기 엔진의 배기다기관을 열원으로 하여 상기 제2배가스열교환기에서 3차 가열된 물을 가열하는 배기다기관겸용 제3배가스열교환기, 그리고 상기 배기다기관 겸용 배가스열교환기에서 가열된 물을 일정량 저장한 후 배출하는 온수탱크가 구비된 것을 그 특징으로 한다.Cogeneration system according to the present invention for achieving the above object is an engine that generates axial force by burning diesel or liquefied natural gas or liquefied petroleum gas as fuel, a generator directly connected to the engine, water jacket and cooling water circulation for engine cooling In the pipe, an exhaust manifold of the engine and an exhaust pipe, a first exhaust gas heat exchanger for heating water using the exhaust pipe end of the engine as a heat source, and the first exhaust gas using the engine coolant circulation pipe of the water jacket as a heat source. An engine coolant heat exchanger for heating the first heated water in a heat exchanger, a second exhaust gas heat exchanger for heating the second heated water in the engine coolant heat exchanger using the middle portion of the exhaust pipe of the engine as a heat source, and the exhaust of the engine. A third exhaust gas heat exchange for an exhaust manifold for heating the water heated in the second exhaust gas heat exchanger in the third exhaust gas heat exchanger And that the hot water tank and to discharge a predetermined amount after the storage for the water heated by the engine baegida combine the exhaust gas heat exchanger equipped with its features.

이하, 첨부된 도면을 참조하여 본 고안에 따른 열병합발전시스템의 바람직한 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the cogeneration system according to the present invention.

본 고안에 따른 열병합발전시스템의 열교환 계통도는 도 1과 같다. 도시된 바와 같이, 본 고안에 따른 열병합발전시스템은 왕복동 내연기관인 엔진(1)과 이에 직결된 발전기(2)로 전력을 생산한다. 여기서 엔진(1)은 다(多)실린더 기관이며, 연료로서 디젤을 사용하는 일반적인 디젤엔진이나 천연액화가스 또는 천연석유가스를 사용하는 일반적인 가스엔진을 약칭한 것이다. 엔진(1)은 통상의 연료공급장치와 냉각장치 및 흡·배기장치를 포함하는데, 도면에는 편의상 냉각장치의 워터자켓(3) 엔진냉각수탱크(4) 순환환펌(5) 및 엔진냉각수 순환배관(6), 배기장치의 배기다기관(도 3a 내지 3c, 부호 41 참조)과 배기관(7)이 도시되어 있다.Heat exchange schematic diagram of the cogeneration system according to the present invention is shown in FIG. As shown, the cogeneration system according to the present invention produces electric power with an engine 1, which is a reciprocating internal combustion engine, and a generator 2 directly connected thereto. Here, the engine 1 is a multi-cylinder engine, and abbreviates the general diesel engine which uses diesel as a fuel, and the general gas engine which uses natural liquefied gas or natural petroleum gas. The engine 1 includes a conventional fuel supply device, a cooling device, and an intake / exhaust device. For convenience, the engine 1 includes a water jacket (3) of the cooling device, an engine coolant tank (4), a circulation pump (5), and an engine coolant circulation pipe ( 6) The exhaust manifold (see FIGS. 3A to 3C, reference numeral 41) of the exhaust device and the exhaust pipe 7 are shown.

본 고안에 따라, 상기 배기관(7) 끝부분에 설치된 제1배가스열교환기(10), 상기 엔진냉각수 순환배관(6) 중간에 개재된 엔진냉각수열교환기(20), 배기관(7) 중간에 개재된 제2배가스열교환기(30), 배기다기관겸용 제3배가스열교환기(40), 각 열교환기를 차례로 경유하는 열교환수관(8), 그리고 온수탱크(50)가 구비되어 있다.According to the present invention, the first exhaust gas heat exchanger (10) installed at the end of the exhaust pipe (7), the engine coolant heat exchanger (20) interposed in the middle of the engine coolant circulation pipe (6), interposed between the exhaust pipe (7) The second exhaust gas heat exchanger 30, the third exhaust gas heat exchanger 40 for the exhaust manifold, the heat exchange water pipe 8 which passes through each heat exchanger in turn, and the hot water tank 50 are provided.

여기서 바람직하게는, 배가스 온도가 가장 낮은 제1배가스열교환기(10)를 배가스 온도가 가장 높은 배기다기관겸용 제3배가스열교환기(40)보다 낮은 위치에 두고, 중간 온도의 배가스를 보유하는 제2배가스열교환기(30)를 그 제1배가스열교환기(10)보다 높고 제3배가스열교환기(40)보다 낮은 위치에 두었으며, 엔진냉각수 순환배관(6)상의 엔진냉각수열교환기(20)를 제1배가스열교환기(10)보다 높고 제2배가스열교환기(30)보다 낮은 위치에 두었다. 또한 워터자켓(1)에 대하여, 엔진냉각수 순환배관(6)의 유입측을 그 워터자켓(3)의 가장 낮은 위치에 접속시키고 그 유출측을 대각선 방향의 가장 높은 위치에 접속시켰다. 이러한 배치는 일반적으로 열은 고온에서 저온으로 자연히 이동하는 특성을 감안한 것으로, 배가스와 엔진냉각수 및 열교환수의 온도변화에 대응하여 각 유체의 원할한 이동과 효율적인 열교환을 꾀할 수 있다.Preferably, the first exhaust gas heat exchanger 10 having the lowest exhaust gas temperature is positioned at a lower position than the exhaust gas manifold third exhaust gas exchanger 40 having the highest exhaust gas temperature, and the second exhaust gas having the intermediate temperature exhaust gas is retained. The exhaust gas heat exchanger 30 is positioned higher than the first exhaust gas heat exchanger 10 and lower than the third exhaust gas heat exchanger 40, and the engine coolant heat exchanger 20 on the engine coolant circulation pipe 6 is removed. Placed higher than the first exhaust gas heat exchanger 10 and lower than the second exhaust gas heat exchanger 30. Further, with respect to the water jacket 1, the inflow side of the engine coolant circulation pipe 6 was connected to the lowest position of the water jacket 3, and the outflow side thereof was connected to the highest position in the diagonal direction. This arrangement generally takes into account the characteristics that heat naturally moves from high temperature to low temperature, so that smooth movement of each fluid and efficient heat exchange can be achieved in response to temperature changes of exhaust gas, engine coolant and heat exchange water.

상기한 제1 및 제2배가스열교환기(10,30)는, 도 2에 보인 바와 같이, 전술한 배가스의 배기관(7)보다 직경이 큰 원통부(11), 이 원통부(11) 내에 각각 축방향으로 양단측 내면과 거리를 두고 그 사이에 열매체인 배가스 체류공간(12,12')을 형성하며 또한 상호간 거리를 두고 그 사이에 열교환수(물) 체류공간(13)을 형성하는 두 개의 중간판(14,15), 두 개의 중간판(14,15) 사이를 관통하여 배가스를 분산유통시키는 직경이 작은 다수의 연관(16), 원통부(11)의 배가스 체류공간(12,12')으로 전술한 배기관(7) 접속을 위한 유입구(17)와 유출구(17'), 원통부(11)의 열교환수 체류공간(13)에 전술한 열교환수관(8) 접속을 위한 입수구(18)와 출수구(18')로 구성된다. 여기서 바람직하게는 상기 원통부(11)가 축방향으로 수평하게 놓이며, 그러한 자세에서 배가스의 유입구(17)는 유출구(17')보다 높은 위치에 놓이되 그 원통부(11) 내 배가스 체류공간(12)의 가장 높은 곳을 관통하고, 유출구(17')는 유입구(17)보다 낮은 위치에 놓이되 그 원통부(11) 내 배가스 체류공간(12)의 가장 낮은 곳을 관통한다. 그리고 열교환수의 입수구(18)는 원통부(11)의 열교환수 체류공간(13)내의 배가스 유출측 끝부분에서 가장 낮은 곳을, 출수구(18')는 그 체류공간(13)내 배가스 유입측 끝에서 가장 높은 곳을 각각 관통한다. 이러한 자세와 위치관계에 의하여 열손실을 최소화하고 최적의 열교환조건을 꾀할 수 있다. 즉, 배가스는 대부분 기체상태로서 비중이 물보다 작으므로, 그 유입측을 유출측보다 높게 하면, 원통부(11) 내 배가스 체류공간(13,13')이 배가스로 충진된 상태에서 유출되어 최대의 열전달능력을 가지게 된다. 또한 배가스 체류공간(13,13') 내에서의 배가스 온도는 그 유입측이 유출측보다 높은 반면, 열교환수 체류공간(13) 내에서의 열교환수 온도는 그 유입측이 유출측보다 낮으므로, 상기와 같은 조건에 따르면 열교환수 온도가 가장 높은 곳부터 먼저 열교환이 행해져 열교환효율이 높고 결호현상 등에 의한 손실을 최소화할 수 있다.As shown in FIG. 2, the first and second exhaust gas heat exchangers 10 and 30 described above have a cylindrical portion 11 having a diameter larger than that of the exhaust pipe 7 of the exhaust gas described above, and in the cylindrical portion 11, respectively. Two axial spaces forming a heat exchange water discharge space (12, 12 ') between the inner surface at both ends in the axial direction and forming a heat exchange water (water) residence space therebetween at a distance from each other. Intermediate plates 14 and 15, a plurality of small diameter pipes 16 for distributing and discharging flue gas through two intermediate plates 14 and 15, and exhaust gas holding spaces 12 and 12 'of the cylinder portion 11 Inlet (18) for connecting the above-mentioned heat exchange water pipe (8) to the heat exchange water retention space (13) of the inlet (17) and the outlet (17 '), the cylindrical portion 11 for connecting the above-described exhaust pipe (7) And the outlet 18 '. Preferably, the cylindrical portion 11 is placed horizontally in the axial direction, and in such a posture, the inlet 17 of the exhaust gas is placed at a position higher than the outlet 17 'but the exhaust gas stays in the cylindrical portion 11. It penetrates the highest point of the space 12, and the outlet 17 ′ is positioned at a lower position than the inlet 17 but penetrates the lowest point of the exhaust gas holding space 12 in the cylinder portion 11. The inlet 18 of the heat exchange water is the lowest at the end of the exhaust gas outlet side in the heat exchange water residence space 13 of the cylindrical portion 11, and the outlet 18 ′ is the exhaust gas inlet side of the residence space 13. Go through each of the highest points at the end. By this posture and positional relationship, heat loss can be minimized and optimal heat exchange conditions can be achieved. That is, since the exhaust gas is mostly gaseous and its specific gravity is smaller than that of water, when the inflow side is made higher than the outlet side, the exhaust gas holding spaces 13 and 13 'in the cylinder portion 11 are discharged in the state filled with the exhaust gas, and the maximum It has heat transfer ability of. In addition, since the inlet side has a higher inlet side than the outlet side in the exhaust gas holding spaces 13 and 13 ', the heat exchange water temperature in the heat exchange water holding space 13 is lower than the outlet side, According to the above conditions, heat exchange is performed first from the place where the heat exchange water temperature is the highest, so that the heat exchange efficiency is high and the loss due to freezing can be minimized.

참고로, 제1배가스열교환기(10)의 입수구(18)는 도시하지 않은 상수도관과 직결 접속되어 수돗물을 직접 공급받을 수 있으며, 바람직하게는 도시하지 않은 기수분리기를 통해 연결됨으로서 상수도로부터 기포가 유입되는 것을 방지할 수 있다.For reference, the inlet 18 of the first exhaust gas heat exchanger 10 may be directly connected to a water pipe (not shown) and directly supplied with tap water, and preferably, bubbles may be discharged from the water supply by being connected through a water separator (not shown). Inflow can be prevented.

상기한 엔진냉각수열교환기(20)는, 도 3에 보인 바와 같이, 전술한 엔진냉각수 순환배관(6)보다 직경이 큰 원통부(21), 열매체인 엔진냉각수 체류공간(22,22')을 형성하며 또한 상호간 거리를 두고 그 사이에 열교환수(물) 체류공간(23)을 형성하는 두 개의 중간판(24,25), 두 개의 중간판(24,25) 사이를 관통하여 엔진냉각수를 분산유통시키는 직경이 작은 다수의 수관(26), 원통부(21)의 엔진냉각수 체류공간(22,22')으로 전술한 엔진냉각수 순환배관(6) 접속을 위한 유입구(27)와 유출구(27'), 원통부(21)의 열교환수 체류공간(23)에 전술한 열교환수관(8) 접속을 위한 입수구(28)와 출수구(28')로 구성된다. 이러한 엔진냉각수열교환(20)는 전술한 도 2의 배가스열교환기(10)와 실질적으로 같은 구조이며, 다만 열매체가 전술한 배가스와 달리 대체로 액상인점을 감안하여, 수평하게 놓인 원통부(21)에 대해, 상기 유입구(27)는 유출구(27')보다 낮은 위치에 놓이되 그 원통부(21) 내 엔진냉각수 체류공간(22)의 가장 낮은 곳을 관통하고, 유출구(27')는 유입구(27)보다 높은 위치에 놓이되 그 원통부(21) 내 엔진냉각수 체류공간(22')의 가장 높은 곳을 관통하게 된 것이다. 즉, 액상의 엔진냉각수가 가장 낮은 곳으로부터 유입되고 가장 높은 곳으로부터 유출되어 그 엔진냉각수 체류공간(23)을 기포현상없이 엔진냉각수로 채울 수 있게 되며, 따라서 최대의 열전달능력으로 최대의 열교환조건을 조성할 수 있는 것이다.As shown in FIG. 3, the engine coolant heat exchanger 20 includes a cylindrical portion 21 having a diameter larger than that of the engine coolant circulation pipe 6 described above, and an engine coolant residence space 22 and 22 ′. To distribute the engine coolant through the two intermediate plates 24 and 25 and the two intermediate plates 24 and 25 to form a heat exchange water (water) retention space 23 therebetween. Inlet 27 and outlet 27 'for connecting the above-described engine coolant circulation pipe 6 to the plurality of small water pipes 26 and the engine coolant residence spaces 22 and 22' of the cylindrical portion 21 to be circulated. ), And an inlet port 28 and an outlet port 28 'for connecting the heat exchange water pipe 8 described above to the heat exchange water residence space 23 of the cylindrical portion 21. The engine coolant heat exchange 20 has a structure substantially the same as that of the exhaust gas heat exchanger 10 of FIG. 2, except that the heat medium is substantially liquid, unlike the exhaust gas described above. With respect to the inlet 27, the inlet 27 is positioned at a lower position than the outlet 27 'but passes through the lowest portion of the engine coolant residence space 22 in the cylinder portion 21, and the outlet 27' is the inlet. It is placed at a position higher than (27), but penetrates the highest point of the engine cooling water staying space 22 'in the cylindrical portion 21. That is, the liquid engine coolant flows in from the lowest place and flows out from the highest place to fill the engine coolant residence space 23 with the engine coolant without bubbles. Therefore, the maximum heat transfer capacity is achieved with the maximum heat transfer capacity. It can be created.

상기한 배기다기관겸용 제3배가스열교환기(40)는, 도 4a 내지 4c에 도시된각 방향의 단면도에서 보는 바와 같이, 배기다기관부(41)와 이 배기다기관부(41) 주위에 공간을 두고 기밀한 상태로 감싸며 양단에 전술한 열교환수관(8)이 접속되는 열교환자켓부(42)로 구성된다. 배기다기관부(41)는 다(多)실린더기관에 부착되는 통상의 배기다기관과 실질적으로 같은 구조이며, 본 고안에 따라 일측단에서 타측단으로 관통하여 열교환수를 유통시키는 통로(43)를 더 가지고 있다. 즉, 열교환자켓부(42)로 유입된 열교환수가 배기다기관부(41) 주위와 그 열교환수통로(43)를 통해 분산유통되게 하여 충분한 열교환면적으로 열교환효율을 높일 수 있는 것이다.The third exhaust gas heat exchanger 40 for use as the exhaust manifold has a space around the exhaust manifold portion 41 and the exhaust manifold portion 41 as shown in the cross-sectional views in each direction shown in FIGS. 4A to 4C. It is composed of a heat exchange jacket portion 42 wrapped in an airtight state and connected to both ends of the heat exchange water pipe 8 described above. The exhaust manifold portion 41 has a structure substantially the same as a conventional exhaust manifold attached to a multi-cylinder engine, and further includes a passage 43 for circulating heat exchange water from one end to the other end according to the present invention. Have. That is, the heat exchange water introduced into the heat exchange jacket portion 42 is distributed and distributed around the exhaust manifold portion 41 and through the heat exchange water passage 43 so that the heat exchange efficiency can be increased with a sufficient heat exchange area.

온수탱크(50)는 최종적으로 배기다기관겸용 제3배가스열교환기(40)에서 열교환된 온수저장을 위한 것으로, 저장된 온수를 외부로 출력하는 온수출력관(51)을 가진다. 바람직하게는, 그 온수출력관(51)은 탱크내 가장 높은 곳에서 그리고 그 탱크에 연계된 전술한 열교환수관(8)이나 이 열교환수관(8)상의 전술한 열교환기들 보다 가장 높은 위치에서 온수를 방출하도록 배관되며, 시스템내 탱크위치가 다른 기기보다 낮을 경우에는 그 온수출력관(51)의 일부분이 가장 높은 곳을 경유토록 한 벤딩부(51a)를 갖게 한다. 이로써 온수탱크(50) 내의 기포를 방지하고 온수로 채워지게 함으로써 기포에 의한 냉각 등의 열손실을 방지할 수 있는 것이다.The hot water tank 50 is for storing hot water that is finally heat exchanged in the third exhaust gas heat exchanger 40 for an exhaust manifold, and has a hot water output pipe 51 for outputting the stored hot water to the outside. Preferably, the hot water output pipe 51 carries hot water at the highest point in the tank and at a higher position than the aforementioned heat exchange water pipe 8 associated with the tank or the aforementioned heat exchangers on the heat exchange water pipe 8. If the tank position in the system is lower than other equipment, a part of the hot water output pipe 51 has a bent part 51a through the highest point. Thus, by preventing the bubbles in the hot water tank 50 and filled with hot water it is possible to prevent heat loss such as cooling by the bubbles.

온수탱크(50)에는 또한 저장된 온수의 보조가열수단으로서 상용전력으로 구동되는 전기히터(52)가 구비될 수 있다. 전기히터 대신 가스보일러 등 다른 가열수단도 가능함은 물론이다.The hot water tank 50 may also be provided with an electric heater 52 driven by commercial power as an auxiliary heating means of the stored hot water. Of course, other heating means such as a gas boiler is also possible instead of the electric heater.

한편, 배기다기관겸용 제3배가스열교환기(40)와 온수탱크(50) 사이의 열교환수관(8)으로부터 분기출력관(53)이 분기되고, 분기측의 개폐용 밸브(54,55), 그리고 제3배가스열교환기(40) 입구측의 유량조절밸브(56)가 구비되어 있다. 유량조절밸브(56)는 배기다기관겸용 제3배가스열교환기(40)로의 유입되는 열교환수의 유량을 조절할 수 있게 하며, 그 유량에 따라 제3배가스열교환기(40)를 거친 최종적인 열교환수의 온도를 조절하거나 스팀을 생산할 수 있게 한다. 따라서 그 유량조절과 함께 밸브(54,55)를 교호로 개폐시킴으로써 분기출력관(53)을 통해 급탕을 위한 고온수 또는 스팀난방을 위한 스팀을 출력할 수 있는 것이다. 유량조절밸브(56) 및 개폐용 밸브(54,55)들은 도시하지 않은 통상의 센서와 제어회로를 이용하여 자동적으로 제어조작가능함은 물론이다.On the other hand, the branch output pipe 53 is branched from the heat exchange water pipe 8 between the third exhaust gas heat exchanger 40 for the exhaust manifold and the hot water tank 50, and the opening and closing valves 54 and 55 on the branch side are formed. A flow regulating valve 56 at the inlet side of the triple gas heat exchanger 40 is provided. The flow regulating valve 56 allows to adjust the flow rate of the heat exchange water flowing into the third exhaust gas heat exchanger 40 for the exhaust manifold, and according to the flow rate of the final heat exchange water through the third exhaust gas heat exchanger 40. Allows you to control the temperature or produce steam. Therefore, by opening and closing the valves 54 and 55 alternately with the flow rate control, it is possible to output hot water for hot water supply or steam for steam heating through the branch output pipe 53. The flow regulating valve 56 and the opening / closing valves 54 and 55 are automatically controllable using a conventional sensor and control circuit (not shown).

이상에 설명된 바와 같이, 본 고안에 따른 열병합발전시스템은 엔진 배가스와 엔진냉각에 의한 배열을 회수함에 있어서, 배가스와 엔진냉각수의 각 물리적 상태와 온도변화에 대응하여 단계적인 열교환과, 각 열교환과정에서의 열전달능력을 최대한 보장하고 손실을 최소화한 최적의 열교환조건으로 구현된 것으로, 열손실이 극히 적고 높은 열회수율로 종합 에너지 이용효율 90%이상으로 높일 수 있는 것이다.As described above, in the cogeneration system according to the present invention, in recovering the arrangement by the engine exhaust gas and the engine cooling, stepwise heat exchange and each heat exchange process in response to the physical state and temperature change of the exhaust gas and the engine coolant It is realized as the best heat exchange condition that guarantees maximum heat transfer capacity and minimizes the loss. The heat loss is extremely low and the heat recovery rate can be increased to more than 90% of the total energy use efficiency.

Claims (11)

연료를 연소하여 축동력을 발생하는 엔진, 이 엔진에 직결된 발전기, 엔진 냉각을 위한 워터자켓과 엔진냉각수 순환배관, 엔진의 배기다기관 및 배기관을 포함하는 것에 있어서,In the engine including the engine that generates axial force by burning fuel, the generator directly connected to the engine, the water jacket and engine coolant circulation pipe for cooling the engine, the exhaust manifold and exhaust pipe of the engine, 상기 엔진의 배기관 끝부분을 열원으로 하여 물을 가열하는 제1배가스열교환기, 상기 엔진냉각수 순환배관을 열원으로 하여 상기 제1배가스열교환기에서 1차 가열된 물을 가열하는 엔진냉각수열교환기, 상기 엔진의 배기관 중간부분을 열원으로 하여 상기 엔진냉각수열교환기에서 2차 가열된 물을 가열하는 제2배가스열교환기, 상기 엔진의 배기다기관을 열원으로 하여 상기 제2배가스열교환기에서 3차 가열된 물을 가열하는 배기다기관겸용 제3배가스열교환기, 그리고 상기 배기다기관겸용 배가스열교환기에서 가열된 물을 일정량 저장한 후 배출하는 온수탱크가 구비된 것을 특징으로 하는 열병합발전시스템.A first exhaust gas heat exchanger for heating water using an end portion of the exhaust pipe of the engine as a heat source, an engine coolant heat exchanger for heating water first heated in the first exhaust gas heat exchanger using the engine coolant circulation pipe as a heat source, and A second exhaust gas heat exchanger for heating the secondary heated water in the engine cooling water heat exchanger using the middle portion of the engine exhaust pipe as a heat source, and water heated in the second exhaust gas heat exchanger using the exhaust manifold of the engine as a heat source A cogeneration system comprising: a third exhaust gas heat exchanger for both heating and a hot water tank for storing and discharging a predetermined amount of water heated in the exhaust manifold exhaust gas heat exchanger. 청구항 1에 있어서, 상기 제1배가스열교환기가 상기 배기다기관겸용 제3배가스열교환기보다 낮은 위치에 놓이고, 상기 제2배가스열교환기가 그 제1배가스열교환기보다 높고 상기 제3배가스열교환기보다 낮은 위치에 놓이며, 상기 엔진냉각수열교환기가 그 제1배가스열교환기보다 높고 제2배가스열교환기보다 낮은 위치에 놓인 것을 특징으로 하는 열병합발전시스템.2. The position of claim 1, wherein the first exhaust gas heat exchanger is positioned at a lower position than the exhaust gas manifold third exhaust gas heat exchanger, and the second exhaust gas heat exchanger is higher than the first exhaust gas heat exchanger and lower than the third exhaust gas heat exchanger. And the engine coolant heat exchanger is positioned above the first exhaust gas heat exchanger and below the second exhaust gas heat exchanger. 청구항 1 또는 2에 있어서, 상기 제1 및 제2배가스열교환기가, 엔진의 배기관보다 직경이 큰 원통부(11), 이 원통부(11) 내에 각각 축방향으로 양단측 내면과 거리를 두고 그 사이에 배가스 체류공간(12,12')을 형성하며 또한 상호간 거리를 두고 그 사이에 열교환수 체류공간(13)을 형성하는 두 개의 중간판(14,15), 두 개의 중간판(14,15) 사이를 관통하여 배가스를 분산유통시키는 직경이 작은 다수의 연관(16), 원통부(11)의 배가스 체류공간(12,12')으로 전술한 배기관(7) 접속을 위한 유입구(17)와 유출구(17'), 원통부(11)의 열교환수 체류공간(13)에 전술한 열교환수관(8) 접속을 위한 입수구(18)와 출수구(18')로 구성된 것을 특징으로 하는 열병합발전시스템.The said 1st and 2nd exhaust gas heat exchanger of Claim 1 or 2 has the cylindrical part 11 which is larger in diameter than the exhaust pipe of an engine, and this cylindrical part 11 is spaced apart from the inner surface at both ends in the axial direction, respectively. Two intermediate plates (14, 15) and two intermediate plates (14, 15) forming a flue gas retention space (12, 12 ') and forming a heat exchange water retention space (13) therebetween with a mutual distance therebetween. Inlet 17 and outlet for connecting the above-described exhaust pipe 7 to a plurality of small diameters 16 for distributing and distributing the flue gas through therebetween, and to the flue gas retention spaces 12 and 12 'of the cylindrical portion 11. (17 '), a cogeneration system comprising an inlet (18) and an outlet (18') for connecting the heat exchange water pipe (8) described above to the heat exchange water residence space (13) of the cylindrical portion (11). 청구항 3에 있어서, 상기 원통부(11)가 축방향으로 수평하게 놓이고, 상기 배가스의 유입구(17)가 유출구(17')보다 높은 위치에 놓이되 그 원통부(11) 내 상기 배가스 체류공간(12)의 가장 높은 곳을 관통하고, 상기 유출구(17')가 유입구(17)보다 낮은 위치에 놓이되 그 원통부(11) 내 상기 배가스 체류공간(12')의 가장 낮은 곳을 관통하며, 상기 열교환수의 입수구(18)는 상기 원통부(11)의 열교환수 체류공간(13)내의 배가스 유출측 끝부분에서 가장 낮은 곳을, 출수구(18')는 그 체류공간(13)내 배가스 유입측 끝에서 가장 높은 곳을 각각 관통하게 구성된 것을 특징으로 하는 열병합발전시스템.4. The exhaust gas according to claim 3, wherein the cylinder part 11 is placed horizontally in the axial direction, and the inlet port 17 of the exhaust gas is positioned at a position higher than the outlet port 17 ′, and the exhaust gas stays in the cylinder part 11. It penetrates the highest point of the space 12, and the outlet 17 'is positioned at a lower position than the inlet 17, but the lowest point of the exhaust gas holding space 12' in the cylindrical portion 11 is The inlet 18 of the heat exchange water is the lowest at the end of the exhaust gas outlet side in the heat exchange water residence space 13 of the cylindrical portion 11, the outlet 18 'is the residence space 13 Cogeneration system, characterized in that configured to penetrate the highest point at each end of the inlet gas inlet. 청구항 1 또는 2에 있어서, 상기 엔진냉각수열교환기가, 상기 엔진냉각수 순환배관보다 직경이 큰 원통부(21), 이 원통부(21) 내에 각각 축방향으로 양단측 내면과 거리를 두고 그 사이에 엔진냉각수 체류공간(22,32')을 형성하며 또한 상호간 거리를 두고 그 사이에 열교환수 체류공간(23)을 형성하는 두 개의 중간판(24,35), 두 개의 중간판(24,35) 사이를 관통하여 엔진냉각수를 분산유통시키는 직경이 작은다수의 수관(26), 원통부(21)의 엔진냉각수 체류공간(22,32')으로 전술한 엔진냉각수 순환배관 접속을 위한 유입구(27)와 유출구(27'), 원통부(21)의 열교환수 체류공간(23)에 전술한 열교환수관 접속을 위한 입수구(28)와 출수구(28')로 구성된 것을 특징으로 하는 열병합발전시스템.The engine coolant heat exchanger according to claim 1 or 2, wherein the engine coolant heat exchanger has a cylinder portion 21 having a diameter larger than that of the engine coolant circulation pipe, and the cylinder portion 21 is spaced apart from the inner surfaces at both ends in the axial direction, respectively. Between two intermediate plates 24 and 35 and two intermediate plates 24 and 35 that form cooling water retention spaces 22 and 32 'and also form a heat exchange water retention space 23 therebetween with a mutual distance therebetween. A plurality of small diameter water pipes 26 for dispersing and distributing the engine coolant through the pipes, and inlets 27 for connecting the aforementioned engine coolant circulation pipes to the engine coolant residence spaces 22 and 32 'of the cylindrical portion 21; A cogeneration system comprising an inlet port (27 ') and an outlet port (28) for connecting the heat exchange water pipes to the heat exchange water residence space (23) of the cylindrical portion (21). 청구항 5에 있어서, 상기 원통부(21)가 축방향으로 수평하게 놓이고, 상기 유입구(27)가 유출구(27')보다 낮은 위치에 놓이되 그 원통부(21) 내 엔진냉각수 체류공간(22)의 가장 낮은 곳을 관통하고, 상기 유출구(27')가 유입구(27)보다 높은 위치에 놓이되 그 원통부(21) 내 엔진냉각수 체류공간(22')의 가장 높은 곳을 관통하며, 상기 열교환수의 입수구(28)가 상기 원통부(21)의 열교환수 체류공간(23)내의 배가스 유출측 끝부분에서 가장 낮은 곳을, 출수구(28')가 그 체류공간(23)내 배가스 유입측 끝에서 가장 높은 곳을 각각 관통하게 구성된 것을 특징으로 하는 열병합발전시스템.The method of claim 5, wherein the cylindrical portion 21 is placed horizontally in the axial direction, the inlet 27 is positioned at a lower position than the outlet 27 ', but the engine coolant residence space in the cylindrical portion 21 ( Penetrates the lowest point of 22, and the outlet 27 'is positioned higher than the inlet 27, but penetrates the highest point of the engine coolant retention space 22' in the cylinder 21. Wherein the inlet 28 of the heat exchange water is the lowest at the end of the exhaust gas outlet side in the heat exchange water residence space 23 of the cylindrical portion 21, the outlet 28 'is the exhaust gas in the residence space 23 Cogeneration system, characterized in that configured to penetrate the highest point at each inlet end. 청구항 1 또는 2에 있어서, 상기 배기다기관겸용 제3배가스열교환기가, 상기 엔진에 연결되어 배기하는 배기다기관부(41)와 이 배기다기관부(41) 주위에 공간을 두고 기밀한 상태로 감싸며 양단에 상기한 열교환수관이 접속되는 열교환자켓부(42)로 구성된 것을 특징으로 하는 열병합발전시스템.The exhaust pipe manifold and the third exhaust gas heat exchanger according to claim 1 or 2, wherein the exhaust manifold portion 41 connected to the engine and the exhaust manifold are exhausted and surrounded in an airtight state with a space around the exhaust manifold portion 41. Cogeneration system, characterized in that consisting of a heat exchange jacket portion 42 is connected to the heat exchange water pipe. 청구항 7에 있어서, 상기 배기다기관겸용 제3배가스열교환기가 상기 배기다기관부(41)의 일측단에서 타측단으로 관통하여 열교환수를 유통시키는 통로(43)를 더 가지고 있는 것을 특징으로 하는 열병합발전시스템.The cogeneration system according to claim 7, further comprising a passage (43) through which the third exhaust gas heat exchanger for both exhaust manifolds passes from one end of the exhaust manifold portion (41) to the other end to distribute heat exchange water. . 청구항 1에 있어서, 온수탱크가 그 저장된 온수를 출력하기 위해 상기 열교환수관이나 그 열교환수관상의 다른 기기들보다 가장 높은 위치에서 온수를 방출하도록 배관된 온수출력관(51)을 가지고 있는 것을 특징으로 하는 열병합발전시스템.2. The hot water tank according to claim 1, characterized in that the hot water tank has a hot water output pipe 51 piped to discharge hot water at the highest position than the heat exchange water pipe or other devices on the heat exchange water pipe to output the stored hot water. Cogeneration system. 청구항 1 또는 9에 있어서, 상기 온수탱크에 저장된 온수를 가열할 수 있는 보조가열수단이 포함되어 있는 것을 특징으로 하는 열병합발전시스템.The cogeneration system according to claim 1 or 9, further comprising auxiliary heating means capable of heating hot water stored in the hot water tank. 청구항 1에 있어서, 상기 배기다기관겸용 제3배가스열교환기와 상기 온수탱크 사이의 열교환수관으로부터 분기된 분기출력관(53)과, 각 분기측에 설치된 개폐용 밸브(54,55), 그리고 상기 제3배가스열교환기(40) 입구측에서 유량을 조절하기 위한 유량조절밸브(56)가 구비되어 그 유량조절에 따라 상기 분기출력관을 통해 고온수나 스팀을 출력할 수 있게 된 것을 특징으로 하는 열병합발전시스템.2. The branch output pipe 53 branched from the heat exchange water pipe between the exhaust manifold combined third exhaust gas heat exchanger and the hot water tank, the opening and closing valves 54 and 55 provided at each branch side, and the third exhaust gas. Cogeneration system characterized in that the flow control valve 56 for controlling the flow rate at the inlet side of the heat exchanger (40) is provided to output the hot water or steam through the branch output pipe in accordance with the flow rate control.
KR20-2004-0018682U 2004-07-01 2004-07-01 Cogeneration system KR200362500Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20-2004-0018682U KR200362500Y1 (en) 2004-07-01 2004-07-01 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20-2004-0018682U KR200362500Y1 (en) 2004-07-01 2004-07-01 Cogeneration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020040051125A Division KR20060002187A (en) 2004-07-01 2004-07-01 Cogeneration system

Publications (1)

Publication Number Publication Date
KR200362500Y1 true KR200362500Y1 (en) 2004-09-18

Family

ID=49437733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20-2004-0018682U KR200362500Y1 (en) 2004-07-01 2004-07-01 Cogeneration system

Country Status (1)

Country Link
KR (1) KR200362500Y1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553479B1 (en) * 2005-06-02 2006-02-22 가현주 Heat exchanger
CN112127976A (en) * 2020-08-26 2020-12-25 杭州钱航船舶修造有限公司 Marine engine waste heat recycling system and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100553479B1 (en) * 2005-06-02 2006-02-22 가현주 Heat exchanger
CN112127976A (en) * 2020-08-26 2020-12-25 杭州钱航船舶修造有限公司 Marine engine waste heat recycling system and method thereof

Similar Documents

Publication Publication Date Title
US10968784B2 (en) Flexible coal-fired power generation system and operation method thereof
JP4540719B2 (en) Waste heat boiler
CN104697239B (en) A kind of new Organic Rankine Cycle cold, heat and power triple supply system of biomass driving
CN111189041A (en) Electric heat accumulating type superheated steam system and method thereof
CN103244213A (en) ORC electricity generation system for offshore platform and electricity generation method thereof
JP5130676B2 (en) Steam generation system
CN109595045A (en) For ultra supercritical double reheat power generation sets to be efficient and the energy-storage system of flexible heat supply
KR200362500Y1 (en) Cogeneration system
CN201225173Y (en) Step energy resource engine
KR20060002187A (en) Cogeneration system
KR20070034655A (en) Cogeneration System
JP2008232534A (en) Vapor production system and vapor production method
CN201014846Y (en) Tail gas heat exchanger for ammonia water absorption refrigerator using after heat of tail gas
CN209621416U (en) A kind of accumulation of heat coupling steam extraction integrated system for combined cycle energy cascade utilization
JP5056031B2 (en) Steam generation system and steam generation method
CN215598187U (en) Thermal power supply industrial steam unit thermoelectric decoupling system based on single-tank molten salt heat storage
CN220062693U (en) Steam heat accumulator with built-in heat exchanger
CN216240840U (en) Power plant combined supply system
CN219530811U (en) Energy storage and heat supply device
CN218627014U (en) Supercritical steam turbine heating system
CN117318107B (en) High-pressure hot water energy storage peak shaving system of coal-fired unit
CN218820288U (en) A kind of adoption is reheated outside the stove and realizes the mechanical furnace decoupling and lowers 15794loss the power storage system
CN217154149U (en) Fused salt heat storage coupling secondary reheating unit system
CN217518719U (en) Steam extraction and heat supply system of thermal generator set
CN220648227U (en) Drainage waste heat utilization system

Legal Events

Date Code Title Description
U107 Dual application of utility model
REGI Registration of establishment
FPAY Annual fee payment

Payment date: 20120229

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee